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1. Introduction

Recall that an element of a finite group G is said to be 2-regular if it has odd order 
and real if it is conjugate to its inverse. Moreover a real element is strongly real if it is 
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inverted by an involution and otherwise it is said to be weakly real. If k is a field, then 
a kG-module is said to have quadratic type if it affords a non-degenerate G-invariant 
k-valued quadratic form. The following is a recent result of R. Gow and the author [3]:

Proposition 1. Suppose that k is an algebraically closed field of characteristic 2. Then 
for any finite group G, the number of isomorphism classes of quadratic type principal 
indecomposable kG-modules is equal to the number of strongly real 2-regular conjugacy 
classes of G.

Our focus here is on the double cover 2.An of the alternating group An. All real 
2-regular elements of An are strongly real. So every self-dual principal indecompos-
able kAn-module has quadratic type. On the other hand, 2.An may have real 2-regular 
elements which are not strongly real. In this note we determine which principal inde-
composable k(2.An)-modules have quadratic type.

Let Sn be the symmetric group of degree n and let D(n) be the set of partitions of n
which have distinct parts. In [6, 11.5] G. James constructed an irreducible kSn-module 
Dμ for each partition μ ∈ D(n). Moreover, he showed that the Dμ are pairwise non-
isomorphic, and every irreducible kSn-modules is isomorphic to some Dμ.

As An has index 2 in Sn, Clifford theory shows that the restriction Dμ↓An
is either 

irreducible or splits into a direct sum of two non-isomorphic irreducible kAn-modules. 
Moreover, every irreducible kAn-module is a direct summand of some Dμ↓An

.
D. Benson determined [1] which Dμ↓An

are reducible and we recently determined 
[8] when the irreducible direct summands of Dμ↓An

are self-dual (see below for de-
tails). Throughout this paper we use Dμ

A to denote an irreducible direct summand 
of Dμ↓An

.
As the centre of 2.An acts trivially on any irreducible module, Dμ

A can be considered 
as an irreducible k(2.An)-module, and all irreducible k(2.An)-modules arise in this way.

The alternating sum of a partition μ is |μ|a :=
∑

(−1)j+1μj . We use �o(μ) to denote 
the number of odd parts in μ. So |μ|a ≡ �o(μ) (mod 2) and |μ|a ≥ �o(μ), if μ has distinct 
parts. Our result is:

Theorem 2. Let μ be a partition of n into distinct parts and let Pμ be the projective 
cover of the simple k(2.An)-module Dμ

A. Then Pμ has quadratic type if and only if

n− |μ|a
2 ≤ 4m ≤ n− �o(μ)

2 , for some integer m.

Note that Pμ is a principal indecomposable k(2.An)-module, but is not a kAn-module.
Throughout the paper all our modules are left modules.
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2. Notation

2.1. Principal indecomposable modules

This section consists of statements of well known facts. See [10, Sections 1.1, 1.10, 3.1, 
3.6] for details and proofs.

The group algebra of a finite group G over a field k is a k-algebra kG together with 
a distinguished k-basis whose elements are identified with the elements of G. So each 
element of kG is unique expressible as 

∑
g∈G λgg, where λg ∈ k for all g ∈ G. The algebra 

multiplication in kG is the k-linear extension of the group multiplication in G.
Multiplication on the left makes kG into a module over itself, the so-called regular 

kG-module. The indecomposable direct summands of kG are called the principal inde-
composable kG-modules. Each such module has the form kGe, where e is a primitive 
idempotent in kG.

Let P be a principal indecomposable kG-module. The sum of all simple submodules 
of P is a simple kG-module S. Moreover, P/J(P ) ∼= S, where J(P ) is the sum of all 
proper submodules of P . So P is the projective cover of S. Moreover P ↔ S establishes a 
one-to-one correspondence between the isomorphism classes of principal indecomposable 
kG-modules and the isomorphism classes of irreducible kG-modules.

Let (K, R, k) be a p-modular system for G, where p is prime. So R is discrete valuation 
ring of characteristic 0, with unique maximal ideal J containing p, and R is complete 
with respect to the topology induced by the valuation. Also K is the field of fractions of 
R, k = R/J is the residue field of R and k has characteristic p. We assume that K and 
k are splitting fields for all subgroups of G.

In this context every principal indecomposable kG-module P has a unique lift to a 
principal indecomposable RG-module P̂ (this means that P̂ is a finitely generated free 
RG-module, which is projective as RG-module, and the kG-module P̂ /JP̂ is isomorphic 
to P ).

A conjugacy class of G is said to be p-regular if its elements have order coprime 
to p. The number of isomorphism classes of irreducible kG-modules equals the number 
of p-regular conjugacy classes of G. So the number of isomorphism classes of principal 
indecomposable kG-modules equals the number of p-regular conjugacy classes of G.

2.2. Symplectic and quadratic forms

A good reference for this section is [5, VII, 8]. A kG-module M is said to be self-dual 
if it is isomorphic to its dual M∗ = Homk(M, k). This occurs if and only if M affords 
a non-degenerate G-invariant k-valued bilinear form. A self-dual M has quadratic, or-
thogonal or symplectic type if it affords a non-degenerate G-invariant quadratic form, 
symmetric bilinear form or symplectic bilinear form, respectively.

If p 	= 2, R. Gow showed that an indecomposable kG-module is self-dual if and only 
if it has orthogonal or symplectic type, and these types are mutually exclusive. See [5, 
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VII, 8.11]. W. Willems, and independently J. Thompson [12], showed that the type of a 
principal indecomposable module coincides with the type of its socle.

If p = 2, P. Fong noted that each non-trivial self-dual irreducible kG-module has 
symplectic type. This form is unique up to scalars, by Schur’s Lemma. See [5, VII, 8.13]. 
However now it is possible that the projective cover has neither orthogonal nor symplectic 
type.

The correspondence P ↔ S between principal indecomposable kG-modules and simple 
kG-modules respects duality. So P is self-dual if and only if S is self-dual. As the number 
of isomorphism classes of self-dual irreducible kG-modules equals the number of real 
p-regular conjugacy classes of G, it follows that the number of isomorphism classes 
of self-dual principal indecomposable kG-modules equals the number of real p-regular 
conjugacy classes of G.

Recall that g 
→ g−1, for g ∈ G, extends to a k-algebra anti-automorphism x 
→ xo on 
kG called the contragredient map.

Proposition 3. Let (K, R, k) be a 2-modular system for G and let P̂ be a principal inde-
composable RG-module. Set P = P̂ /JP̂ and S = P/ rad(P ), let Φ be the character of P̂
and let ϕ be the Brauer character of S. Then the following are equivalent:

(i) P̂ has quadratic type.
(ii) P has quadratic type.
(iii) P has symplectic type.
(iv) There is an involution t in G and a primitive idempotent e in kG such that P ∼=

kGe and t−1et = eo.
(v) If B is a symplectic form on S, then B(ts, s) 	= 0, for some involution t in G and 

some s in S.
(vi) ϕ(g) /∈ 2R, for some strongly real 2-regular elements g of G.
(vii) Φ(g)

|CG(g)| ∈ 2R, for all weakly real 2-regular elements g of G.

The equivalence of (i), (ii), (iii) and (iv) was proved in [4] and that of (ii), (vi) and 
(vii) in [3]. We only need the equivalence of (ii) and (v) to prove Theorem 2. This was 
first demonstrated in [7].

3. The double covers of alternating groups

3.1. Strongly real classes

The alternating group An is the subgroup of even permutations in the symmetric 
group Sn. So A5, A6, . . . is an infinite family of finite simple groups. For n ≥ 4, An has 
a unique double cover 2.An. Then 2.An is a subgroup of each double cover 2.Sn of Sn. 
Moreover 2.An is a Schur covering group of An, if n = 5 or n ≥ 8. In this section we 
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describe the conjugacy classes and characters of these groups. See [11] for an elegant 
exposition of this theory.

Given distinct i1, i2, . . . , im ∈ {1, . . . , n}, we use (i1, i2, . . . , im) to denote an m-cycle 
in Sn. So (i1, i2, . . . , im) maps ij to ij+1, for j = 1, . . . , m −1, sends im to i1 and fixes all 
i 	= i1, . . . , im. Now each permutation σ ∈ Sn has a unique factorization as a product of 
disjoint cycles. If we arrange the lengths of these cycles in a non-increasing sequence, we 
get a partition of n, which is called the cycle type of σ. The set of permutations with a 
fixed cycle type λ is a conjugacy class of Sn, here denoted Cλ. In particular the 2-regular 
conjugacy classes of Sn are indexed by the set O(n) of partitions of n whose parts are 
odd.

A transposition in Sn is a 2-cycle (i, j) where i, j are distinct elements of {1, . . . , n}. So 
(i, j) has cycle type (2, 1n−2). It is clear that there is one conjugacy class of involutions 
for each partition (2m, 1n−2m) of n, with 1 ≤ m ≤ n/2. We call a product of m-disjoint 
transpositions an m-involution in Sn. It follows that Sn has �n

2  conjugacy classes of 
involutions; the m-involutions, for 1 ≤ m ≤ n/2.

Suppose that π = (i1, i1+m)(i2i2+m) . . . (im, i2m) is an m-involution in Sn. Then 
we say that (i1, i1+m), (i2i2+m), . . . , (im, i2m) are the transpositions in π and write 
(ij , ij+m) ∈ π, for j = 1, . . . , m. Notice that each {ij , ij+m} is a non-singleton orbit 
of π on {1, . . . , n}.

Let λ be a partition of n. We use �(λ) to denote the number of parts in λ, and we 
say that λ is even if n ≡ �(λ) mod 2. Then Cλ ⊆ An if and only if λ is even, and if λ
is even, then Cλ is a union of two conjugacy classes of An if λ has distinct odd parts 
and otherwise Cλ is a single conjugacy class of An. In either case we use Cλ,A to denote 
an An-conjugacy class contained in Cλ. If λ has distinct odd parts then Cλ,A is a real 
conjugacy class of An if and only if n ≡ �(λ) mod 4.

Next let z ∈ 2.An be the involution which generates the centre of 2.An. As 〈z〉 is a 
central 2-subgroup of 2.An, there is a one-to-one correspondence between the 2-regular 
conjugacy classes of 2.An and the 2-regular conjugacy classes of An

∼= (2.An)/〈z〉; if λ
is an odd partition of n the preimage of Cλ,A in 2.An consists of a single class Ĉλ,A of 
odd order elements and another class zĈλ,A of elements whose 2-parts equal z.

Notice that an m-involution belongs to An if and only if m is even. Moreover, the 
2m-involutions form a single conjugacy class of An. So An has �n

4  conjugacy classes of 
involutions; the 2m-involutions, for 1 ≤ m ≤ n/4. Now each 2m-involution in An is the 
image of two involutions in 2.An, if m is even, or is the image of two elements of order 
4 in 2.An, if m is odd.

Set mo(λ) as the number of parts which occur with odd multiplicity in λ.

Lemma 4. If λ is a partition of n with all parts odd then Ĉλ,A is a strongly real conjugacy 
class of 2.An if and only if there is an integer m such that n−�(λ)

2 ≤ 4m ≤ n−mo(λ)
2 .
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Proof. Let σ ∈ An have cycle type λ and let π be an m-involution in Sn which inverts 
σ. Set � := �(λ), and let X1, . . . , X� be the orbits of σ on {1, . . . , n}. Then π permutes 
the sets X1, . . . , X�.

If πXj = Xj , for some j, then π fixes a unique element of Xj , and hence acts as an 
|Xj |−1

2 -involution on Xj . If instead πXj 	= Xj , then π is a bijection Xj → πXj . So π
acts as an |Xj |-involution on Xj ∪ πXj . We may order the Xj and choose k ≥ 0 such 
that πXj = Xj+k, for j = 1, . . . , k, and πXj = Xj , for j = 2k + 1, 2k + 2, . . . , �. Then 
from above

m =
k∑

j=1

|Xj | + |Xj+k|
2 +

�∑
j=2k+1

|Xj | − 1
2 = n + 2k − �

2 .

Now the maximum value of 2k is 2k = � −mo(λ), when π pairs the maximum number of 
orbit of σ which have equal size. This implies that m ≤ n−mo(λ)

2 . The minimum value of 
2k is 0. This occurs when π fixes each orbit of σ. It follows from this that m ≥ n−�(λ)

2 .
Conversely, it is clear that for each m > 0 with n−�

2 ≤ m ≤ n−mo(λ)
2 , there is an 

m-involution π ∈ Sn which inverts σ; π pairs � +2m −n orbits of σ and fixes the remaining 
n − 2m orbits of σ. The conclusion of the Lemma now follows from our description of 
the involutions in 2.An. �
3.2. Irreducible modules

By an n-tabloid we mean an indexed collection R = (R1, . . . R�) of non-empty subsets 
of {1, . . . , n} which are pairwise disjoint and whose union is {1, . . . , n} (also known as 
an ordered partition of {1, . . . , n}). We shall refer to R1, . . . , R� as the rows of R. Set 
λi := |Ri|. Then we may choose indexing so that λ = (λ1, . . . , λ�) is a partition of n, 
which we call the type of R. Now Sn acts on all λ-tabloids; the corresponding permutation 
module (over Z) is denoted Mλ.

Next recall that the Young diagram of λ is a collection of boxes in the plane, oriented 
in the Anglo-American tradition: the first row consists of λ1 boxes. Then for i = 2, . . . , �
in turn, the i-th row consists of λi boxes placed directly below the (i − 1)-th row, with 
the leftmost box in row i directly below the leftmost box in row i − 1.

By a λ-tableau we shall mean a bijection t : [λ] → {1, . . . , n}, or a filling of the boxes 
in the Young diagram with the symbols 1, . . . , n. So for 1 ≤ r ≤ � and 1 ≤ c ≤ λr, we 
use t(r, c) to denote the image of the position (r, c) ∈ [λ] in {1, . . . , n}. Conversely, given 
i ∈ {1, . . . , n}, there is a unique r = rt(i) and c = ct(i) such that t(r, c) = i. We say that 
i is in row r and column c of t.

Clearly there are n! tableaux of type λ and Sn acts regularly on the set of λ-tableau. 
For σ ∈ Sn, we define σt : [λ] → {1, . . . , n} as the composition (σt)(r, c) = σ(t(r, c)), 
for all (r, c) ∈ [λ]. In other words, the permutation module of Sn acting on tableau is 
(non-canonically) isomorphic to the regular module ZSn; once we fix t, we may identify 
σ ∈ Sn with the tableau σt.
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Associated with t, we have two important subgroups of Sn. The column stabilizer 
of t is Ct := {σ ∈ Sn | ct(i) = ct(σi), for i = 1, . . . , n} and the row stabilizer of t is 
Rt := {σ ∈ Sn | rt(i) = rt(σi), for i = 1, . . . , n.

We use {t} to denote the tabloid formed by the rows of t. So {t}r := {t(r, c) | 1 ≤ c ≤
λr}, for r = 1, . . . , �. Also {s} = {t} if and only if s = σt, for some σ ∈ Rt. Notice that 
the actions of Sn on tableau and tabloids are compatible, in the sense that σ{t} = {σt}. 
In other words, the map t 
→ {t} induces a surjective Sn-homomorphism ZSn → Mλ. 
The kernel of this homomorphism is the Z-span of {σt | σ ∈ Rt}.

The polytabloid et associated with t is the following element of Mλ:

et :=
∑
σ∈Ct

sgn(σ){σt}.

We use supp(t) := {{σt} | σ ∈ Ct} to denote the set of tabloids which occur in the 
definition of et. Note that eπt = sgn(π)et, for all π ∈ Ct. In particular, if rt(i) = rt(j), 
then e(i,j)t = −et. Also if π ∈ Sn, then Cπt = πCtπ

−1 and Rπt = πRtπ
−1. So eπt = πet

and supp(πt) = π supp(t).
The Z-span of all λ-polytabloids is a Sn-submodule of Mλ called the Specht module. 

It is denoted by Sλ. So Sλ is a finitely generated free Z-module (Z-lattice).

3.3. Involutions and bilinear forms

Let μ be a partition of n which has distinct parts and let 〈 , 〉 be the symmetric 
bilinear form on Mμ with respect to which the μ-tabloids form an orthonormal basis. 
Now let k be a field of characteristic 2. Then according to James, Dμ := Sμ/Sμ ∩ (Sμ)⊥
is a non-zero irreducible kSn-module. Here (Sμ)⊥ := {m ∈ Mμ | 〈m, s〉 ∈ 2Z, ∀s ∈ Sμ}.

Suppose that μ has parts μ1 > · · · > μ2s−1 > μ2s ≥ 0. Benson’s classification of the ir-
reducible kAn-modules [1], and our classification of the self-dual irreducible kAn-modules 
[8], are given by:

Lemma 5. Dμ ↓An
is reducible if and only if for each j > 0

(i) μ2j−1 − μ2j = 1 or 2 and (ii) μ2j−1 + μ2j 	≡ 2 (mod 4).

If Dμ ↓An
is reducible, its irreducible direct summands are self-dual if and only if∑

j>0 μ2j is even.

Let n denote the residue of an integer n mod 2. Then

Lemma 6. Let φ : Sμ → Dμ be the ZSn-projection. Then B(φx, φy) := 〈x, y〉, for x, y ∈
Sμ, defines a non-zero symplectic bilinear form on Dμ, if μ 	= (n).
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Remark 7. Notice that if x, y ∈ Dμ and π is an involution in Sn then

B(π(x + y), x + y) = B(πx, x) + B(πy, y).

So we can focus on a single polytabloid in Sλ.

Lemma 8. If t is a μ-tableau and π is an involution in Sn, then

〈πet, et〉 ≡ |{T ∈ supp(πt) ∩ supp(t) | πT = T}| mod 2.

In particular, if 〈πet, et〉 is odd, then π ∈ Rσt, for some σ ∈ Ct.

Proof. We have

〈πet, et〉 =
∑

σ1,σ2∈Ct

sgn(πσ1π
−1) sgn(σ2)〈(πσ1{t}, σ2{t}〉

≡ |{(σ1, σ2) ∈ Ct × Ct | πσ1{t} = σ2{t}}| (mod 2)

= | supp(πt) ∩ supp(t)|.

Now notice that T 
→ πT is an involution on supp(πt) ∩supp(t). So | supp(πt) ∩supp(t)| ≡
|{T ∈ supp(πt) ∩ supp(t) | πT = T}| mod 2.

Suppose that 〈πet, et〉 is odd. Then by the above, there exists σ ∈ Ct such that 
π{σt} = {σt}. This means that π ∈ Rσt. �
Lemma 9. Let t be a μ-tableau and let m be a positive integer such that 〈πet, et〉 is odd, 
for some m-involution π ∈ Sn. Then m ≤ n−�o(μ)

2 and π fixes at most one entry in each 
column of t.

Proof. By the previous Lemma, we may assume that π ∈ Rt. Now Rt
∼= Sμ. For i > 0, 

there is j-involution in Si for j = 1, . . . � i
2. So there is an m-involution in Rt if and only 

if

m ≤
∑⌊μi

2

⌋
=

∑
μi even

μi

2 +
∑

μi odd

μi − 1
2 = n− �o(μ)

2

Let i, j belong to a single column of t. We claim that i, j belong to different columns of 
πt. For suppose otherwise. Then (i, j) ∈ Ct∩Cπt. So the map T 
→ (i, j)T is an involution 
on supp(πt) ∩ supp(t) which has no fixed-points. In particular | supp(πt) ∩ supp(t)| is 
even, contrary to hypothesis. This proves the last assertion. �

We can now prove a key technical result:

Lemma 10. Let t be a μ-tableau and let m be a positive integer such that 〈πet, et〉 is odd, 
for some m-involution π ∈ Sn. Then m ≥ n−|μ|a .
2
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Proof. Let T ∈ supp(πt) ∩ supp(t) such that πT = T . Write πj for the restriction of π
to the rows T2j−1 and T2j of T , for each j > 0. Then there is mj ≥ 0 such that πj is an 
mj-involution, for each j > 0. So m =

∑
mj and π = π1π2 . . . π� �(μ)+1

2 �.

We assume for the sake of contradiction that m < n−|μ|a
2 . Now n−|μ|a

2 =
∑

j>0 μ2j . 
So mj < μ2j for some j > 0, and we choose j to be the smallest such positive integer.

There is a unique σ ∈ Ct such that T = {σt}. Set s = σt. So π ∈ Rs. We define the 
graph Grπ(s) of π on s as follows. The vertices of Grπ(s) are labels 1, . . . , μ2j−1 of the 
columns which meet row μ2j−1 of s. There is an edge c1 ←→ c2 if and only if one of the 
two transpositions (s(2j − 1, c1), s(2j − 1, c2)) or (s(2j, c1), s(2j, c2)) belongs to πj . As 
there are at most two entries in each column of s which are moved by πj, it follows that 
each connected component of Grπ(s) is either a line segment or a simple closed curve.

We claim that Grπ(s) has a component with a vertex set contained in {1, . . . , μ2j}. 
For otherwise every component Γ of Grπ(s) is a line segment and | Edge(Γ)| ≥ | Vx(Γ) ∩
{1, . . . , μ2j}|. Summing over all Γ we get the contradiction

μ2j =
∑
Γ

|Vx(Γ) ∩ {1, . . . , μ2j}| ≤
∑
Γ

|Edge(Γ)| = mj .

Now let X be the union of the component of Grπ(s) which are contained in {1, . . . , μ2j}
and let Γ be the component of Grπ(s) which contains min(X). In particular Vx(Γ) ⊆
{1, . . . , μ2j}.

Consider the involution σΓ :=
∏

c∈Vx(Γ)(t(2j − 1, c), t(2j, c)). This transposes the 
entries between rows 2j − 1 and 2j in each column in Vx(Γ). Now it is clear that π is in 
the row stabilizer of σΓs. So {σΓs} ∈ supp(πt) ∩ supp(t). Moreover, Grπ(s) = Grπ(σΓs)
and s = σΓ(σΓs). It follows that the pair T 	= σΓT of tabloids makes zero contribution 
to 〈πet, et〉 modulo 2. But T is an arbitrary π-fixed tabloid in supp(πt) ∩ supp(t). So 
〈πet, et〉 is even, according to Lemma 8. This contradiction completes the proof. �
3.4. Proof of Theorem 2

Suppose first that Pμ has quadratic type. Then by (ii)⇐⇒(v) in Proposition 3, 
B(π̂x, x〉 	= 0, for some x ∈ Dμ

A and involution π̂ ∈ 2.An. Let π be the image of π̂ in An. 
Then Remark 7 implies that there is a μ-tableau t such that 〈πet, et〉 is odd. Now π is a 
4m-involution, for some m > 0, and Lemmas 9 and 10 imply that n−|μ|a

2 ≤ 4m ≤ n−�o(μ)
2 . 

This proves the ‘only if’ part of the Theorem.
According to Lemma 4, the strongly real 2-regular conjugacy classes of 2.An are 

enumerated by λ ∈ O(n) such that there is a positive integer m with n−�(λ)
2 ≤ 4m ≤

n−mo(λ)
2 (if λ has distinct parts, n−�(λ)

2 = n−mo(λ)
2 and there are two 2-regular classes of 

2.An labelled by λ, in all other cases there is a single 2-regular class of 2.An labelled by 
λ).

By Theorem 2.1 in [2] (or the main result in [9]) there is a bijection φ : O(n) → D(n)
such that �(λ) = |φ(λ)|a and mo(λ) = �o(φ(λ)), for all λ ∈ O(n). Then from the previous 
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paragraph the number of strongly real 2-regular conjugacy classes of 2.An coincides 
with the number of irreducible k(2.An)-modules enumerated by μ ∈ D(n) such that 
n−|μ|a

2 ≤ 4m ≤ n−�o(μ)
2 for some integer m. However, from earlier in the proof, these 

are the only Pμ which can be of quadratic type. We conclude from Proposition 1 that 
each of these Pμ is of quadratic type, and furthermore that no other Pμ is of quadratic 
type. �
3.5. Example with 2.A13

The 18 distinct partitions of 13 give rise to 21 principal indecomposable k(2.A13)-
modules. The types are:

μ n−|μ|a
2

n−�o(μ)
2 type

(7, 6) 6 6 2 non-quadratic
(8, 5) 5 6 non-quadratic

(6, 5, 2) 5 6 non-quadratic
(6, 4, 2, 1) 5 6 non-quadratic
(5, 4, 3, 1) 5 5 2 not self-dual
(7, 5, 1) 5 5 2 not self-dual
(9, 4) 4 6 quadratic

(7, 4, 2) 4 6 quadratic
(6, 4, 3) 4 6 quadratic
(8, 4, 1) 4 6 quadratic

(7, 3, 2, 1) 4 5 quadratic
(10, 3) 3 6 quadratic
(8, 3, 2) 3 6 quadratic
(9, 3, 1) 3 5 quadratic
(11, 2) 2 6 quadratic

(10, 2, 1) 2 6 quadratic
(12, 1) 1 6 quadratic
(13) 0 6 quadratic

Using (i) and (ii) in Lemma 5, we see that Dμ↓A13 is a sum of two non-isomorphic 
irreducible k(2.A13)-modules for μ = (7, 6), (5, 4, 3, 1) or (7, 5, 1). For all other μ, Dμ↓A13

is irreducible. So there are 21 = 18 + 3 projective indecomposable k(2.A13)-modules.
By the last statement in Lemma 5, the two irreducible k(2.A13)-modules D(5,4,3,1)

A are 
duals of each other, as are the two irreducible k(2.A13)-modules D(7,5,1)

A . By the same 
result both irreducible k(2.A13)-modules D(7,6)

A are self-dual. However 6 ≡ 2 (mod 4). 
So neither principal indecomposable k(2.A13)-module P (7,6) is of quadratic type.

Next if μ = (8, 5), (6, 5, 2) or (6, 4, 2, 1) we have n−|μ|a
2 = 5 and n−�o(μ)

2 = 6. So 
the principal indecomposable k(2.A13)-module Pμ is not of quadratic type for any 
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of these μ’s. For each of the remaining partitions μ, the principal indecomposable 
k(2.A13)-module Pμ is of quadratic type, according to Theorem 2.
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