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Abstract

Several models exist for diffusion of signals across biological, social, or engineered networks.
However, the inverse problem of identifying the source of such propagated information appears
more difficult even in the presence of multiple network snapshots, and especially for the single-
snapshot case, given the many alternative, often similar, progression of diffusion that may lead
to the same observed snapshots. Mathematically, this problem can be undertaken using a dif-
fusion kernel that represents diffusion processes in a given network, but computing this kernel
is computationally challenging in general. Here, we propose a path-based network diffusion
kernel which considers edge-disjoint shortest paths among pairs of nodes in the network and
can be computed efficiently for both homogeneous and heterogeneous continuous-time diffusion
models. We use this network diffusion kernel to solve the inverse diffusion problem, which we
term Network Infusion (NI), using both likelihood maximization and error minimization. The
minimum error NI algorithm is based on an asymmetric Hamming premetric function and can
balance between false positive and false negative error types. We apply this framework for both
single-source and multi-source diffusion, for both single-snapshot and multi-snapshot observa-
tions, and using both uninformative and informative prior probabilities for candidate source
nodes. We also provide proofs that under a standard susceptible-infected diffusion model, (1)
the maximum-likelihood NI is mean-field optimal for tree structures or sufficiently sparse Erdös-
Rényi graphs, (2) the minimum-error algorithm is mean-field optimal for regular tree structures,
and (3) for sufficiently-distant sources, the multi-source solution is mean-field optimal in the reg-
ular tree structure. Moreover, we provide techniques to learn diffusion model parameters such
as observation times. We apply NI to several synthetic networks and compare its performance
to centrality-based and distance-based methods for Erdös-Rényi graphs, power-law networks,
symmetric and asymmetric grids. Moreover, we use NI in two real-world applications. First,
we identify the news sources for 3,553 stories in the Digg social news network, and validate our
results based on annotated information, that was not provided to our algorithm. Second, we
use NI to identify infusion hubs of human diseases, defined as gene candidates that can explain
the connectivity pattern of disease-related genes in the human regulatory network. NI identi-
fies infusion hubs of several human diseases including T1D, Parkinson, MS, SLE, Psoriasis and
Schizophrenia. We show that, the inferred infusion hubs are biologically relevant and often not
identifiable using the raw p-values.

Keywords. Network Infusion, Information Diffusion, Source Inference, Maximum Likelihood,
Weighted Hamming Distance, Regulatory Network, Human Disease, Social Networks.

*Department of Electrical Engineering and Computer Science, MIT, Cambridge MA.
�Hamilton Institute, Maynooth University, Ireland, Ireland.
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1 Introduction

Networks provide an underlying framework over which different entities interact with each other.
Through these interactions, network entities (nodes) can influence other entities (nodes) by prop-
agating information/misinformation in the network. For instance, in a social network, a rumor
formed by a person can spread to others through social interactions [1]. Similarly, a virus infection
(either computer or biological) can propagate to different nodes in the network and become an
epidemic [2]. Even a financial failure of an institution can have cascading effects on other financial
entities and may lead to a financial crisis [3]. As a final example, in some human diseases, abnormal
activities of few genes can cause their target genes and therefore some essential biological processes
to fail to operate normally in the cell [4, 5].

In applications with underlying dynamic diffusion processes (e.g., an infection spread in an
epidemic network), we wish to infer source nodes in the network by merely observing the information
spread at single or multiple snapshots (Figure 1). In some other applications with static patterns
in the network (e.g., patterns of disease-related genes in the regulatory network), we wish to infer
infusion hubs, defined as nodes that explain the connectivity pattern of labeled nodes in the network
optimally. Although these applications are inherently different, techniques to solve them are similar.
In the sequel, we shall refer to the source inference problem to harmonize with the literature in the
area, with the understanding that, we may be considering sources or infusion hubs.

The source inference problem seems on the surface difficult because real world diffusion dynamics
are often unknown and there may be several diffusion processes that lead to the observed or similar
samples of the information spread in the network. A standard continuous-time diffusion model
for viral epidemics is known as the susceptible-infected-recovered (SIR) model [6], where infected
nodes spread viruses to their neighbors probabilistically. Although the SIR diffusion model may be
well-suited to model the forward problem of diffusion in the network, solving the inverse problem
(the source inference problem) under this model is challenging in general except in few special
cases [7–9], in great part owing to the presence of path multiplicity in the network. The case where
multiple sources exist in the network has additional complexity, owing to combinatorial choices for
source candidates (for more details, see Remarks 1, 2 and 3).

In this paper, we propose a computationally tractable general method for source inference called
Network Infusion (NI). The key idea is to make source inferences based on a modified network
diffusion kernel, which we term path-based network diffusion. Instead of the full network, our
continuous-time network diffusion kernel considers k edge-disjoint shortest paths among pairs of
nodes, neglecting other paths in the network, which leads to efficient kernel computation and NI
algorithms. For instance, in a homogeneous diffusion setup, where node-to-node infection spread
over all edges in the network has an exponential distribution, the proposed path-based network
diffusion kernel can be characterized by an Erlang distribution. We use path-based network diffusion
kernel to solve efficiently the inverse diffusion problem by maximizing the likelihood or minimizing
the prediction error. The minimum error NI algorithm is based on an asymmetric Hamming
premetric function and can balance between false positive and false negative error types. We
apply this framework for both single-source and multi-source diffusion, for both single-snapshot
and multi-snapshot observations, and using both uninformative and informative prior probabilities
for candidate source nodes.

We prove that, under a standard susceptible-infected (SI) diffusion model,

� the maximum-likelihood NI algorithm is mean-field optimal for tree structures and sufficiently
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Source node

Non-infected nodes

Infected nodes

Network Infusion

Network Di�usion

Observed Infection PatternHidden Sources

Figure 1: Network Infusion framework. NI aims to identify source node(s) by reversing
information propagation in the network. The displayed network and infection pattern
are parts of the Digg social news network.

sparse Erdös-Rényi graphs.

� the minimum-error NI algorithm is mean-field optimal for regular tree structures.

� the multi-source NI algorithm is mean-field optimal in the regular tree structure for sufficiently-
distant sources.

The proposed path-based network diffusion kernel and NI algorithms can be extended to a
complex heterogeneous diffusion setup as well, where edges propagate information/infection in the
network according to different diffusion processes. In this setup, we show that, our network diffusion
kernel can be characterized using the phase-type distribution of a Markov chain absorbing time
(see Section 3.4). Moreover, we extend our NI algorithms to the cases with unknown or partially
known diffusion model parameters such as observation times, by introducing techniques to learn
these parameters from observed sample values (see Section 3.6).

We apply NI to several synthetic networks and compare its performance to degree centrality [10]
and distance centrality [11] methods, under a standard SI diffusion model. We use four different
network structures in our simulations: Erdös-Rényi graphs, power-law networks, symmetric and
asymmetric grids. Our results indicate the superiority of proposed NI algorithms compared to
existing methods, specially in sparse networks. Moreover, we apply NI to two real data applications:
First, we identify the news sources for 3,553 stories in the Digg social news network, and validate
our results based on annotated information, which was not provided to our algorithm. Second, we
identify infusion hubs of several human diseases including Type 1 Diabetes (T1D), Systemic lupus
erythematosus (SLE), Multiple sclerosis (MS), Parkinson, Psoriasis and Schizophrenia, and show

3



that, NI infers novel disease infusion hubs that are biologically relevant and often not identifiable
using the raw p-values.

The rest of the paper is organized as follows. In Section 2, we introduce the problem, explain
notation, and review prior work. In Section 3, we introduce NI methods and kernels for both
homogeneous and heterogeneous models, and provide the main theorems and lemmas whose proofs
are relegated to Appendix. We provide performance evaluation results over synthetic and real
networks in Sections 4 and 5, respectively.

2 Problem Setup and Prior Work

In this section, we present the source inference problem and explain its underlying challenges. We
also review prior work and present notation used in the rest of the paper.

2.1 Source Inference Problem Setup

Let G = (V,E) be a binary, possibly directed, network with n nodes, where G(i, j) = 1 means
that, there is an edge from node i to node j (i.e., (i, j) ∈ E). Suppose N (i) represents the set of
neighbors of node i in the network. For the sake of description, we illustrate the problem setup and
notation in the context of a virus infection spread in the network, with the understanding that, our
framework can be used to solve a more general source or infusion hub inference problem. Consider
source nodes S ⊂ V in the network. When a node gets infected, it starts to spread infection to its
neighbors which causes the propagation of infection in the network. Let T

(i,j) be a random variable
representing the virus traveling time over the edge (i, j) ∈ E (i.e., the holding time variable of edge
(i, j)). T(i,j) variables are assumed to be mutually independent whose probability density functions
are denoted by f(i,j)(.). Let Pi→j denote a path (an ordered set of edges) connecting node i to
node j in the network. Ptoti→j represents all paths between nodes i and j in the network. Similarly,
we define TPi→j as a random variable representing the virus traveling time over the path Pi→j , with
the following cumulative density function,

FPi→j(t) ≜ Pr[TPi→j ≤ t]. (2.1)

Let y(t) ∈ {0,1}n be the node infection vector at time t, where yi(t) = 1 means that, node i is
infected at time t. Suppose Ti is a random variable representing the time that node i gets infected.
We assume that, if a node gets infected, it remains infected (i.e., there is no recovery). Suppose
τi is a realization of the random variable Ti. Thus, yi(t) = 1 if t ≥ τi, otherwise yi(t) = 0. If i is a
source nodes, Ti = 0 and yi(t) = 1 for all t ≥ 0. The set V t = {i ∶ yi(t) = 1} represents all nodes that
are infected at time t. Thus, S = V 0 represents the set of source nodes.

Definition 1 (SI Diffusion Model) In a dynamic Susceptible-Infected (SI) diffusion setup, we
have,

Ti ∼ min
j∈N (i)

(Tj + T(j,i)). (2.2)

Let {y(t) ∶ t ∈ (0,∞)} represent a continuous-time stationary stochastic process of diffusion in
the network G. In the source inference problem, given the sample values at times {t1, . . . , tz} (i.e.,
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{y(t1), . . . ,y(tz)}), as well as the underlying graph structure G, we wish to infer sources nodes
that started the infection at time 0. We assume that, the number of sources to be inferred (i.e.,
m), and the observation time stamps (i.e., {t1, . . . , tz}) are also given. We discuss the cases with
unknown or partially known parameters in Section 3.6.

One way to formulate the source inference problem is to use a standard maximum a posteriori
(MAP) estimation.

Definition 2 (MAP Source Inference) The MAP source inference solves the following opti-
mization:

arg max Pr(y(0)∣y(t1), . . . ,y(tz)), (2.3)

∥y(0)∥l0 =m,

where m is the number of source nodes in the network.

In some applications, there may be nonuniform prior probabilities for different candidate source
nodes. The MAP source inference optimization takes into account these prior probabilities as
well. If there is no informative prior probabilities for candidate source nodes, the MAP source
Optimization (2.3) can be simplified to the following maximum likelihood (ML) source estimation:

Definition 3 (ML Source Inference) The ML source inference solves the following optimiza-
tion:

arg max Pr(y(t1), . . . ,y(tz)∣y(0)), (2.4)

∥y(0)∥l0 =m,

where its objective function is an ML function (score) of source candidates.

An alternative formulation for the source inference problem is based on minimizing the pre-
diction error (instead of maximizing the likelihood). In Section 3.2, we shall propose a minimum
prediction error formulation that uses an asymmetric Hamming pre-metric function and can balance
between false positive and false negative error types by tuning a parameter.

In the following, we explain underlying challenges of the source inference problem.

Remark 1 Suppose the underlying network G has 4 nodes and 3 undirected edges as depicted in
Figure 2-a. Suppose the underlying diffusion is according to the SI model of Definition 1. Let
the edge holding time variables T(i,j) be mutually independent and be distributed according to an
exponential distribution with parameter λ:

fi,j(τi,j) = λe
−λτi,j , ∀(i, j) ∈ E. (2.5)

Without loss of generality, let λ = 1. Suppose there is a single source in the network (i.e., m = 1),
and we observe the infection pattern at a single snapshot at time t. Let the observed infection
pattern at time t be y(t) = (1,1,1,0), implying that nodes {0,1,2} are infected at time t, while node
3 is not infected at that time. Our goal is to find the most likely source node, according to the ML
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Figure 2: (a) A line graph considered in Remark 1. (b) Likelihood scores based on the
SI diffusion model. (c) A graph considered in Remark 2. (d) Likelihood scores based
on the path-based network diffusion kernel.

Optimization 2.4. Let τi be a realization of the random variable Ti (i.e., the time that virus arrives
at node i). If node 0 was the source node (i.e., τ0 = 0), we would have τ1 ≤ τ2 ≤ t ≤ τ3 because of the
underlying network structure. Thus,

Pr(y(t) = (1,1,1,0)∣y(0) = (1,0,0,0)) =∫
t

τ1=0
∫

t

τ2=τ1
∫

∞

τ3=t
e−τ1e−(τ2−τ1)e−(τ3−τ2)dτ1dτ2dτ3 (2.6)

=∫

t

τ1=0
∫

t

τ2=τ1
∫

∞

τ3=t
e−τ3dτ1dτ2dτ3

=
1
2
t2e−t.

Similarly, we have,

Pr(y(t) = (1,1,1,0)∣y(0) = (0,1,0,0)) =t(1 − e−t)e−t, (2.7)

Pr(y(t) = (1,1,1,0)∣y(0) = (0,0,1,0)) =e−t − (1 + te−2t
).

These likelihood functions are plotted in Figure 2-b. For a given observation time stamp t,
the ML source estimator selects the node with the maximum likelihood score as the source node,
according to Optimization 2.4. Note that, an optimal source solution depends on the observation
time parameter t (i.e., for t ≲ 1.6, node 1 and for t ≳ 1.6, node 0 are ML optimal source nodes.)

Remark 2 Suppose G is a network with 5 nodes and 5 edges as shown in Figure 2-c. Consider
the same diffusion setup as the one of Remark 1. Let y(t) = (1,1,1,1,0); i.e., nodes {0,1,2,3}
are infected at time t while node 4 is not infected at that time. Similarly to Remark 1, let τi be a

6



realization of the random variable Ti, a variable representing the time that virus arrives at node i.
If node 0 was the source node (i.e., τ0 = 0), we would have τ1 ≤ min(τ2, τ3) ≤ τ4, max(τ2, τ3) ≤ t,
and τ4 > t. Thus,

Pr(y(t) = (1,1,1,1,0)∣y(0) = (1,0,0,0,0)) = (2.8)

=∫

t

τ1=0
∫

t

τ2=τ1
∫

t

τ3=τ1
∫

∞

τ4=min(τ2,τ3)
e−τ1e−(τ2−τ1)e−(τ3−τ1)e−(τ4−min(τ2,τ3))dτ1dτ2dτ3dτ4

=2e−t − e−2t(1 + (1 + t)2).

In this case, likelihood computation is more complicated than the case of Remark 1, because
both variables T2 and T3 depend on T1, and therefore, consecutive terms do not cancel as in (2.6).
Moreover, note that, there are two paths from node 0 to node 4 that overlap at edge (0,1). As
we have mentioned earlier, such overlaps are source of difficulties in the source inference problem,
which is illustrated by this simplest example, because the variable T4 depends on both variables
T2 and T3 through a min(., .) function which makes computation of the likelihood integral further
complicated.

Remark 3 Remarks 1 and 2 explain underlying source inference challenges for the case of having
a single source node in the network. The case of having multiple source nodes has additional
complexity because likelihood scores of Optimization (2.4) should be computed for all possible subsets
of infected nodes. For the case of having m sources in the network, there are (

∣V t∣
m

) candidate source
sets where for each of them, a likelihood score should be computed. If there are significant number
of infected nodes in the network (i.e., V t = O(n)), there would be O(nm) source candidate sets.
This makes the multi-source inference problem computationally expensive for large networks, even
for small values of m.

Moreover, in Remarks 1 and 2, we assume that, the edge holding time distribution is known
and follows an exponential distribution with the same parameter for all edges. This is the standard
diffusion model used in the most of epidemic studies [12], because the exponential distribution has
a single parameter and is memoryless. However, in some practical applications, the edge holding
time distribution may be unknown and/or may vary for different edges. We discuss this case in
Section 3.4.

In the next part of this section, we explain the prior work on information propagation and
source inference.

2.2 Prior work

While our approach considers a general network diffusion setup and its inverse problem, most of the
literature considers the applications to specific problems. The most common ones focus on studying
different models of virus propagation in population networks. A standard information diffusion
model in this setup is known as the susceptible-infected-recovered (SIR) model [6]. There are three
types of nodes in this model: susceptible nodes which are capable of getting infected, infected
nodes that spread virus in the network, and recovered nodes that are cured and can no longer
become infected. Under the SIR diffusion model, infection spreads from sources to susceptible
nodes probabilistically. References [2, 12–14] discuss the relationship among network structure,
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infection rate, and the size of the epidemics under this diffusion model. Learning different diffusion
parameters of this model have been considered in references [15–17]. Some other diffusion methods
use random walks to model information spread and label propagation in networks [18–20]. In these
methods, a random walker goes to a neighbor node with a probability inversely related to node
degrees. Therefore, high degree nodes may be less influential in information spread in the network
which may be counter-intuitive in some applications.

Although there are several works on understanding mechanisms of diffusion processes in different
networks, there is somehow little work on studying the inverse diffusion problem to infer information
sources, in great part owing to the presence of path multiplicity in the network [7], that we described
in Remarks 1, 2, and 3. Recently, reference [9] considers the inverse problem of a diffusion process
in a network under a discrete time memoryless diffusion model, and when time steps are known.
Their discrete time diffusion model is different than the continuous time dynamic diffusion setup
considered in this paper.

For the case of having a single source node in the network, some methods infer the source node
based on distance centrality [11], or degree centrality [10] measures of the infected subgraph. These
methods are efficient to apply to large networks. However, because they do not assume any par-
ticular diffusion model, their performance lacks provable guarantees in general. For tree structures
and under a homogeneous SI diffusion model, reference [8] computes a maximum likelihood solution
for the source inference problem and provides provable guarantees for its performance. Over tree
structures, their solution is in fact equivalent to the distance centrality of the infected subgraph.
Our approach considers a diffusion model that is less restrictive than the SI model considered in [8],
and that can be computed efficiently for large complex networks, similarly to the distance-based
and degree-based centrality methods. Moreover, unlike distance-based and degree-based centrality
methods, we provide provable performance guarantees for our approach under a continuous-time
dynamic SI diffusion setup of reference [8]. The existent source inference methods only consider
the case of having a single-source in the network. As we have explained in Remark 3, the case of
having more than one source in the network has additional combinatorial complexity. In Section
3.3, we show that, our framework can be used efficiently for multi-source inference problem under
some general conditions. Furthermore, the existent methods only consider homogeneous diffusion
setups, where all edges propagate information/infection in the network according to the same dif-
fusion process. Our framework can be extended to solve the source inference problem even under
a complex heterogeneous diffusion setup, that we explain in Section 3.4.

3 Main Results

In this section, first, we introduce a path-based network diffusion kernel which is used in proposed
source inference methods. Then, we present global and local NI algorithms to infer single and
multiple sources in the network, respectively. Finally, we present NI algorithms for heterogeneous
diffusion, multi-snapshot, and non-parametric cases. We provide the main theorems and lemmas
in this section while all proofs are relegated to Appendix. For the sake of description, we shall, as
before, have a recurrent example of the virus infection spread in the network, with the understanding
that, our framework can be used to solve a more general source or infusion hub inference problem.

8
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Figure 3: An example graph with overlapping shortest paths between nodes 0 and 9.

3.1 Path-based Network Diffusion Kernel

In this section, we consider the case when there exists a single source node in the network. The
multi-source inference problem is considered in Section 3.3. Suppose the network structure G =

(V,E) is given, and we observe a snapshot y(t) from the real diffusion dynamics at time t. In
general, there may be several diffusion processes that lead to the observed infection snapshot in the
network, either exactly or approximately. Suppose ŷ(t′) is the sample generated at time t′ using
a certain diffusion model. One way to characterize the error of this diffusion model to explain the
observed diffusion sample is to use an asymmetric Hamming premetric function as follows:

min
t′
hα(y(t), ŷ(t′)) ≜ (1 − α) ∑

i∶yi(t)=1

1ŷi=0 + α ∑
i∶yi(t)=0

1ŷi(t′)=1, (3.1)

where 0 ≤ α ≤ 1. This error metric assigns weight α to false positive and weight 1 − α to
false negatives error types. To solve the inverse problem, one may select a diffusion process which
approximates the observed diffusion pattern closely and also leads to a tractable source inference
method. Although the SI diffusion model may be well-suited to model the forward problem of
information diffusion in the network, solving the inverse problem (the source inference problem)
under this model is challenging in general, in great part owing to the presence of path multiplicity in
the network, as we explain in Remarks 1, 2 and 3. Here, we present a path-based network diffusion
kernel that is distinct from the standard SI diffusion models, but its order of diffusion approximates
well many of them. We will show that, this kernel leads to an efficient source inference method with
theoretical performance guarantees, under some general conditions, even if the underlying diffusion
model is different than the one considered in the method itself.

In our diffusion model, instead of the full network, we consider up to k edge-disjoint shortest
paths among pairs of nodes, neglecting other paths in the network. Suppose P1

i→j , P
2
i→j , ... represent

different paths between nodes i and j in the network. The length of a path Pri→j is denoted by
∣Pri→j ∣. Let Eri→j be the set of edges of the path Pri→j . We say two paths are edge-disjoint if the
set of their edges do not overlap. Let {P1

i→j ,P
2
i→j , . . . ,P

k
i→j} represent k disjoint shortest paths

between nodes i and j. We choose these paths iteratively so that,

� ∣P1
i→j ∣ ≤ ∣P2

i→j ∣ ≤ . . . ≤ ∣Pki→j ∣,

� paths are disjoint. I.e., for 1 < r ≤ k, Eri→j ⋂ (⋃
r−1
a=1E

a
i→j) = ∅,

9



� Pri→j is a shortest path between nodes i and j in the network G′ = (V,E −⋃
r−1
a=1E

a
i→j).

In some cases, the shortest path solutions may not be unique. That is, there are at least two
shortest paths connecting nodes i to j in the network. If these shortest paths do not overlap, the
resulting path length vector (∣P1

i→j ∣, . . . , ∣P
k
i→j ∣) is the same irrespective of the selection order. Thus,

the tie breaking can be done randomly. However, in the case of having overlapping shortest paths,
one way to break the tie among these paths is to choose the one which leads to a shorter path in
the next step. For example, consider the network depicted in Figure 3. There are two paths of
length 3 between nodes 0 and 9. Choosing the path 0−5−4−9 leads to the next independent path
0−1−2−3−9 with length 4, while choosing the path 0−1−4−9 leads to the next path 0−5−6−7−8−9
of length 5. Thus, the algorithm chooses the path 0− 5− 4− 9. If next paths have the same length,
tie would be broken considering more future steps. In practice, this case has negligible effect in
the performance of the source inference method. Methods based on message-passing or dynamic
programming can be used to select optimal k shortest paths in the network as well [21,22]. In this
paper, we break ties randomly among paths with the same length.

Recall that, TPri→j represents the virus traveling time over the path Pri→j whose cumulative
density function is denoted by FPri→j(.) according to Equation (2.1).

Definition 4 (Path-based network diffusion kernel) Let pi,j(t) be the probability of node j
being infected at time t if node i is the source node. Thus,

pi,j(t) =Pr[yj(t) = 1∣yi(0) = 1] (3.2)

≜1 −
k

∏
r=1

1 − FPri→j(t),

where k is the number of independent shortest paths between nodes i and j. P (t) = [pi,j(t)] is
called a path-based network diffusion kernel.

The path-based diffusion kernel indicates that, node j gets infected at time t if the infection
reaches to it over at least one of the k independent shortest paths connecting that node to the
source node. The path-based network diffusion kernel provides a non-dynamic diffusion basis for
the network and is based on two important assumptions that, edge holding time variables T(i,j) are
mutually independent, and the paths are disjoint. A path-based network diffusion kernel with k = 1
only considers the shortest paths in the network and has the least computational complexity among
other path-based network diffusion kernels. Considering more paths among nodes in the network
(i.e., k > 1) can provide a better characterization of network diffusion processes with the cost of
increased kernel computational complexity (see Proposition 2). A path-based network diffusion
kernel lies at the heart of our algorithms to solve the inverse diffusion problem. We show that,
even if the underlying diffusion model is according to a SI model of Definition 1, using a k-path
network diffusion kernel to solve the inverse diffusion problem provides a robust source estimation
under some general conditions.

In the following, we highlight properties and relaxations of the path-based network diffusion
kernel:

Remark 4 The path-based network diffusion kernel provides a non-dynamic diffusion model, where
nodes become infected independently based on their distances (path lengths) to source nodes. Unlike
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Figure 4: (b),(d) Tightness of the first order approximation of the path-based network
diffusion kernel over example networks depicted in panels (a) and (c), respectively.

the dynamic SI model, in the path network diffusion model, it is possible (though unlikely) to have
yi(t) = 1 while yj(t) = 0, for all neighbors of node i (i.e., j ∈ N (i)). The key idea is that, to infer the
source node in the network, full characterization of diffusion dynamics, in many cases, may not be
necessary as long as the diffusion model approximates the observed samples closely (e.g., according
to an error metric of (3.1)). For instance, consider the setup of Remark 1 where the underlying
diffusion model is according to a SI model. In that example, we compute source likelihood scores in
(2.6) and (2.7) by integrating likelihood conditional density functions. The likelihood computation
under this model becomes challenging for complex networks. However, according to the path-based
network diffusion model of Definition 4, these likelihood scores are decoupled to separate terms and
can be computed efficiently as follows:

Pr(y(t) = (1,1,1,0)∣y(0) = (1,0,0,0)) =F (1, t)F (2, t)F̄ (3, t), (3.3)

Pr(y(t) = (1,1,1,0)∣y(0) = (0,1,0,0)) =F (1, t)2F̄ (2, t),

P r(y(t) = (1,1,1,0)∣y(0) = (0,0,1,0)) =F (1, t)F (2, t)F̄ (1, t),

where F (l, t) is the Erlang cumulative distribution function over a path of length l, that we shall
show in (3.6). Figure 2-d shows likelihood scores of infected nodes computed according to (3.3).
This example illustrates that, for a wide range of parameter t, both models lead to the same optimal
solution. Moreover, unlike the SI model, likelihood functions can be computed efficiently using the
path-based network diffusion kernel, even for large complex networks.

Remark 5 The path-based diffusion kernel considers only the top k shortest paths among nodes,
neglecting other paths in the networks. The effect of long paths is dominated by the one of short
ones leading to a tight approximation. Suppose P1

i→j and P2
i→j represents two paths between nodes

11
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n),
the overlap frequency is small. Experiments are repeated 20,000 times for each case.

i and j where ∣P1
i→j ∣ ≪ ∣P2

i→j ∣ (i.e., the path P2
i→j is much longer than the path P1

i→j). Thus, for a
wide range of parameter t, we have F

P
1
i→j

(t) ≫ F
P

2
i→j

(t), and therefore,

(1 − F
P

1
i→j

(t))(1 − F
P

2
i→j

(t)) ≈ 1 − F
P

1
i→j

(t). (3.4)

Note that, for very small or large t values (i.e., t→ 0 or t→∞), both F
P

1
i→j

(.) and F
P

2
i→j

(.) go
to 0 and 1, respectively, and thus the approximation (3.4) remains tight. For an example network
depicted in Figure 4-a, we illustrate the tightness of the first order approximation (i.e., k = 1) for
different lengths of the path P2

i→j. In general, for large k values, the gap between the approximate
and the exact kernels becomes small with the cost of increased kernel computational complexity (see
Proposition 2). The same approximation holds for overlapping paths with different lengths as it is
illustrated in Figures 4-c,d.

Remark 6 Finally, path-based network diffusion kernel only considers independent shortest paths
among nodes and therefore ignores the effects of non-disjoint paths in the network. This is a
critical relaxation because, as we explain in Remark 2, overlapping paths and dependent variables
make the likelihood computation and therefore source inference challenging. In general, if there
are many overlapping shortest paths among nodes in the network, this approximation might not be
tight. However, in network structures whose paths do not overlap significantly (for example tree
structures), this approximation is tight. In the following proposition, we show that, in a common
model for sparse random networks [23], shortest paths among nodes are extremely unlikely to overlap
with each other, leading to a tight kernel approximation.

Proposition 1 Let G = (V,E) be an undirected Erdös-Rényi graph with n nodes where Pr[(i, j) ∈
E] = p. Consider two nodes i and j where d(i, j) ≤ l0. If p < c

n where c = 1/n2l0, the probability of
having overlapping shortest paths between nodes i and j goes to zero asymptotically.
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Proof The proof is presented in Appendix 7.1.

Figure 5 illustrates Proposition 1 for Erdös-Rényi graphs with different number of nodes and
different parameters p. As illustrated in this figure, shortest paths are less likely to overlap in
sparse networks. Moreover, in very dense networks, which practically might be less interesting, the
shortest path overlap probability decreases as well, because most node pairs are connected by one-hop
or two-hop paths.

One main advantage of using the path-based network diffusion kernel compared to other diffu-
sion models such as the SI diffusion model is its efficient computation even for large and complex
networks:

Proposition 2 (Computational complexity of path-based network diffusion kernel) Let
G = (V,E) be a directed network with n nodes and ∣E∣ edges. Then, computation of the k-path
network diffusion kernel of Definition 4 has a worst case computational complexity O(k∣E∣n +
kn2 log(n)).

Proof The proof is presented in Appendix 7.2.

Remark 7 To solve the source inference problem, one only needs to compute rows of the path-
based network diffusion kernel which correspond to infected nodes (i ∈ V t). Thus, time complexity
of kernel computation can be reduced to O(k∣E∣∣V t∣ + k∣V t∣n log(n)), where ∣V t∣ is the number of
observed infected nodes in the network at time t.

Computation of the path-based network diffusion kernel depends on edge holding time distribu-
tions. If virus travelling time variables T(i,j) are i.i.d. for all edges in the network, the underlying
diffusion process is called homogeneous. On the other hand, if holding time distributions differ
among edges in the network, the resulting diffusion process is heterogeneous. In this section, we
consider a homogeneous diffusion setup, where the holding time distribution is an exponential dis-
tribution with the same parameter λ for all edges. Without loss of generality, we assume that λ = 1.
The case of heterogeneous diffusion is considered in Section 3.4. Under the setup considered in this
section, the virus traveling time over each path in the network has an Erlang distribution, because
it is the sum of independent exponential variables. Thus, we have,

FPri→j(t) = Pr[TP
r
i→j

≤ t] =
γ(∣Pri→j ∣, λt)

(∣Pri→j ∣ − 1)!
, (3.5)

where γ(.) is the lower incomplete gamma function. ∣Pri→j ∣ (the path length connecting node i
to j) is also called the Erlang’s shape parameter. Because FPri→j(t) is only a function of the path
length and parameter t, to simplify notation, we define,

F (l, t) ≜ FPri→j(t), (3.6)

where l = ∣Pri→j ∣. The k-path network diffusion kernel of Definition 4 using the Erlang distribution
is called a path-based Erlang network diffusion kernel. If only one shortest path among nodes
is considered (i.e., k = 1), the diffusion kernel of Definition 4 is called the shortest path network
diffusion kernel.
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Definition 5 (Shortest path Erlang diffusion kernel) Let pi,j(t) be the probability of node j
being infected at time t if node i is the source node. Suppose edge holding time variables are
distributed independently according to an exponential distribution with the parameter λ = 1. The
shortest path Erlang network diffusion kernel is defined as follows:

pi,j(t) = Pr[yj(t) = 1∣yi(0) = 1] = F (di,j , t), (3.7)

where di,j is the length of the shortest path connecting node i to node j, and F (di,j , t) represents
the Erlang cumulative distribution function of (3.6).

The shortest path Erlang diffusion kernel can be viewed as the first order approximation of the
underlying diffusion process. It has the least computational complexity among other path-based
network diffusion kernels which makes it suitable to be used over large and complex networks.
Moreover, this kernel has a single parameter t which can be learned reliably using the observed
samples (see Section 3.6).

Proposition 3 The shortest path Erlang network diffusion kernel of Definition 5 has following
properties:

� pi,j(t) is a decreasing function of di,j, the length of the shortest path between nodes i and j.

� pi,j(t) is a decreasing function of t and,

∂pi,j(t)

∂t
= F (di,j − 1, t) − F (di,j , t), (3.8)

where F (0, t) = 1.

Proof The proof is presented in Appendix 7.3.

3.2 Global Source Inference Using NI

In this section, we describe a source inference method called Network Infusion (NI) which aims to
solve the inverse diffusion problem over a given network using observed infection patterns. The
method described in this section finds a single node as the source of the global information spread
in the network. In Section 3.3, we consider the case when more than one source node exists, where
each source causes a local infection propagation in the network. In this section, we also assume
that, the infection pattern is observed at a single snapshot at time t (i.e., y(t) is given). The case
of having multiple snapshots is considered in Section 3.5.

Recall that, V t is the set of observed infected nodes at time t, and P (t) = [pi,j(t)] represents
the path-based network diffusion kernel according to Definition 4. The ML Optimization 2.4 can
be re-written as follows:

Algorithm 1 (Maximum Likelihood NI) Suppose G = (V,E) is a binary graph with n nodes.
Let P (t) = [pi,j(t)] be the path-based network diffusion kernel according to Definition 4. Then, a
maximum-likelihood NI algorithm infers the source node by solving the following optimization:
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arg max
i∈V t
L(i, t) = arg max

i∈V t
∑
j∈V t

log (pi,j(t)) + ∑
j∉V t

log (1 − pi,j(t)), (3.9)

where L(i, t) is the log-likelihood function of node i at time t.

Under the path-based network diffusion kernel, the joint diffusion probability distribution can
be de-coupled into individual marginal distributions, which leads to a tractable ML Optimization
(3.9), even for complex networks. Note that, in Optimization (3.9), we assume that, the parameter
t (the time at which the observation is made) is known. If this parameter is unknown, it can be
learned using the observed infection pattern. We discuss this case in Section 3.6.

Remark 8 To have a well-defined log-likelihood objective function, pi,j(t) should be non-zero for
infected nodes i and j (i.e., pi,j(t) ≠ 0 when i, j ∈ V t). If infected nodes form a strongly connected
sub-graph over the network, this condition is always satisfied. In practice, if pi,j(t) = 0 for some
i, j ∈ V t (i.e., i and j are disconnected in the graph), we assume that, pi,j(t) = ε (e.g., ε = 10−6).
Note that, for j ∉ V t, for any value of t > 0, pi,j(t) < 1. Therefore, the second term in the summation
of Optimization (3.9) is always well-defined.

NI Algorithm 1 aims to infer the source node by maximizing the likelihood score assigned to each
node. An alternative approach is to infer the source node by minimizing the expected prediction
error of the observed infection pattern. We describe this approach in the following:

Let hα(y,x) be a weighted Hamming premetric between two binary sequences x and y defined
as follows:

hα(y,x) ≜ (1 − α) ∑
i∶yi=1

1xi=0 + α ∑
i∶yi=0

1xi=1, (3.10)

where 0 ≤ α ≤ 1.
If α = 1/2, hα(., .) is a metric distance. If α ≠ 1/2, hα(., .) is a premetric (not a metric) because

it does not satisfy the symmetric property of distance metrics (i.e., there exist x and y such that
hα(x,y) ≠ hα(y,x)), and it does not satisfy the triangle inequality as well (i.e., there exist x, y
and z such that hα(x,y) > hα(y,z) + hα(z,x)).

Remark 9 hα(y,x) generalizes Hamming distance between binary sequences y and x using differ-
ent weights for different error types. Suppose x is a prediction of the sequence y. There are two
types of possible errors: (1) if yi = 1 and the prediction is zero (i.e., xi = 0, false negative error), (2)
if yi = 0 and the prediction is one (i.e., xi = 1, false positive error). hα(y,x) combines these errors
by assigning weight 1 − α to false negatives (i.e., missing ones), and weight α to false positives
(i.e., missing zeros). Having different weights for different error types can be useful, specially if
the sequence y is sparse. Suppose y has κ ones (positives), and n− κ zeros (negatives). Therefore,
there are κ possible type 1 errors and n−κ type 2 errors in prediction. In this case, to have balance
between the number of true negative and false positive errors, one can choose α = κ/n in calculation
of hα(y,x).

Now we introduce a NI algorithm which infers the source node by minimizing the prediction
error.
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Algorithm 2 (Minimum Error NI) Suppose G = (V,E) is a binary graph with n nodes. Let
P (t) = [pi,j(t)] be the path-based network diffusion kernel according to Definition 4 and Pi(t) =

[pi,j(t)] be the kernel vector of node i. Then, the minimum error NI algorithm infers the source
node by solving the following optimization:

arg min
i∈V t
Hα(i, t) =arg min

i∈V t
E[hα(y(t),xi(t))] (3.11)

=arg min
i∈V t

(1 − α) ∑
j∈V t

1 − pi,j(t) + α ∑
j∉V t

pi,j(t),

where xi(t) is a binary prediction vector of node i at time t with probability distribution Pi(t),
and Hα(i, t) is the expected prediction error of node i at time t.

Similarly to Maximum Likelihood NI (NI-ML) Algorithm, we assume that, the parameter t (the
time at which observation is made) is known. We discuss the case when this parameter is unknown
in Section 3.6.

Remark 10 According to Remark 9, to have balance between false positive and false negative error
types, one can use α = ∣V t∣/n where ∣V t∣ is the number of infected nodes (positives) at time t.
However, in general, this parameter can be tuned in different applications using standard machine
learning techniques such as cross validations [24].

The proposed NI methods based on maximum likelihood (NI-ML, Algorithm 1) and minimum
error (NI-ME, Algorithm 2) are efficient to solve even for large complex networks:

Proposition 4 Suppose the underlying network G = (V,E) has n nodes and ∣E∣ edges. Let V t

represent the set of infected nodes at time t. Then, a worst case computational complexity of NI
Algorithms 1 and 2 is O(∣V t∣(k∣E∣ + kn log(n))).

Proof The proof is presented in Appendix 7.4.

In the rest of this section, we analyze the performance of NI Algorithms 1 and 2 under a standard
SI diffusion model of Definition 1.

Theorem 1 Let G = (V,E) be an undirected tree with countably infinite nodes. Suppose node s is
the source node, t is the infection observation time, and the underlying diffusion process is according
to the SI model of Definition 1. Then, we have,

E[L(s, t)] ≥ E[L(i, t′)], ∀i,∀t′, (3.12)

where E[L(i, t′)] is the expected log-likelihood score of node i with parameter t′.

Proof The proof is presented in Appendix 7.5.

In the setup of Theorem 1, similarly to the setup of reference [8], we assume that, the set of
vertices is countably infinite to avoid boundary effects. Theorem 1 provides a mean-field (expected)
optimality for Algorithm 1. In words, it considers the case when we have sufficient samples from
independent infection spreads in the network starting from the same source node. Note that, in
(3.12), i can be equal to s (the source node), and/or t′ can be equal to t as well. If i is equal to s,
we have the following:
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Proposition 5 Under the conditions of Theorem 1, we have,

E[L(s, t)] ≥ E[L(s, t′)], ∀t′, (3.13)

where the equality holds iff t = t′.

Proof The proof is presented in Appendix 7.5.

Remark 11 In this remark, we highlight the difference between parameters t and t′ in Theorem 1.
The parameter t is the time at which we observe the infection pattern in the network. If this param-
eter is known, it can be used to compute likelihood scores according to Optimization (3.9). However,
this parameter may be unknown and one may use an estimate of this parameter in Optimization
(3.9) (i.e., using t′ instead of t). Theorem 1 indicates that even if different parameters t′ ≠ t are
used to compute source likelihood scores for different nodes, the likelihood score obtained by the
source node s and the true parameter t is optimal in expectation. This theorem and corresponding
Proposition 5 provide a theoretical basis to estimate the underlying true parameter t by maximizing
the likelihood score for each node over different values of t′ (for more details, see Section 3.6).

Next, we show the mean-field optimality of Algorithm 1 for sparse Erdös-Rényi graphs utilizing
their local tree structure. For a given ε > 0 and t, we define,

l0 ≜ arg min
d
F (d, t) < ε, (3.14)

where F (., .) is the Erlang distribution of Equation (3.5).

Proposition 6 Let G = (V,E) be an undirected Erdös-Rényi graph with n nodes, where Pr[(i, j) ∈
E] = p. If p < c

n where c = 1/n2l0 and l0 is defined according to (3.14), the mean-field optimality
inequality (3.12) holds for asymptotically large graphs with high probability.

Proof The proof follows from Proposition 1 and Theorem 1.

In the following, we present the mean-field optimality of minimum error NI algorithm (NI-ME)
over regular tree structures:

Theorem 2 Let G = (V,E) be a regular undirected tree with countably infinite nodes. Suppose node
s is the source node, t is the observation time, and the underlying diffusion process is according to
the SI model of Definition 1. Then, for any value of 0 < α < 1 and t′ > 0, we have,

E[Hα(s, t
′
)] < E[Hα(i, t

′
)], ∀i ≠ s,∀t′ > 0, (3.15)

where E[Hα(i, t
′)] is the expected prediction error of node i using parameter t′. Equality (3.15)

holds iff s = i.

Proof The proof is presented in Appendix 7.6.

17



Remark 12 The mean field optimality of NI-ME algorithm holds for all values of 0 < α < 1 under
the setup of Theorem 2. In practice and under more general conditions, we find that, α selection
according to Remarks 9 and 10 leads to a robust performance, owing to the balance between true
negative and false positive errors (see Sections 4 and 5).

Remark 13 The NI-ML mean-field optimality of Theorem 1 holds even if different t′ values are
used for different nodes. However, the mean-field optimality of the NI-ME method of Theorem
2 holds if the same t′ parameter is used for all nodes. Interestingly, even if the parameter used
in the NI-ME algorithm is difference than the true observation time parameter (i.e., t′ ≠ t), the
optimality argument of Theorem 2 holds which indicates the robustness of the method with respect
to this parameter. Moreover, the NI-ME optimality of inequality (3.15) is strict, while the one of
NI-ML method according to the inequality (3.12) may have multiple optimal solutions.

3.3 Localized NI

In this section, we consider the multi-source inference problem, where there exists m sources in
the network. We consider this problem when sources are sufficiently distant from each other and
only a single snapshot, at time t, is available (i.e., y(t) is given). For simplicity of the analysis, we
consider k = 1 in the path-based network diffusion kernel (i.e., only shortest paths are considered).

Let G = (V,E) be the underlying network where di,j represents the length of the shortest path
between node i and node j. Define D(i,R) ≜ {j ∈ V ∣di,j < R} as a disk with radius R centered at
node i, which we refer to as the R-neighborhood of node i in the network. Similarly, the union of
disks with radius R centered at nodes of the set V1 ⊂ V is defined as D(V1,R) ≜ {j ∈ V ∣∃i ∈ V1, di,j <
R}. We define the following distances in the network:

d0 ≜ arg max
d
F (d, t) >

1
2
, (3.16)

dε1 ≜ arg min
d
F (d, t) <

ε

nm
,

where F (d, t) is defined according to (3.6).

Definition 6 (ε-Coherent Sources) Let G = (V,E) be a binary network. Sources S = {s1, s2, . . . , sm}

are ε-coherent if,

d(sa, sb) > 2(d0 + d
ε
1), ∀1 ≤ a, b ≤m,a ≠ b, (3.17)

where d0 and d1 are defined according to (3.16).

Intuitively, sources are incoherent if they are sufficiently distant from each other in the network
so that their infection effects at time t do not overlap in the network (for instance, viruses released
from them, with high probability, have not visited the same nodes.). This assumption is a critical
condition to solve the multi-source NI problem efficiently.

Definition 7 (Multi-Source Network Diffusion Kernel) Suppose G = (V,E) is a possibly di-
rected binary graph and there exist m source nodes S = {s1, . . . , sm} in the network that are ε-
coherent. We say a node j ∉ S gets infected at time t if it gets a virus from at least one of the
sources. Thus, we have,
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Pr[yj(t) = 1] ≜ 1 −∏
s∈S

p̄s,j(t), (3.18)

where p̄s,j(t) = 1 − ps,j(t).

Using multi-source network diffusion kernel of Definition 7, the log-likelihood function L(S, t)
and the Hamming error function Hα(S, t) are defined as follows:

L(S, t) ≜ ∑
j∈V t

log(1 −∏
s∈S

p̄s,j(t)) + ∑
j∉V t

log(∏
s∈S

p̄s,j(t)), (3.19)

Hα(S, t) ≜(1 − α) ∑
j∈V t

∏
s∈S

p̄s,j(t) + α ∑
j∉V t

(1 −∏
s∈S

p̄s,j(t)).

Similarly to Algorithms 1 and 2, NI aims to find a set of m sources which maximizes the
log-likelihood score, or minimizes the weighted Hamming error. However, unlike the single source
case, these optimizations are computationally costly because all (∣V

t
∣

m
) possible source combinations

should be evaluated. If the number of infected nodes is significant (∣V t∣ = O(n)), even for small
constant number of sources, one needs to compute the likelihood or error scores for approximately
O(nm) possible source subsets, which may be computationally overly challenging for large networks.

One way to solve this combinatorial optimization is to take an iterative approach, where, at
each step, one source node is inferred. However, at each step, using single source NI methods may
not lead to an appropriate approximation because single source NI methods aim to find the source
node which explains the entire infection pattern in the network, while in the multi-source case, the
entire infection pattern are caused by multiple sources. To avoid this problem, at each step, we
use a localized version of NI methods developed in Algorithms 1 and 2, where sources explain the
infection pattern only around their neighborhood in the network.

Definition 8 The localized likelihood function of node i in its d0 neighborhood is defined as,

Ld0(i, t) ≜ ∑
j∈V t

j∈D(i,d0)

log (pi,j(t)) + ∑
j∉V t

j∈D(i,d0)

log (1 − pi,j(t)), (3.20)

where only nodes in the d0 neighborhood of node i is considered in likelihood computation.

A similar argument can be expressed for the localized Hamming prediction error. For large d0

values, the localized likelihood score is similar to the global likelihood score of (3.9). Using localized
likelihood function is important in the multi-source NI problem because source candidates cannot
explain the infection pattern caused by other sources. In the following, we propose an efficient
localized NI method to solve the multi-source inference problem by maximizing localized likelihood
scores of source candidates using a greedy approach. A similar algorithm can be designed for the
localized minimum error NI.

Algorithm 3 (Localized NI-ML Algorithm) Suppose Sr is the set of inferred sources at iter-
ation r. The localized NI-ML algorithm has the following steps:

� Step 0: S0 = ∅.
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� Step r+1:

– Likelihood computation: compute sr+1 using the following optimization,

sr+1 = arg max
i∈V t−D(Sk,d

ε
1)

Ld0(i, t). (3.21)

– Update the source set: add sr+1 to the list of inferred sources,

Sr+1 = Sr ∪ sr+1,

� Termination: stop if r =m.

In the following, we show that, if sources are sufficiently incoherent (i.e., sufficiently distant
from each other in the network), the solution of localized NI Algorithm 3 approximates the exact
solution closely.

Theorem 3 Let G = (V,E) be a regular undirected tree with countably infinite nodes. Suppose
sources are ε-coherent according to Definition 6, and the underlying diffusion process is according
to the SI model of Definition 1. Suppose Sr is the set of sources inferred by localized NI Algorithm
3 till iteration r. If Sk ⊂ S, then with probability at least 1 − ε, there exists a source node that has
not been inferred yet whose localized likelihood score is optimal in expectation:

∃s ∈ S − Sr, ,E[Ld0(s, t)] ≥ E[Ld0(i, t)] ,∀i ∈ V t
−D(Sk, d

ε
1). (3.22)

Proof The proof is presented in Appendix 7.7.

Proposition 7 A worst case computational complexity of localized NI Algorithm 3 is O(∣V t∣(k∣E∣+

kn log(n) +mn)).

Proof The proof is presented in Appendix 7.8.

3.4 NI for Heterogeneous Network Diffusion

In previous sections, we have assumed that, the infection spread in the network is homogeneous; i.e.,
virus traveling time variables T(i,j) are i.i.d. for all edges in the network. This can be an appropriate
model for the binary (unweighted) graphs. However, if edges have weights, the infection spread
in the network may be heterogeneous; i.e., the infection spread is faster over strong connections
compared to the one of weak edges.

Suppose G = (V,E,W ) represents a weighted graph, where w(i, j) > 0 if (i, j) ∈ E, and w(i, j) =
0 otherwise. One way to model a heterogeneous diffusion in the network is to assume that, edge
holding time variables T(i,j) are distributed independently according to an exponential distribution
with parameter λi,j = w(i, j). According to this model, the average holding time of edge (i, j) is
1/wi,j , indicating the fast spread of infection over strong connections in the network.

Recall that TPri→j represents the virus traveling time variable from node i to node j over the
path Pri→j . To simplify notations and highlight the main idea, consider the path Pr0→l = {0 → 1 →
2 . . .→ l}. The virus traveling time from node 0 to node l over this path (TPr

0→l
) is a hypoexponential
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Figure 6: (a) A Markov chain of a hypo-exponential distribution. (b) A Markov chain
of a mixed hypo-exponential distribution.

variable whose distribution is a special case of the phase-type distribution. For this path, we consider
a Markov chain with l + 1 states, where the first l states are transient, and the state l + 1 is an
absorbing state. Each transient state of this Markov chain corresponds to an edge (i, j) over this
path whose holding time is characterized by an exponential distribution with rate λi,j = w(i, j)
(Figure 6-a). In this setup, the virus traveling time from node 0 to node l over the path Pr0→l
is equal to the time from the start of the process until reaching to the absorbing state of the
corresponding Markov chain. The distribution of this absorbing time can be characterized as a
special case of the phase-type distribution. A subgenerator matrix of the Markov chain of Figure
6-a is defined as follows:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λ0,1 λ0,1 0 . . . 0 0
0 −λ1,2 λ1,2 ⋱ 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 0 ⋱ −λl−3,l−2 λl−3,l−2 0
0 0 . . . 0 −λl−2,l−1 λl−2,l−1

0 0 . . . 0 0 −λl−1,l

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.23)

For simplicity, denote the above matrix by Θ ≡ Θ(λ0,1, . . . , λl−1,l). Define α = (1,0, . . . ,0) as the
probability of starting in each of the l states. Then, the Markov chain absorbtion time is distributed
according to PH(α,Θ), where PH(., .) represents a phase-type distribution. In this special case,
this distribution is also called a hypoexponential distribution. A similar subgenerator matrix Θ
can be defined for a general path Pri→j connecting nodes i to j. Thus, we have,

FPri→j(t) = Pr[TP
r
i→j

≤ t] = 1 −αetΘ1, (3.24)
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where 1 is a column vector of ones of the size ∣Pri→j ∣, and eX is the matrix exponential of X.
For an unweighted graph where all edges have the same rate λ, (3.26) is simplified to (3.5). For the
weighted graph G = (V,E,W ), we compute k shortest paths among pairs of nodes over the graph
G′ = (V,E,W ′), where w′(i, j) = 1/w(i, j) if (i, j) ∈ E, otherwise w′(i, j) = ∞. Then, the path
network diffusion kernel for a weighted graph G = (V,E,W ) can be defined according to Definition
(4). Using this kernel, NI algorithms introduced in Sections 3.2 and 3.3 can then be used to infer
the source node under the heterogeneous diffusion in the network.

Note that, this framework can be extended to a more complex diffusion setup as well. We
provide an example of such diffusion setup in the following:

Example 1 Consider the the path Pr0→l = {0 → 1 → 2 → . . . → l}. Suppose the edge (0,1) spreads
the infection with rates λ0

0,1 and λ1
0,1 with probabilities p0 and 1 − p0, respectively. Suppose other

edges (i, j) of this path spread the infection with rate λi,j. Figure 6-b illustrates the corresponding
Markov chain for this path. The subgenerator matrices of this Markov chain can be characterized
as follows:

Θi =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λi0,1 λi0,1 0 . . . 0 0
0 −λ1,2 λ1,2 ⋱ 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 0 ⋱ −λl−3,l−2 λl−3,l−2 0
0 0 . . . 0 −λl−2,l−1 λl−2,l−1

0 0 . . . 0 0 −λl−1,l

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.25)

for i = 0,1. Then, for this path, we have,

FPr
0→l

(t) = Pr[TPr
0→l

≤ t] = 1 −α(p0e
tΘ0 + (1 − p0)e

tΘ1)1. (3.26)

To compute the path-based network diffusion kernel, we compute shortest paths among pairs of
nodes over the graph G′ = (V,E,W ′), where w′(0,1) = p0/λ

0
0,1 + (1 − p0)/λ

1
0,1, w′(i, j) = 1/w(i, j) if

(i, j) ∈ E and (i, j) ≠ (0,1), and w′(i, j) =∞ otherwise. This example illustrates that NI framework
can be used even under a complex heterogeneous diffusion setup.

3.5 NI with Multiple Snap-shots

In this section, we consider the NI problem when multiple snapshots from infection patterns are
available. To simplify notation and highlight the main ideas, we consider the single source case
with two samples y(t1) and y(t2) at times t1 and t2, respectively. All arguments can be extended
to a more general setup as well.

Recall that V t denotes the set of infected nodes at time t. Let Et = {(i, j)∣(i, j) ∈ E,{i, j} ⊂ V t}

represent edges among infected nodes in the network. The infection subgraph Gt = (V t,Et) is
connected if there is no infection recovery and the underlying diffusion is according to a dynamic
process. We define an infection contraction operator g(.) as follows:

g(v) =

⎧⎪⎪
⎨
⎪⎪⎩

v v ∈ V ∖ V t

x o.w.
(3.27)
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Figure 7: An example illustrating the infusion contraction graph of Definition 9.

where x ∉ V . In other words, g(.) maps all infected nodes to a new node x, while it maps all
other nodes to themselves (Figure 7).

Definition 9 (Infusion Contraction Graph) Suppose G = (V,E,W ) is a weighted graph whose
infected subgraph at time t is represented as Gt = (V t,Et,W t). An infusion contraction graph
Gtc = (V t

c ,E
t
c,W

t
c) is defined as follows:

� (i, j) ∈ Etc for i, j ≠ x iff (i, j) ∈ E. In this case, wtc(i, j) = w(i, j).

� (i, x) ∈ Etc for i ≠ x iff there exists j ∈ V t such that (i, j) ∈ E. In this case, wtc(i, x) =

∑ j∈V t

(i,j)∈E

w(i, j).

Figure 7 illustrates the infusion contraction graph for an example graph. Intuitively, the infusion
contraction graph considers the infected subgraph as one node and adjusts weights of un-infected
nodes connected to the infected ones accordingly.

Now we consider the source inference problem when two snapshots at times t1 and t2 are given.
Recall that V t1 and V t2 denote the set of infected nodes at times t1 and t2, respectively. Without
loss of generality, we assume 0 < t1 < t2. Using the probability chain-rule, we can re-write the
likelihood scores of Optimization (2.4) as,

Pr(y(t1),y(t2)∣S = {s}) = Pr(y(t1)∣S = {s})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term I

Pr(y(t2)∣y(t1),S = {s})
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term II

. (3.28)

Term (I) is the likelihood score of the single source NI Optimization (3.9). We consider different
possibilities for Term II as follows:

� If yj(t1) = 1 and yj(t2) = 1, Pr(yj(t2)∣y(t1),S = {s}) = 1, because if a node gets infected, it
remains infected (there is no recovery). Thus, if yj(t1) = 1 and yj(t2) = 0, Pr(yj(t2)∣y(t1),S =
{s}) = 0.

� Now we consider the case yj(t1) = 0. Let Gt1c be the infusion contraction graph of Definition
9. Suppose that all infected nodes at time t1 are mapped to the node x. The second term
can be approximated as follows:

Pr(yj(t2) = 1∣y(t1),S = {s}) ≈ px,j(t2 − t1), (3.29)
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where px,j(.) is the path-based network diffusion kernel over the graph Gtc. In other words, all
infected nodes at time t1 can be viewed as a single source x in the infusion contraction graph.
Note that, this approximation is tight when the underlying edge holding time distribution
is an exponential distribution which has the memory-less property. Moreover, note that,
to compute the diffusion kernel in this case, we use the infusion contraction graph because
infected nodes are not incoherent, and therefore, the multi-source diffusion kernel of Definition
7 cannot be used.

Under approximation (3.29), the second term of (3.28) leads to a similar expression for all source
candidates, and therefore, the optimization is simplified to a single snapshot one. In practice, one
may compute average source likelihood scores using all snapshots to decrease the variance of the
source likelihood scores.

3.6 Non-parametric NI

In some real-world applications, only the network structureG and infection patterns {y(t1), . . . ,y(tz)}
are known and therefore to use NI algorithms, we need to learn the parameters such as observation
times {t1, . . . , tz}, and the number of sources m in the network. In the following, we introduce
efficient techniques to learn these parameters:

� Observation time parameters: In the maximum likelihood NI Algorithm 1, according to Re-
mark 11, the true parameter t is the one that maximizes the expected source likelihood score
according to Theorem 1. Thus, in the case of unknown parameter t, we solve the following
optimization:

(s, t) = arg max
i,t′
L(i, t′), (3.30)

where L(i, t′) is the log-likelihood function of node i using parameter t′. One way to solve
Optimization (3.30) approximately is to quantize the range of parameter t (i.e., t ∈ (0, tmax))
to b bins and evaluate the objective function in each case. Because we assume that the λ
parameter of the edge holding time distribution is equal to one, one appropriate choice for
tmax is the diameter of the infected subgraph, defined as the longest shortest path among
pairs of infected nodes. The number of quantization levels b determines the resolution of the
inferred parameter t and therefore the tightness of the approximation. If tmax is large and
the true t parameter is small, to have a tight approximation, the number of quantization
levels b should be large which may be computationally costly. In this case, one approach to
estimate parameter t is to use the first moment approximation of the Erlang network diffusion
kernel over source neighbors. Suppose µ is the fraction of the infected neighbors of source
s. Since infection probabilities of source neighbors approximately come from an exponential
distribution, for a given parameter t, µ ≈ 1 − e−t. Therefore,

t ≈ −ln(1 − µ). (3.31)

In the minimum error NI Algorithm 2, according to Remark 13, the prediction error of all
infected nodes should be computed using the same parameter t. In the setup of Theorem
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2, any value of parameter t leads to an optimal solution in expectation. In general, we
suggest the following approach to choose this parameter: First, for each node, we minimize
the prediction error for different values of the parameter t as follows,

t∗i = arg max
t′
Hα(i, t

′
). (3.32)

This Optimization can be solved approximately similarly to the case of maximum likelihood
NI Optimization (3.30). For the small t values, we use (3.31) to obtain t∗i . Then, to obtain
a fixed t parameter for all nodes, we average t∗i parameters of the nodes with the minimum
prediction error. In the cases of multi-source and multi-snapshot NI, one can use similar
approaches to estimate time stamp parameters.

� The number of sources: In NI algorithms presented in Section 3.3, we assume that, the
number of sources in the network (i.e., the parameter m) is known. In the case of unknown
parameter m, if sources are sufficiently incoherent according to Definition 6, one can estimate
m as follows: because sources are incoherent, their caused infected nodes do not overlap with
each other with high probability. Thus, the number of connected components of the infected
sub-graph (or the number of infected clusters in the network) can provide a reliable estimate
of the number of sources in this case.

� Regularization parameter of NI-ME: The minimum error NI Algorithm 2 has a regularization
parameter α which balances between false positive and false negative error types. In the
setup of Theorem 2, any value of 0 < α < 1 leads to an optimal expected weighted Hamming
error solution of (3.15). However, in general, we choose this parameter according to Remarks
9 and 10 to have a balance between the number of false negative and false positive errors.

4 NI Over Synthetic Networks

In this section, we compare the performance of proposed NI algorithms with other source inference
methods over four different synthetic network structures. In our simulations, we assume that, there
exists a single source in the network, and the underlying diffusion is according to the SI model of
Definition 1. In the SI model, edge holding time variables T(i,j) are i.i.d. having an exponential
distribution with parameter λ = 1. Note that, to generate simulated diffusion patterns, we do not
use our path-based network diffusion kernel to have a fair performance comparison of our methods
with the one of other source inference techniques. We use the following methods in our performance
assessment:

� Distance Centrality: This method infers the source node with the minimum shortest path
distance from all infected nodes. SupposeG is the underlying network. The distance centrality
of node i corresponding to infected nodes at time t is defined as follows:

Dt(i,G) ≜ ∑
j∈V t

d(i, j), (4.1)
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Figure 8: Examples of (a) Erdös-Rényi, and (b) power law networks, with 50 nodes.

where d(i, j) represents the length of the shortest path between nodes i and j. A source node
is inferred using the following optimization:

s = arg min
i∈V t

Dt(i,G). (4.2)

If there is no path between two nodes i and j, d(i, j) = ∞. This makes the distance cen-
trality measure sensitive to noise specially in real world applications. To avoid this issue, for
disconnected nodes i and j, we assign d(i, j) =M , where M is a large number compared to
shortest path distances in the network. In our simulations, we set M as 5 times larger than
the network diagonal (i.e., the longest shortest path in the network).

� Degree Centrality: This methods infers the source node with highest direct connections
to other infected nodes. Degree centrality of node i corresponding to infected nodes V t is
defined as follows:

Ct(i,G) ≜ ∑
j∈V t

G(i, j). (4.3)

Note that, unlike the distance centrality method which considers both direct and indirect
interactions among infected nodes, degree centrality only considers direct interactions. To
infer the source node using the degree centrality approach, one needs to solve the following
optimization:

s = arg min
i∈V t

Ct(i,G). (4.4)

� Network Infusion: We use NI methods based on maximum likelihood (denoted as NI-ML)
described in Algorithm 1, and minimum error (denoted as NI-ME) described in Algorithm
2. To have a fair comparison with other methods, we assume that, the observation time
parameter t is unknown and is estimated using the techniques presented in Section 3.6.
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Figure 9: Performance of source inference methods over (a,b) Erdös-Rényi, and (c,d)
power law networks graphs with 250 nodes and an average density of 1%. Experiments
have been repeated 100 times.

In our simulations, we use four types of input networks:

� Erdös-Rényi graphs: In this case, G is a symmetric random graph where, Pr[G(i, j) =

1] = p. Networks have 250 nodes. An example network with fewer number of nodes is shown
in Figure 8-a). In our simulations, we use p = 0.01.

� Power law graphs: We construct G as follows [25]; we start with a random subgraph with
5 nodes. At each iteration, a node is added to the network connecting to θ existent nodes
with probabilities proportional to their degrees. This process is repeated till the number of
nodes in the network is equal to n = 250. In our simulations, we use θ = 2 which results in
networks with the average density approximately 0.01 (see an example with fewer number of
nodes in Figure 8-b).

� Grid networks: In this case, G is an undirected square grid network with 250 nodes. Figure
10-a shows an example of such networks with fewer number of nodes. We assume that, the
source node is located at the center of the grid to avoid boundary effects.

� Asymmetric grid networks: In this case, G is an undirected graph with 250 nodes. It has 6
branches connected to the central node, three branches on the right with heavier connectivity
among their nodes, and three branches on the left with sparse connectivity. Figure 11-a shows
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Figure 10: (a) An example of a grid network. Performance of source inference methods
over grid networks with 250 nodes with (a) one and (b) five independent samples.
Experiments have been repeated 100 times.

an example of such networks with fewer number of nodes. This is an adversarial example to
highlight cases where NI methods fail to converge to the optimal value.

In multi-path NI methods, we consider top 10 independent shortest paths to form the k-path
network diffusion kernel (i.e., k = 10). However, in the grid network, to enhance the computation
time, we consider k = 2 because different nodes have at most 2 independent shortest paths connected
to the source node. Parameter t is the time at which we observe the infection spread, and it
determines the fraction of infected nodes in the network. If t is very large compared to the graph
diameter, almost all nodes in the network become infected. On the other hand, for very small
values of t, the source inference problem becomes trivial. In our simulations, we consider the cases
where the number of infected nodes in the network is less than 75% of the total number of nodes,
and greater than at least 10 nodes.

For evaluation, we sort infected nodes as source candidates according to the score obtained by
different methods. High performing methods should assign the highest scores to the source node.
The source node should appear on the top of the inferred source candidates. Ideally, if a method
assigns the highest score to the source node, the rank of the prediction is one. We use the rank
of true sources averaged over different runs of simulations. More formally, suppose r(M, s) is the
rank of the source node s inferred by using the method M. In an exact prediction, r(M, s) = 1,
while an average rank of a method based on random guessing is r(M, s) = ∣V t∣/2. If r(M, s) is
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Figure 11: (a) An asymmetric grid network. Performance of source inference methods
over asymmetric grid networks with 250 nodes with (a) one and (b) five independent
samples. Node with red color is the source node. Experiments have been repeated 100
times.

close to one, it means that, the true source is among top predictions of the method M. In each
case, we run simulations 100 times.

Figure 9 compares the performance of different source inference methods over both Erdös-
Rényi and power law networks, and in different ranges of the parameter t. In both network models
and in all diffusion rates, NI Algorithms based on maximum likelihood (NI-ML) and minimum
error (NI-ME) outperform other methods. Panels (a) and (c) illustrate the performance when
only one sample from the infection pattern at time t is available, for Erdös-Rényi and power law
networks, respectively. Panels (b) and (d) illustrate the performance of different methods when
five independent samples from the infection pattern at time t are given, illustrating the mean-field
optimality of NI methods according to Theorems 1 and 2. Because the underlying networks are
sparse, according to Proposition 1, the performance of maximum likelihood and minimum error
NI methods, both shortest-path and multi-path versions, are close to each other in both network
models. Notably, unlike NI methods, the performance of other source inference methods such as
distance centrality and degree centrality does not tend to converge to the optimal value even for
higher sample sizes.

Figure 10 compares the performance of different source inference methods over grid networks in
different ranges of the parameter t. In the case of having a single sample from the infection pattern,
in small ranges of the parameter t, when the fraction of infected nodes is less than approximately
1/4n, NI methods and distance centrality have approximately the same performance, significantly
outperforming the degree centrality method. In higher diffusion rates, distance centrality outper-
forms NI-ML method and NI-ML method outperforms NI-ME method. Again in this range, the
performance of the degree centrality method is significantly worst than other methods. Having five
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Figure 12: (a) An asymmetric grid network. Performance of source inference methods
over asymmetric grid networks with 250 nodes with (a) one and (b) five independent
samples. Node with red color is the source node. Experiments have been repeated 100
times.

independent samples from node infection patterns, the performance of NI methods and distance
centrality converges to the optimal one.

Unlike tree and sparse Erdös-Rényi networks, there are multiple overlapping paths among nodes
in the grid structures. However, as we illustrate in Figure 10, the performance of NI methods con-
verge to the optimal value, similarly to the case of sparse graphs. The main reason is that, grid
structures are symmetric and even though paths among nodes overlap significantly, considering
shortest paths among nodes approximates the true underlying diffusion based on an SI dynamics
closely. In order to have an adversarial example where the performance of NI methods do not con-
verge to the optimal one, we design an asymmetric grid structure illustrated in Figure 11. The three
branches on the right side of the central node have strong connectivity among themselves, forming
a grid, while the ones on the left is sparsely connected to each other, forming a tree. Therefore, the
spread of infection will be faster on the right side compared to the left side, under a dynamic SI
model. However, considering only the shortest path among nodes does not capture this asymmetric
structure. Therefore, the performance of shortest path NI methods diverges from the optimal value
as diffusion rate increases (see Figure 11). In this case, considering more paths among nodes to
form the k-path network diffusion kernel according to Definition 4 improves the performance of NI
methods significantly, because higher order paths partially capture the asymmetric diffusion spread
in the network. Note that, the degree centrality method has the best performance in this case, be-
cause the source node has the highest degree in the network by design. If we select another node to
be the source node as illustrated in Figure 12-a, the performance of the degree centrality method
becomes worst significantly, indicating its sensitivity to the source location. In the setup of Figure
12, multi-path NI methods outperform the one of other methods, although their performance do

30



0 100 200 300 400 500 600 700
0

50

100

150

200

250

300

350

400

(d)(c)

(b)(a) 450

time (hours)

nu
m

be
r o

f u
se

rs
 v

ot
ed

 to
 a

 s
to

ry

source user ob
se

rv
ed

 in
�u

en
ce

d 
us

er
s

NI−ME Distance
Centrality

NI−ML Degree
Centrality Random

M
ed

ia
n 

Pr
ed

ic
tio

n 
R

an
k

NI-ML
NI-ME

Distance Centrality
Degree Centrality
Random

Source Prediction Rank

N
um

be
r o

f S
to

rie
s

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 >=10
0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ditance from source

Fr
ac

tio
n 

of
 in

fe
ct

ed
 n

od
es

 
in

 s
ou

rc
e 

co
nn

ec
te

d 
co

m
po

ne
nt

Real digg data
SI model

Figure 13: (a) An example of number of votes of a story over time. (b) Fraction of
infected nodes in the connected component of sources in both Digg data and using
simulated SI model. (c) Median rank of true sources of 3,553 different Digg stories
inferred by different source inference methods. (d) Histogram of source ranks of 3,553
Digg stories inferred by different methods.

not converge to the optimal value.

5 NI Over Real Networks

In this section, we evaluate the performance of different source inference methods in two real data
applications: the first application is to infer news sources over Digg social news aggregator [26].
In this application, the underlying diffusion process is based on the real dynamics over the Digg
friendship network, and also true sources of different news stories are known. These characteristics
make this application an ideal framework to assess the robustness and performance of different
source inference methods. The second application is to infer infusion hubs of different human
diseases, defined as gene candidates that explain the connectivity pattern of disease related genes
over the gene regulatory network significantly. We show that, the inferred infusion hubs of different
diseases are biologically relevant and often not identifiable using the raw p-values.

31



5.1 Inference of News Sources Over Social Networks

In this section, we evaluate the performance of NI and other source inference techniques in iden-
tifying news sources over the social news aggregator Digg (http://digg.com). Digg allows its users
to submit and rate different news links. Highly rated news links are promoted to the front page of
Digg. Digg also allows its users to become friends with other users and follow their activities over
the Digg network. Digg’s friendship network is asymmetric, i.e., user A can be a follower (friend) of
user B but not vice versa. Reference [26] have collected voting activities and friendship connections
of Digg’s users over a period of a month in 2009 for 3,553 promoted stories. We use this data to
form a friendship network of active Digg users with 24,219 nodes and more than 350K connections.
We consider users as active if they have voted for at least 10 stories in this time period. Figure (1)
demonstrates a small part of the Digg friendship network.

For each story, we have voting time stamps of different users where the first voting user is
the source of that story. Figure (13-a) demonstrates the number of votes of a particular story in
different times. If friends of a user A vote for a specific story, it is more likely that user A also votes
for that story and that is how information propagates over the Digg friendship network. NI aims
to inverse this information propagation process to infer the news source by observing the voting
pattern in a single snapshot in the steady state. Here, we only consider the shortest path among
nodes to compute the path-based network diffusion kernel used in NI Algorithms 1 and 2.

This application provides an ideal real data framework to assess the performance and robustness
of different source inference methods because the true sources (i.e., the user who started the news)
are known for different stories and also the underlying diffusion processes are based on real dynamics
over the Digg friendship network. These real dynamics can in fact be significantly different from
the standard SI diffusion model (Figure 13-b). Moreover, not all of the voting pattern is derived
by the source users and there are disconnected voting activities over the Digg friendship network.
Thus, performance assessment of different source inference methods in this application can provide
a measure of robustness of different methods under real-world circumstances.

Figure (13-c) demonstrates the median rank of true sources of 3,553 news stories inferred by
different methods. The median source rank of NI-ME (Algorithm 2) is 4 which is 7, 13 and 18
ranks better than the ones of distance centrality, NI-ML, and degree centrality methods, respec-
tively. In fact, the NI-ME algorithm infers news sources optimally (in its first prediction rank)
for approximately 31.3% of stories, while this number for distance centrality, NI-ML, and degree
centrally methods are 9.7%, 8.9% and 3.2%, respectively (Figure 13-d).

5.2 Infusion Hubs of Human Diseases

The genome sequence can play an important role in identifying an individual’s susceptibility to a
particular disease. One of the main goals of genome-wide association studies (GWAS) is to discover
marker single nucleotide variants (SNV) that are associated with complex diseases [27]. Recently,
researchers have hypothesized that some human diseases can be related to single nucleotide variants
(SNVs) sitting in enhancer-like regions of the genome and are typically enriched in transcription
factor binding sites [4]. This leads to the hypothesis that, disease-associated SNVs of particular
diseases may be disrupting gene regulatory processes. Thus, using regulatory networks can help
us to identify direct and indirect target genes as well as higher-order regulatory pathways of these
disease-causing SNVs [5].

We use human gene regulatory network constructed by integration of genome-wide datasets
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Figure 14: (a) Enrichment of regulatory interactions for different human diseases. (b)
The proposed framework to compute significant infusion hubs of human diseases in the
regulatory network.

of transcription factor binding, gene expression, and regulatory motif information of ENCODE
consortium [28]. The human gene regulatory network is a directed binary network which connects
2,757 transcription factors (TFs) to 19,221 target genes using more than 2.5M regulatory connec-
tions. For different diseases, we compute gene p-values by meta-analysis of gene set enrichments
using p-values of single nucleotide variants (SNVs) [29]. We say a gene is related to a disease if
it has a p-value less than 0.01 for that disease. Over the regulatory network, for some diseases
including Type 1 Diabetes (T1D), Systemic lupus erythematosus (SLE), Multiple sclerosis (MS),
etc., we find that, if a TF is disease-related, its targets are more likely to be disease-related as well
(Figure 14-a), indicating the enrichment of regulatory connections for these diseases.

Here, we use source inference methods to identify infusion hubs of different human diseases
(Figure 14-b). Infusion hubs are defined as gene candidates that explain the connectivity pattern
of disease related genes in human gene regulatory network significantly. Figure 14-b illustrates
our framework to infer significant infusion hubs of different diseases using source inference meth-
ods. First, we assign infusion hub scores to different disease-related genes by performing source
inference methods such as NI, degree centrality and distance centrality. We use single-source NI
algorithms because most disease-related genes form a giant connected component in the network.
Also, similarly to the social network application, we consider the shortest path among nodes in the
NI algorithms (i.e., k = 1). To compute the statistical significance of these scores, we randomize
disease patterns using controlled permutations. In the permutation step, we keep the network struc-
ture and the number of disease-related TFs and target genes the same as the real ones. Moreover,
we keep in- and out- degree distributions of disease-related TFs and targets approximately the same
as the real ones, to eliminate potential degree biases of infusion hubs. Then, we compute p-values
of genes to be an infusion hub of a particular disease by comparing the actual and permutation
scores. Genes with p-values less than 0.01 are called significant infusion hubs for that particular
disease.

Figure 15-a illustrates the number of significant infusion hubs of different diseases using various
sources inference methods. The minimum error NI method (NI-ME) infers the most number of
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Figure 15: (a) Number of significant infusion hubs inferred by different methods (a)
for individual diseases, and (b) on average.

significant disease infusion hubs on average compared to other methods (Figure 15-b). Moreover,
most of the disease hubs cannot be inferred by merely using the raw gene p-values. Furthermore,
diseases with the strongest regulatory enrichment (Figure 14-a) such as T1D, SLE and MS have
the highest number of significant infusion hubs compared to other diseases. For some diseases, we
use multiple available datasets that is clarified in their names.

Table 1 presents common infusion hubs across different diseases inferred by the NI-ME method
(the overlap of infusion hubs inferred by other methods is not significant). Examples of these
common infusion hubs are gene BCL3 across diseases Parkinson’s and Alzheimers, gene EGR1
across diseases Schizophrenia and MS, gene TCF12 across diseases Parkinson’s and Neuroblastoma,
etc. Most of these inferred individual or common hubs are in fact biologically relevant [30,31], and
mostly unidentifiable merely by using the raw gene p-values. Thus, the proposed framework to
infer infusion hubs of human diseases can potentially open new directions in drug designs and
therapies for these diseases. It is important to note that, further experiments should be performed
to determine the involvement of these gene candidates in human diseases which is beyond the scope
of this paper.
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Infusion Hub Diseases Infusion Hub Diseases
BCL3 Parkinson’s-Alzheimers EGR1 Schizophrenia-MS
TCF12 Parkinson’s-Neuroblastoma PBX2-VARS2 T1D-MS

HLA-DQB1 MS-T1D-Leprosy ATF6B-PHF1 SLE-T1D
PATZ1 CVD-MS TRIM10-TRIM15-ZNRD1 SLE-Psoriasis

Table 1: Common infusion hubs of diseases inferred by the NI-ME algorithm.

6 Conclusion

In this paper, we proposed a computationally tractable general method for source inference which
we termed Network Infusion (NI). Our source inferences are based on a continuous-time path-based
network diffusion, which considers k edge-disjoint shortest paths among pairs of nodes, neglecting
other paths in the network. We used this kernel to solve efficiently the inverse diffusion problem
by maximizing the likelihood or minimizing the prediction error. The minimum error NI algorithm
is based on an asymmetric Hamming premetric function, and balances between false positive and
false negative error types. We applied NI framework for both single-source and multi-source dif-
fusion, for both single-snapshot and multi-snapshot observations, and using both uninformative
and informative prior probabilities for candidate source nodes. We provided proofs that under a
standard susceptible-infected diffusion model, the maximum-likelihood NI is mean-field optimal for
tree structures or sufficiently sparse Erdös-Rényi graphs, the minimum-error algorithm is mean-field
optimal for regular tree structures, and for sufficiently-distant sources, the multi-source solution is
mean-field optimal in the regular tree structure. We showed that, NI can be used in a complex
heterogeneous diffusion setup as well, where edges propagate information/infection in the network
according to different diffusion processes. In this setup, our network diffusion kernel is character-
ized using the phase-type distribution of a Markov chain absorbing time. Moreover, we proposed
extensions to NI algorithms for cases with unknown or partially known model parameters such as
observation times, the number of sources, etc., by introducing techniques to learn these parameters
from observed infection samples.

We applied NI to several synthetic networks and compared its performance to centrality-based
and distance-based methods, for Erdös-Rényi graphs, power-law networks, symmetric and asym-
metric grids. Our results illustrated the superiority of proposed NI algorithms compared to existing
methods, specially in sparse networks. Moreover, we used NI in two applications. First, we iden-
tified the news sources for 3,553 stories in the Digg social news network, and validated our results
based on annotated information, that was not provided to our algorithm. In this real-world ap-
plication with unknown underlying dynamics, we found that, the minimum error NI algorithm
outperformed other methods significantly and led to a robust source inference solution, owing to
the balance between false positive and false negative error types. Second, we applied NI to identify
infusion hubs of human diseases, defined as gene candidates that explain the connectivity pattern
of disease-related genes in the human regulatory network significantly. In this application, again
the NI-ME algorithm outperformed other methods and identified infusion hubs of several human
diseases including T1D, Parkinson, MS, SLE, Psoriasis and Schizophrenia. We showed that, the
inferred infusion hubs are biologically relevant and often not identifiable using the raw p-values.
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7 Appendix

In this section, we present proofs of the main results of the paper.

7.1 Proof of Proposition 1

First, we compute the probability that a node v ∈ V belongs to a cycle of length at most l. Such a
cycle is determined by the l − 1 other vertices. By choosing them in order, there are less than nl−1

choices for those other vertices, while the cycle appears with probability pl in the graph. Thus, the
probability that v is involved in a cycle of length l is at most nl−1pl ≤ cl/n. To have an overlapping
shortest path between nodes i and j, at least one of the nodes over that path should belong to a
cycle of length at most 2l0. This happens with probability less than l0c

2l0/n, which goes to zero
asymptotically if c < 1/n2l0 .

7.2 Proof of Proposition 2

To compute the k-path network diffusion kernel, we need to compute k-independent shortest paths
among nodes. Note that ties among paths with the same length is broken randomly as explained in
Section 3.1. Computation of these paths among one node and all other nodes using the Dijkstra’s
algorithm costs O(k∣E∣ + kn log(n)). Thus, computational complexity of forming the entire kernel
has complexity O(k∣E∣n + kn2 log(n)).

7.3 Proof of Proposition 3

To prove these properties, we use an alternative definition of the Erlang cumulative distribution
function as follows:

F (di,j , t) = 1 −
di,j−1

∑
k=0

1
k!
e−ttk. (7.1)

For larger values of di,j , there are more positive terms in the summation of equation (7.1).
Thus, this is a decreasing function of di,j .

To prove the second part, we have,

∂pi,j(t)

∂t
=

di,j−1

∑
k=0

1
k!

(−e−ttk + ktk−1e−t),

=

di,j−1

∑
k=0

1
k!
e−ttk +

di,j−2

∑
k=0

1
k!
e−ttk,

= F (di,j − 1, t) − F (di,j − 1, t).

This completes the proof.

7.4 Proof of Proposition 4

Computation of the k-path network diffusion kernel for one node has complexityO(k∣E∣+kn log(n)),
according to Proposition 2. We need to compute the kernel for V t nodes. Moreover, Optimizations
3.9 and 3.11 have complexity O(∣V t∣n). Thus, the total computational complexity is O(∣V t∣(k∣E∣+

kn log(n))).
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7.5 Proofs of Theorem 1 and Proposition 5

First, we prove the following lemma:

Lemma 1 Let x, y and z be positive numbers such that 0 < x, y < z. Define

f(x, y) ≜ x log
x

y
+ (z − x) log

z − x

z − y
. (7.2)

Then, f(x, y) ≥ 0 where equality holds iff x = y.

Proof We have,

∂f

∂y
= −

x

y
+
z − x

z − y
,

∂2f

∂y2
=
x

y2
+

z − x

(z − y)2
> 0.

Thus, f(., .) is a convex function where its minimum is equal to 0 and occurs at x = y. This
completes the proof of Lemma 1.

Recall that L(i, t′) is the likelihood score of node i using diffusion parameter t′:

L(i, t′) = ∑
j∈V t

log (pi,j(t
′
)) + ∑

j∉V t
log (1 − pi,j(t′)). (7.3)

First, we prove Proposition 5. Let s be the source node and t be the infection observation time
(t′ can be different than t, see explanations of Remark 11). Thus, we can write,

E[L(s, t)] − E[L(s, t′)] = ∑
j∈V

ps,j(t) log (ps,j(t)) + (1 − ps,j(t)) log (1 − ps,j(t)) (7.4)

− ∑
j∈V

ps,j(t) log (ps,j(t
′
)) + (1 − ps,j(t)) log (1 − ps,j(t′))

= ∑
j∈V

ps,j(t) log
ps,j(t)

ps,j(t′)
+ (1 − ps,j(t)) log

1 − ps,j(t)
1 − ps,j(t′)

(I)
≥ ∑

j∈V

ps,j(t) log
∑j∈V ps,j(t)

∑j∈V ps,j(t
′)
+ ∑
j∈V

1 − ps,j(t) log
∑j∈V 1 − ps,j(t)

∑j∈V 1 − ps,j(t′)

(II)
≥ 0.

Inequality (I) follows from the log-sum inequality. Inequality (II) follows from Lemma 1. In
particular, according to Lemma 1, the equality condition (II) holds iff ∑j∈V ps,j(t) = ∑j∈V ps,j(t′)
which indicates t = t′. This completes the proof of Proposition 5.

In the next step, we prove Theorem 1.
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Figure 16: An example of a regular tree used in the proof of Theorem 2.

E[L(s, t)] − E[L(i, t′)] = ∑
j∈V

ps,j(t) log (ps,j(t)) + (1 − ps,j(t)) log (1 − ps,j(t)) (7.5)

− ∑
j∈V

ps,j(t) log (pi,j(t
′
)) + (1 − ps,j(t)) log (1 − pi,j(t′))

= ∑
j∈V

ps,j(t) log
ps,j(t)

pi,j(t′)
+ (1 − ps,j(t)) log

1 − ps,j(t)
1 − pi,j(t′)

(III)
≥ ∑

j∈V

ps,j(t) log
∑j∈V ps,j(t)

∑j∈V pi,j(t
′)
+ ∑
j∈V

1 − ps,j(t) log
∑j∈V 1 − ps,j(t)

∑j∈V 1 − pi,j(t′)

(IV )
≥ 0.

Inequality (III) follows from the log-sum inequality. Inequality (IV) follows from Lemma 1.
This completes the proof of Theorem 1.

7.6 Proof of Theorem 2

To prove Theorem 2, first we prove regular trees are distance symmetric according to the following
definition:

Definition 10 A graph G = (V,E) is distance symmetric if for any pair of nodes i, j ∈ V , there
exists a graph partition {V1, V2, V3} where,

� ∀r ∈ V1, d(i, r) = d(j, r). I.e., distances of nodes in V1 from both nodes i and j are the same.

� There exists a bijective mapping function ζ(.) between nodes V2 and V3 (i.e., g ∶ V2 → V3)
such that for any r ∈ V2, d(i, r) = d(j, ζ(r)).

In the following Lemma, we show that regular trees are in fact distance symmetric:

Lemma 2 Let G = (V,E) be a regular tree where V is countably infinite set of vertices and E is
the set of edges. Then, G is distance-symmetric according to Definition 10.
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Proof Consider two distinctive nodes i and j. In the following, we construct graph partitions
V1, V2 and V3 satisfying conditions of Definition 10. Let degree of nodes in the regular tree be
k. Thus, there are k branches connected to each nodes i and j, denoted by {Bi

1, . . . ,B
i
k} and

{Bj
1, . . . ,B

j
k}, respectively. Without loss of generality, assume i ∈ Bj

1 and j ∈ Bi
1. Add {Bi

2, . . . ,B
i
k}

and {Bj
1, . . . ,B

j
k} to the partition sets V2 and V3, respectively. A mapping function ζ(.) of Definition

10 can be constructed between these sets by mapping nodes over branches Bi
l (l ≠ 1) to nodes over

branches Bj
l (l ≠ 1) in a symmetric way (see Figure 16).

Now consider the branch connecting nodes i and j in the graph. Let {1,2, . . . , l} be nodes over
the shortest path connecting node i to node j. Therefore, d(i, j) = l+1, the distance between nodes
i and j.

� If l is odd, add non-partitioned nodes connected to nodes {1, . . . , l/2} to the partition set V2.
Similarly, add remaining nodes connected to nodes {l/2 + 1, . . . , l} to the partition set V3.

� If l is odd, add non-partitioned nodes connected to nodes {1, . . . , ⌊l/2⌋} and {⌈l/2⌉ + 1, . . . , l}
to partition sets V2 and V3, respectively. Non-partitioned nodes connected to the node ⌈l/2⌉
are assigned to the partition set V1.

A mapping function ζ(.) of Definition 10 can be constructed between newly added nodes to
partition sets V2 and V3 in a symmetric way. Moreover, nodes in the partition set V1 have the same
distance from both nodes i and j. This completes the proof.

Without loss of generality, suppose node 0 is the source node and we observe the infection pat-
tern at time t according to the SI diffusion model. Thus, Pr[yj(t) = 1] = p0,j(t), defined according
to equation (3.5). Suppose we use parameter t′ in Network Infusion Algorithm 2. According to
equation (3.11), we have,

E[Hα(i, t
′
)] = ∑

j∈V

(1 − α)p0,j(t)(1 − pi,j(t′)) + α(1 − p0,j(t))pi,j(t
′
) (7.6)

= ∑
j∈V

p0,j(t)(1 − pi,j(t′)) + α(pi,j(t′) − p0,j(t)).

Thus, we have,
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E[Hα(i, t
′
)] − E[Hα(0, t′)] = ∑

j∈V

p0,j(t)(p0,j(t
′
) − pi,j(t

′
)) + α(pi,j(t

′
) − p0,j(t

′
)) (7.7)

= ∑
j∈V

(p0,j(t
′
) − pi,j(t

′
))(p0,j(t) − α)

(a)
= ∑

j∈V2

(p0,j(t
′
) − pi,j(t

′
))(p0,j(t) − α)

+ ∑
j′=g(j)∈V3

(p0,j′(t
′
) − pi,j′(t

′
))(p0,j′(t) − α)

(b)
= ∑

j∈V2

(p0,j(t
′
) − pi,j(t

′
))(p0,j(t) − α)

+ ∑
j∈V2

(pi,j(t
′
) − p0,j(t

′
))(pi,j(t) − α)

= ∑
j∈V2

(p0,j(t
′
) − pi,j(t

′
))(p0,j(t) − pi,j(t)).

Equality (a) comes from partitioning nodes to sets V1, V2 and V3 according to Definition 10.
The terms correspond to nodes in the partition set V1 is equal to zero. Equality (b) comes from
the fact that d(0, j′) = d(i, j) and d(0, j) = d(i, j′). Thus, p0,j′(.) = pi,j(.) and pi,j′(.) = p0,j(.).

Therefore, if t′ = t, we have,

E[Hα(i, t
′
)] − E[Hα(0, t′)] = ∑

j∈V2

(p0,j(t) − pi,j(t))
2, (7.8)

which is strictly positive if i ≠ 0.
Now we consider the case that t′ ≠ t. Suppose d0,j < di,j . Then, according to Proposition 3,

p0,j(t) > p0,j(t) for any value of t > 0. Therefore, (p0,j(t
′) − pi,j(t

′))(p0,j(t) − pi,j(t)) > 0. The
same argument holds if d0,j > di,j . If d0,j = di,j , then (p0,j(t

′) − pi,j(t
′))(p0,j(t) − pi,j(t)) = 0. This

completes the proof of Theorem 2.

7.7 Proof of Theorem 3

To simplify notation, we prove this Theorem for a specific case where there are three sources in
the network (m = 3). Also, we drop ε from dε1. All arguments can be extended to a general case.
Let S = {0,1,2} be the sources. Suppose at the first step of the Algorithm 3, we have inferred the
source node 0. We show that at the next step, we have,

E[Ld0(s, t)] ≥ E[Ld0(i, t)], (7.9)

for s ∈ {1,2} and for all i ∈ V t −D(0, d1).
Consider a node i in the d1-neighborhood of the source node 1 (i.e., i ∈ D(1, d1). Consider a

node j in d0-neighborhood of node i (Figure 17). According to Equation (3.18), we have,
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Figure 17: An illustrative figure of the proof of Theorem 3.

Pr(yj(t) = 1) ≥ p1,j (7.10)

Pr(yj(t) = 1)
(I)
≤

3

∑
s=1

ps,j

(II)
≤ p1,j +

ε

n
,

where Inequality (I) comes from the union bound of probabilities, and Inequality (II) uses
incoherent source property of Definition 6.

Consider a node i in the d1-neighborhood of the source node 1 (i.e., i ∈D(1, d1)). For this node,
we have,

E[Ld0(i, t)] = ∑
j∈D(i,d0)

Pr(yj(t) = 1) log (pi,j(t)) + Pr(yj(t) = 0) log (1 − pi,j(t)) (7.11)

(III)
= ∑

j∈D(i,d0)

(p1,j(t) +
εj

n
) log (pi,j(t)) + (1 − p1,j(t) −

εj

n
) log (1 − pi,j(t))

= ∑
j∈D(i,d0)

p1,j(t) log (pi,j(t)) + (1 − p1,j(t)) log (1 − pi,j(t))

+ ∑
j∈D(i,d0)

εj

n
log

pi,j(t)

1 − pi,j(t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

term IV

≍ ∑
j∈D(i,d0)

p1,j(t) log (pi,j(t)) + (1 − p1,j(t)) log (1 − pi,j(t)),

where Equality (I) comes from Equation (7.10), and term (IV) goes to zero for sufficiently large
n and a fixed t.

Similarly to the proof of Theorem 1, we have
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∑
j∈D(i,d0)∩D(1,d0)

p1,j(t) log (p1,j(t)) + (1 − p1,j(t)) log (1 − p1,j(t)) (7.12)

≥ ∑
j∈D(i,d0)∩D(1,d0)

p1,j(t) log (pi,j(t)) + (1 − p1,j(t)) log (1 − pi,j(t)).

Note that this inequality holds for nodes in the d0-neighborhood of both nodes i and 1. Now
consider a node j ∈ D(i, d0) −D(1, d0), and a node j′ ∈ D(1, d0) −D(i, d0) (see Figure 17). Owing
to the symmetric structure of the network, similarly to Lemma 2, there is a one-to-one map among
nodes j and j′ such that d(i, j) = d(1, j′). For such node pairs j and j′, we have,

p1,j′(t) log(p1,j′(t)) + (1 − p1,j′(t)) log (1 − p1,j′(t)) (7.13)

− p1,j(t) log(pi,j(t)) − (1 − p1,j(t)) log (1 − pi,j(t))

= p1,j′(t) log(p1,j′(t)) + (1 − p1,j′(t)) log (1 − p1,j′(t))

− p1,j(t) log(p1,j′(t)) − (1 − p1,j(t)) log (1 − p1,j′(t))

= (p1,j′(t) − p1,j(t)) log
p1,j′(t)

1 − p1,j′(t)

≥ 0, (7.14)

where the inequality comes from the fact that d(1, j′) < d(1, j). Thus, we have,

∑
j∈D(1,d0)−D(1,d0)

p1,j(t) log (p1,j(t)) + (1 − p1,j(t)) log (1 − p1,j(t)) (7.15)

≥ ∑
j∈D(i,d0)−D(1,d0)

p1,j(t) log (pi,j(t)) + (1 − p1,j(t)) log (1 − pi,j(t)).

Combining Inequalities (7.12) and (7.15), we have,

E[Ld0(1, t)] ≥ E[Ld0(i, t)], (7.16)

for any node i in the d1-neighborhood of the source node 1. The same arguments can be
repeated for nodes in the d1-neighborhood of the source node 2. There are some remaining nodes
that are not in the d1-neighborhood of the sources. As the last step of the proof, we show that the
probability of having an infected remaining node is small. Consider node j such that d(j,S) > d1.
according to Equation (3.18) and using the probability union bound, we have

Pr(yj(t) = 1) ≤
ε

n
. (7.17)

Let pe denote the probability of at least one such infected node exists. We have,

pe ≤ 1 − (1 −
ε

n
)
n

(7.18)

≍ ε,

for sufficiently large n. This completes the proof of Theorem 3.
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7.8 Proof of Proposition 7

Computation of the k-path network diffusion kernel for infected nodes has computational com-
plexity O(V t(k∣E∣+kn log(n))) according to Proposition 2. Moreover, solving Optimization (3.21)
for m iterations costs O(∣V t∣nm). Thus, the total computational complexity of Algorithm 3 is
O(∣V t∣(k∣E∣ + kn log(n) +mn)).
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