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Abstract

We describe a computational model of two central aspects of people’s probabilistic reasoning:

descriptive probability estimation and inferential probability judgment. This model assumes that

people’s reasoning follows standard frequentist probability theory, but it is subject to random

noise. This random noise has a regressive effect in descriptive probability estimation, moving

probability estimates away from normative probabilities and toward the center of the probability

scale. This random noise has an anti-regressive effect in inferential judgement, however. These

regressive and anti-regressive effects explain various reliable and systematic biases seen in peo-

ple’s descriptive probability estimation and inferential probability judgment. This model predicts

that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation

and inferential judgement, leading to unbiased responses in those tasks. We test this model by

applying it to one such task, described by Gallistel et al. (2014). Participants’ median responses in

this task were unbiased, agreeing with normative probability theory over the full range of

responses. Our model captures the pattern of unbiased responses in this task, while simultaneously

explaining systematic biases away from normatively correct probabilities seen in other tasks.
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1. Introduction

We live in a world of nonstationary stochastic processes, where events occur with

some associated probability, and this probability itself changes unpredictably over time.

To make successful predictions about event occurrence in such a world, we must use two

distinct types of probabilistic reasoning: descriptive probability estimation (given the sam-

ple of events we have seen recently, what is the current underlying population probability

of A?) and inferential probability judgment (given our current estimate for the probability

of A, is the current sample of events consistent with that probability? Or should we infer

that the underlying probability of A has changed?). Our aim in this paper is to present a

computational model of these two interacting components of probabilistic reasoning.

One revealing aspect of human probabilistic reasoning is the reliable occurrence of a

number of systematic biases in people’s judgement of probability: biases such as conser-

vatism (Erev, Wallsten, & Budescu, 1994), subadditivity (Tversky & Koehler, 1994), and

the conjunction fallacy (Tversky & Kahneman, 1983). The model we present was origi-

nally developed to explain these biases in terms of the effect of random noise in reason-

ing (see Costello & Watts, 2014). Here we extend this model to inferential probability

judgment and show that this model explains patterns of bias seen in such judgment. This

model predicts that, in situations involving both forms of reasoning, these effects will

cancel out, leaving subjective probability estimates that tend to agree with the norma-

tively correct values with no detectable systematic bias. Such agreement is seen in recent

studies of probability estimation for nonstationary stochastic processes by Gallistel, Kris-

han, Liu, Miller, and Latham (2014). We demonstrate the model by applying it to Gallis-

tel et al.’s study.

2. The probability theory plus noise model

Our model assumes that people’s probability judgments are produced by a mechanism

that is fundamentally rational but perturbed by purely random noise or error, which

causes systematic biasing effects. We take P(A) to represent the “true” probability of

event A (i.e., the proportion of items in memory that represent A). We take p�ðAÞ to rep-

resent an individual estimate of the probability of event A, and take P�ðAÞ ¼ hp�ðAÞi to

represent the expectation value or mean of these estimates for A: This is the value we

would expect to get if we averaged an infinite number of individual estimates for p�ðAÞ.
In standard probability theory, the probability of some event A is estimated by drawing a

random sample of events, counting the number of those events that are instances of A,
and dividing by the sample size. The expected value of these estimates is P(A), the prob-

ability of A. We assume that people estimate the probability of some event A in exactly

this way: randomly sampling events from memory, counting the number of instances of

A, and dividing by the sample size. If this counting process was error-free, people’s esti-

mates would have an expected value of P(A). Human memory, however, is subject to var-

ious forms of random error or noise. To reflect this, we assume events have some chance
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d < 0.5 of randomly being counted incorrectly: There is a chance d that a ¬A (not A)
event will be incorrectly counted as A, and the same chance d that an A event will be

incorrectly counted as ¬A. Note that this single noise term d is intended to cover the

influence of many different potential sources of error: noise in processing, noise in item

recall, noise due to contextual effects, and so on. For mathematical tractability we col-

lapse all these sources into a single noise term, that is, by assumption, symmetrical and

not in itself subject to any bias: There is no more noise associated with A than with ¬A.
Given this form of noise, a randomly sampled event will be counted as A if the event

truly is A and is counted correctly (with a probability (1�d)P(A), since P(A) events are

truly A and events have a 1�d chance of being counted correctly), or if the event is truly

¬A and is counted incorrectly as A (with a probability (1�P(A))d, since 1�P(A) events

are truly ¬A, and events have a d chance of being counted incorrectly). Summing the

probabilities of these two mutually exclusive situations, we see that the chance of a ran-

domly sampled event being counted as A is

Pðcounted as AÞ ¼ ð1� dÞPðAÞ þ ð1� PðAÞÞd ¼ ð1� 2dÞPðAÞ þ d

and so the expected average value for a noisy probability estimate of P(A) is

P�ðAÞ ¼ hp�ðAÞi ¼ Pðcounted as AÞ ¼ ð1� 2dÞPðAÞ þ d ð1Þ

with individual estimates varying independently around this expected value (see

Appendix A for a detailed derivation of this result). This average is systematically biased

away from the “true” probability P(A), such that estimates will tend to be greater than P
(A) when P(A) < 0.5, and they will tend to be less than P(A) when P(A) > 0.5: a pattern

of systematic regression toward 0.5, the center of the probability scale.

Since this model assumes that the probability P(A) is estimated by retrieving a random

sample of episodes from memory and counting the number of A’s, it may seem that the

model is only able to give probability estimates for events that have already been seen.

This view depends on a conception of memory as being nothing but a store of recorded

events. We can, however, take an alternative conception of memory as a constructive pro-

cess that can generate representations of events even if those specific events have not pre-

viously been seen (events that might occur in the future, for example). Support for this

view comes from evidence that remembering past events and imagining future events are

very similar cognitive processes (see, e.g., Schacter, 2012).

If we take this “constructive” or “simulation” view of memory, then our model can

apply to probability estimates for all forms of event, whether previously seen or com-

pletely novel. In this view, estimating the probability of some event A happening in the

future, for example, would involve generating or imagining a number of possible future

outcomes and counting the proportion that contained event A (subject to random error in

counting). We follow this constructive view of memory, and so assume that this model

applies to all forms of event, both previously seen and completely novel.
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2.1. Conservatism in probability estimation

Regression, in this model, explains a number of observed patterns of bias in peo-

ple’s descriptive probability estimates. One such pattern is a bias we refer to as “con-

servatism in estimation.” This is the finding that people’s estimates for the probability

of an event tend to be systematically biased away from the true probability in a char-

acteristic way: The closer P(A) is to 0, the more likely it is that a person’s estimate is

greater than P(A), while the closer P(A) is to 1, the more likely it is that the person’s

estimate is less than P(A). Differences between true and estimated probabilities are low

when P(A) is close to 0.5 and increase as P(A) approaches 0 or 1. Erev et al. (1994),

for example, found this pattern in a study where participants played a video game and

then estimated the probability of different events in that game: Participants reliably

overestimated the probability of low-probability events and underestimated that of

high-probability events. Lichtenstein, Slovic, Fischhoff, Layman, and Combs (1978)

found this pattern in a series of studies where participants estimated the probability of

different causes of death: Participants reliably overestimated low–frequency causes and

underestimated high-frequency causes. Teigen (1973) found this pattern in a study

where participants estimated the frequency of occurrence of a given symbol in a pre-

sented sequence: Participants reliably overestimated the occurrence of rare symbols and

underestimated the occurrence of frequent symbols (for similar results, see, e.g., Erlick,

1964; Poulton, 1973).

This pattern occurs as a straightforward consequence of random variation in

our model. As we saw in Eq. 1, P�ðAÞ deviates from P(A) in a way that systemati-

cally depends on P(A). If P(A) = 0.5, this deviation will be 0. If P(A) < 0.5,

then since d cannot be negative we have P�ðAÞ [ PðAÞ, with the difference increas-

ing as P(A) approaches 0. Since estimates p�ðAÞ are distributed around P�ðAÞ,
this means that p�ðAÞ will tend to be greater than P(A), with the tendency increas-

ing as P(A) approaches 0. Similarly if P(A) > 0.5, then P�ðAÞ\PðAÞ and estimates

p�ðAÞ will tend to be less than P(A), with the tendency increasing as P(A)
approaches 1.1

2.2. Cancellation of bias

This model also makes a number of novel predictions about patterns of agreement with

probability theory in people’s judgment. Probability theory requires that certain identities

must hold for probability estimates involving any pair of events A and B. One such iden-

tity is the addition law, which requires that

PðAÞ þ PðBÞ � PðA ^ BÞ � PðA _ BÞ ¼ 0 ð2Þ

If we substitute the expected values from Eq. 1 into the addition law identity, for exam-

ple, we get an expected value of
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P�ðAÞ þ P�ðBÞ � P�ðA ^ BÞ � P�ðA _ BÞ
¼ ð1� 2dÞPðAÞ þ d þ ð1� 2dÞPðBÞ þ d

� ð1� 2dÞPðA ^ BÞ � d � ð1� 2dÞPðA _ BÞ � d ¼ 0

with the regressive effects of noise in estimates for each term being, on average, can-

celled out. Our model thus predicts that this expression will have a value of 0, on aver-

age, in people’s probability judgments just as required by standard probability theory.

Exactly this pattern of agreement is seen in experimental results (Costello & Mathison,

2014; Costello & Watts, 2014, 2016, 2017; Fisher & Wolfe, 2014).

2.3. Inferential probability judgment

Equation 1 gives the expected value of a descriptive probability p�ðAÞ in this model,

produced when a reasoner sees a sample containing some instances of event A and then

estimates the underlying probability parameter P(A) describing the population from

which that sample was drawn. We now consider the estimation of an inverse or infer-

ential probability P(x,n|p) in this model: the probability of seeing a sample of n items

that contains exactly x A’s, given that the sample was drawn from a population where

P(A) = p. Frequentist probability theory provides a normative mechanism for estimat-

ing such inferential probabilities: to estimate P(x,n|p), draw a series of random sam-

ples, each of size n, from a population where P(A) = p and count the proportion of

samples that contain exactly x instances of A. This proportion gives an estimate of P(x,
n|p), the probability of the observed sample occurring in a population with P(A) = p:
the lower this estimate, the less likely it is that the observed sample came from such a

population. The expected value of this estimate is given by the binomial probability

function

Pðx; njpÞ ¼ n
x

� �
pxð1� pÞn�x ð3Þ

In our model we assume that people estimate inferential probabilities just as in frequentist

probability theory: by drawing a series of random samples of size n from a (simulated)

population where P(A) = p and counting the proportion of samples that contain exactly x
instances of A. We assume that this counting process is subject to random error; that the

count of occurrences of A in a sample is subject to random noise at a rate d (there is d
chance that an instance of A in a given sample will be counted as ¬A, and d chance that

an instance of ¬A in a given sample will be counted as A). From Eq. 1, with a noise rate

d, the chance of an instance in a sample being counted as A is equal to P
(counted as A) = (1�2d)p,+ d. This means that the probability of getting a sample which

is counted as containing x A’s, given a population probability of p and a noise rate of d
is given by
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hp�ðx; njpÞi ¼
n

x

� �
Pðcounted as AÞxð1� Pðcounted as AÞÞn�x

¼ n

x

� �
ðð1� 2dÞpþ dÞxðð1� 2dÞð1� pÞ þ dÞn�x

ð4Þ

This is simply the normative binomial probability function (Eq. 3), but with the probabil-

ity that a randomly sampled item is A being replaced by the probability that a randomly

sampled item is counted as A. This expression hp�ðx; njpÞi gives the average noisy infer-

ential probability that a sample of n items containing x A’s came from a population where

P(A) = p (given a noise rate d).
Note that the inferential probabilities given in Eqs. 3 and 4 are both binomially dis-

tributed with common terms x and n. If we take pe to be our current estimate of the prob-

ability of A in the population in question, this means that, for any given values of x and

n, the associated noisy inferential probability hp�ðx; njpeÞi is exactly equal to another nor-

matively correct inferential probability P(x,n|p) when

ðð1� 2dÞpe þ dÞxðð1� 2dÞð1� peÞ þ dÞn�x ¼ pxð1� pÞn�x

When d ≤ p ≤ 1�d, this equality holds for all values of n and x when

ð1� 2dÞpe þ d ¼ p

or equivalently when

pe ¼ p� d

1� 2d

This expression is “anti-regressive,” giving values for pe that are closer to the bound-

aries 0 and 1 than values of p: pe is greater than p when p > .5, and less than p when

p < .5. In other words, while noise in descriptive probability estimation (estimating the

probability of A, given a sample) produces an average estimate that is regressive rela-

tive to p, noise in inferential probability estimation (estimating the probability of a

sample, given P(A) = p) produces an inferential probability that is anti-regressive rela-

tive to p.

2.4. Conservatism in inferential judgement

Experimental studies typically investigate inferential probability estimation indirectly,

using the related concept of relative probability. These studies involve describing two

populations containing complementary proportions of two different types of event. Par-

ticipants are told that a population has been picked at random, and they are then shown

a sample of events drawn from the selected population and asked to assess the proba-

bility that the sample came from one population rather than the other. Typically these

populations are “book-bags” containing poker chips, with one bag containing, for
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example, 70% red chips and 30% black (this is the “red bag”), and the other bag con-

taining the complementary proportions: 30% red chips and 70% black (this is the

“black bag”). Participants are told the distribution of chips in each bag. They are then

shown a sequence of n chips and asked, after seeing each chip, to estimate the relative

probability that the sample came from the red rather than the black bag (see Peterson

& Beach, 1967, for examples).

Having seen a sample of n events containing x red chips, the normatively correct rel-

ative probability that the sample came from the red bag rather than the black bag is

given by

Rðx; n; pÞ ¼ Pðx; njpÞ
Pðx; njpÞ þ Pðx; nj1� pÞ ¼

1

1þ 1� p

p

� �x p

1� p

� �n�x

(since the proportion of red chips is p in the red bag, and 1�p the black bag). As partici-

pants proceed through these tasks, they give relative probability estimates that follow the

direction required by normative probability theory but are conservative: less extreme than

the normatively correct values. This means that if participants see x > n/2 red chips in

their sample, they give estimates for the probability that the sample came from the red

bag that are greater than .5 but less than the normatively correct value, while if partici-

pants see x > n/2 black chips in their sample, they give estimates for the probability that

the sample came from the black bag that are greater than .5 but less than the normatively

correct value. In applying our model to this task we assume, without loss of generality,

that x > n/2 is the number of red chips in the sample of n events that have been seen,

and we assume p > .5 to be the proportion of red chips in the red bag.

The estimated relative probability, in our model, of seeing a sample of size n with x
red chips coming from the red bag rather than the black bag is given by

R�ðx; n; pÞ ¼ p�ðx; njpÞ
p�ðx; njpÞ þ p�ðx; nj1 � pÞ ð5Þ

Note that, since by assumption p > .5 and x > n/2, from Eq. 4 we see that

p�ðx; njpÞ [ p�ðx; nj1� pÞ will tend to hold (subject, of course, to random error: more

specifically, the higher the values of x and p the more likely it is that this inequality will hold).

This means that R�ðx; n; pÞ will be >.5, and these noisy relative probability estimates will fol-

low the direction required by normative probability theory, just as seen in experiments.

The value of this noisy estimate R�ðx; n; pÞ varies randomly. By a sequence of rear-

rangements, we get

hR�ðx; n; pÞi� 1

1þ ð1� 2dÞð1� pÞ þ d

ð1� 2dÞpþ d

� �x ð1� 2dÞpþ d

ð1� 2dÞð1� pÞ þ d

� �n�x
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as an expression for the expected value of this estimate (see Appendix B for a detailed

derivation of this result). Comparing our expressions for hR�ðx; nÞi and R(x,n,p), we see

that hR�ðx; nÞi\Rðx; n; pÞ when

1þ d
1

p
� 2

� �

1þ d
1

1� p
� 2

� �
2
664

3
775
x

\
1þ d

1

p
� 2

� �

1þ d
1

1� p
� 2

� �
2
664

3
775
n�x

ð6Þ

Since by assumption we have p > .5 and x > n/2, we see that the inequality in Eq. 6

always holds, and so :5\ hR�ðx; n; pÞi\Rðx; n; pÞ: Estimated relative probability fol-

lows the direction required by probability theory, but it is conservative, just as observed

in people’s relative probability judgments. In other words, even though the expected

values for the individual inferential probability judgements hp�ðx; njpÞi and

hp�ðx; nj1� pÞi are each anti-regressive relative to their corresponding normative values

in this model, when combined to produce an overall estimate of relative probability,

this estimate is regressive and so reproduces the pattern of conservatism seen in inferen-

tial judgement.

2.5. Combined estimation and judgment tasks

We finally describe how this model applies to tasks that involve both descriptive and

inferential probability estimation. We consider an iterative task that involves the repeated

updating of an estimate for a hidden population probability parameter (which may itself

randomly change), given a sample of events presented outcome by outcome. Such tasks

were investigated in an experiment by Gallistel et al. (2014), where participants gave

repeated estimates of the hidden population probability, p, of a stepwise nonstationary

Bernoulli process that controlled the color of a circle being drawn from a concealed box.

On each trial participants clicked a button to draw a new circle from the box. After

being drawn, the circle evaporated, and participants could update their estimate for the

hidden probability p. Participants were told that the box would sometimes be silently

replaced by another box with a different value of p. Participants could update their

estimates by either clicking a “The box has changed!” button (and then picking a new

probability estimate), by adjusting their current probability estimate, or by making no

change.

There were two main results from this experiment. First, people’s probability estimates

were characterised by rapid changes in the estimated value in response to changes in the

underlying hidden probability, separated by periods of small adjustments in the estimate

(see Fig. 1, left side). The speed of detection of a change in the underlying probability

p depended on the degree of change: Large changes in the underlying probability were

detected more rapidly than smaller changes. The median latency for detection of a change

in probability estimate in response to a change in the underlying probability was around
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12 events. The second main result was that the relationship between the true probability

p and participants’ estimated probability was essentially that of identity: The median

trial-by-trial probability estimates closely tracked the true hidden probability with no sys-

tematic bias.

This pattern of agreement with the true probability arises, in our model, due to the

cancellation of regression in probability estimation against anti-regression in inferential

judgment. Suppose we see a series of random samples drawn from a population with a

parameter p = P(A), and we take pe to represent our estimate of p (which we repeatedly

update as outcomes are presented in the task). This estimate pe will be subject to random

noise, and so it will have a regressive average value as in Eq. 1. Individual estimates pe
will be adjusted (in a quasi-random walk) in response to inferential probability judgment

of the chance of obtaining the currently seen sequence of outcomes, given our current

estimate. This inferential probability judgment will also be subject to random noise and

so will be anti-regressive. This estimate pe is least likely to be adjusted when it reaches

a value maximally consistent with the average number of counted occurrences of A in

the presented sample, and so it will tend to fix at that value. Due to random noise, the

average number of counted occurrences of A in a sample is equal to [(1�2d)p+d]n,
and so pe will fix at the value for which the inferential probability hp�ð½ð1� 2dÞpþ
d�n; njpeÞi is maximized. Since from Eq. 4 this inferential probability has a binomial dis-

tribution with probability ð1� 2dÞpe þ d, it has its maximum value when

ð1� 2dÞpe þ d ¼ ð1� 2dÞpþ d

or equivalently, when pe ¼ p; when our estimate pe for the underlying population proba-

bility equals the true value. In other words, when descriptive probability estimation and

inferential probability judgment are combined, the regressive and anti-regressive effects

in each should cancel out, leaving estimates that on average agree with the hidden popu-

lation probability p; just as seen in mixed estimation and judgment tasks such as Gallistel

et al.’s.

0

0.2

0.4

0.6

0.8

1.0

p

0 100 200 300 400 500 600 700 800 900 1000
Trial

pg

pg

Fig. 1. (Left) Trial-by-trial true probability (dashed line) and trial-by-trial probability estimate (solid line) for

Subject 4, Session 8 in Gallistel et al.’s task (from fig. 5 in Gallistel et al., 2014, page 102; pg and p̂g repre-

sent true and estimated probabilities, respectively). (Right) Trial-by-trial probability estimates produced by

our model for the same set of true probabilities. These graphs illustrate the step-hold pattern seen in Gallistel

et al.’s task and show that the model reproduces this pattern.
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3. Computational simulation

We apply the model to Gallistel et al.’s task by assuming that a continuous probability

estimate pe is produced by counting the frequency of A in n just-observed events (subject

to random noise). The parameter n here represents the size of short-term memory avail-

able to store just-seen events: We assume n is small, but beyond that make no assump-

tions about the value n (in our simulations, below, we chose n randomly for each

simulated participant, uniformly in the range 5. . . 20).
We take x to represent the number of occurrences of A in the n most recently observed

events and take xe to represent the noisy count of that number (the count of occurrences

obtained with a chance d of randomly miscounting). The expected value of xe equals

(1�2d)x+nd, and so the immediately observed probability of A in that sample has the

expected value

q ¼ ð1� 2dÞ x
n
þ d ð7Þ

On each event occurrence the model makes one of three choices, corresponding to the

three choices available to participants in Gallistel et al.’s experiment. First, the model

may reject the current value of pe as inconsistent with the number of A’s just observed,

and update to a new estimate by setting pe ¼ q (this choice corresponds to clicking “The

box has changed!” in Gallistel et al.’s experiment). Second, the model may decide that

the underlying distribution has not changed but that q is more consistent with the

observed number of A’s than pe. In this case the model again updates to a new estimate

by setting pe ¼ q: This choice corresponds to a small adjustment of the current probabil-

ity estimate. Third, the model may decide not to modify pe.
To decide whether the current estimate pe needs to be rejected, the model considers

the chance of seeing xe occurrences of A in n samples where the probability of seeing A
in those samples is actually pe. If this chance is too low, pe is rejected. The model

assesses this chance in a simple way: by generating 100 random samples (each of size n,
with A occurring randomly with probability pe) and counting the number of A’s in each

sample. This counting process is subject to random error, with some probability d < 0.5

that A will be counted as ¬A, or ¬A counted as A. The proportion of these samples that

contain exactly xe occurrences of A represents an estimate of the inferential probability

PEðxe; njpeÞ. If this inferential probability is less than some decision criterion T1, the

model concludes that pe should be rejected because the underlying distribution has chan-

ged. The model then changes the new estimate to q.2

If the current estimate is not rejected, the model next considers making an estimate

adjustment. To decide whether the current estimate pe needs to be adjusted, the model

considers the inferential probability PEðxe; njqÞ: the chance of seeing xe occurrences of A
in n samples drawn from a population where P(A) = q. As above, the model assesses this

chance by generating 100 random samples (each of size n, with A occurring randomly

with probability q) and counting the number of A’s in each sample (subject to a rate d of
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random error in counting). The proportion of these samples that contain exactly xe occur-
rences of A represents an estimate of the inferential probability PEðxe; njqÞ. If the differ-

ence between this inferential probability and the previous inferential probability is greater

than some decision criterion T2 (that is, if PEðxe; njqÞ � PEðxe; njpeÞ [ T2), the model

decides that q is a better estimate and changes to a new estimate by setting pe ¼ q.
Otherwise the current estimate pe is left unchanged.

3.1. Results

We implemented this model and tested it by simulating Gallistel et al.’s experiment. On

each run of this simulation, the model was shown a consecutive sequence of 1,000 ran-

domly generated A or ¬A events. After seeing each event, the model either rejected its cur-

rent probability estimate and changed to the new estimate q; adjusted its estimate to the

new estimate q; or else left its estimate unchanged. Events were generated randomly, with

a hidden probability p. The value of p itself changed randomly over the sequence of 1,000

events, with the probability that p would change after a given event being set at a constant

value of .005 (just as in Gallistel et al.’s experiment). The size and direction of a change

in the hidden probability were determined by a random choice of the next value from a

uniform distribution between 0 and 1, subject to the restriction that p/(1�p), the resulting

change in the odds, was no less than fourfold, just as in Gallistel et al. (2014).

To investigate the role of error in descriptive probability estimation and in inferential

judgment, we designed the program so that we could set one error rate d for descriptive esti-

mation and another rate ds for inferential judgement. We simulated Gallistel et al.’s experi-

ment for four different pairs of values for these parameters: Sim A (d ¼ 0:0; ds ¼ 0:0),
Sim B (d ¼ 0:1; ds ¼ 0:0), Sim C (d ¼ 0:0; ds ¼ 0:1), and Sim D (d ¼ 0:1; ds ¼ 0:1).
We set the criterion parameters T1 and T2 to 0.01 and 0.1, respectively, in all simulations,

since initial tests suggested that these values produced a reasonable rate of adjustment in

the model’s probability estimates. Each simulation involved 500 “participants” (runs of the

model), all with the same values for parameters d and ds, and each with a value of n (the

size of short-term memory) selected randomly from the range 5 . . . 20. Each “participant”

saw a different randomly generated sequence of 1,000 events, produced according to a dif-

ferent randomly generated sequence of values of p (as in Gallistel et al., 2014).

3.1.1. Rapid detection of changes
The median latency between a change in the hidden probability p and the recognition

of that change by the model (via rejection of the current probability estimate) was 10 in

simulations A and B, 13 in simulation C, and 12 in simulation D. These values agree

with the median latency of 12 seen in Gallistel et al. (2014).

3.1.2. High hit rates and low false alarm rates
Gallistel et al. (2014) describe a method for computing hit rates and false-alarm rates

in participants’ responses in their experiment: They found that nine out of ten participants

had hit rates in the range 0.77 . . . 1 and false-alarm rates in the range 0.004 . . . 0.02. We
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used the same method to compute hit rates and false alarm rates across all “participants”

in our simulations. Average hit rates were 0.87, 0.79, 0.81, 0.76, and false-alarm rates

were 0.006, 0.005, 0.005, 0.005 in simulations A, B, C, and D, respectively. These agree

with the rates seen by Gallistel et al. (2014).

3.1.3. Precision
We assess the precision of the model’s probability estimates by computing the root

mean squared deviation (RMSD) between the model’s estimate at a given event against

the true probability p at that event. These RMSDs between estimated and true probabili-

ties were 0.15, 0.17, 0.17, 0.17 for simulations A, B, C, and D, respectively. These were

consistent with the corresponding RMSD’s for participants in Gallistel et al.’s experiment,

which ranged between 0.15 and 0.21.

These results show that, if we assume a constant rate of error d = 0.1 in both descrip-

tive probability estimation and inferential probability judgment, the probability theory

plus noise model produces results that agree closely with those seen in Gallistel et al.

(2014). Similar agreement holds for a range of other values of d. These same values of d,
however, also produce regressive effects; in our model these regressive effects produce

patterns of bias such as conservatism, subadditivity, and the conjunction fallacy. In other

words, this model may provide a single unified account for systematic bias away from

the true probabilities (in some tasks) and for agreement with the true probabilities (in

other tasks): an account that depends on a single factor—noise in reasoning.

These three aspects of the model are illustrated in the right of Fig. 1. This figure shows

trial-by-trial probability estimates produced by the model for one run, with parameter val-

ues d ¼ 0:1; ds ¼ 0:1; n ¼ 20. Values of the true probability p were controlled to match

those in Gallistel et al.’s example. Individual event occurrences in this run, however,

were random and did not follow the precise sequence of event occurrences in Gallistel

et al. (2014). This figure shows that the model produces the step-hold pattern seen in Gal-

listel et al.’s task, with large changes in the estimate when the hidden probability

changes, and small adjustments, or no changes, otherwise.

3.1.4. Identity between true probability and median estimates
Recall that the noisy frequentist model predicts that noise will have different effects in

different probability judgment tasks: When estimating a probability from a sample (de-

scriptive probability estimation), noise will produce regressive effects; when estimating

the likelihood of a sample given a probability (inferential probability judgment), noise will

produce anti-regressive effects; and in tasks that involve both forms of estimation, these

contrasting effects of noise cancel out, producing agreement with the true probability. To

test these predictions, for each simulation, we calculated the median estimate produced by

the model for a given hidden probability value p. The results are shown in the four graphs

in Fig. 2. Graph A gives the results obtained when there is no noise in either descriptive

estimation or inferential judgment (d ¼ 0:0; ds ¼ 0:0); the relationship between median

estimates and the true probability is one of identity here. Graph B gives the results with

noise in descriptive estimation but not inferential judgement (d ¼ 0:1; ds ¼ 0:0), and it
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shows a clear pattern of regression. Graph C gives the results with no noise in descriptive

estimation but noise in inferential judgment (d ¼ 0:0; ds ¼ 0:1), and it shows a clear

anti-regressive pattern. Finally, graph D shows the results obtained when there is the same

rate of noise in both components (d ¼ 0:1; ds ¼ 0:1). The relationship between median

estimates and the true probability in graph D is one of identity: The effects of noise in the

two components have cancelled each other out.

4. Conclusions

Our aim in this paper is to present a general model of descriptive probability estima-

tion, of inferential probability judgment, and of the interaction between these two

(A) (B)

(C) (D)

Fig. 2. Median (squares) and interquartile intervals (vertical lines) of model’s probability estimates plotted

against corresponding true probabilities, for different values of the noise parameters: d ¼ 0:0; ds ¼ 0:0
(graph A), d ¼ 0:1; ds ¼ 0:0 (graph B), d ¼ 0:0; ds ¼ 0:1 (graph C), and d ¼ 0:1; ds ¼ 0:1 (graph D).

The dashed line represents identity. While graphs A and D (no noise, and equal noise in both descriptive and

inferential probability judgment) show no significant bias away from the line of identity, graph B (noise in

descriptive estimation but not inferential judgment) shows clear regression (estimated Slider p being closer to

.5 than true p), while graph V (noise in inferential judgment but not descriptive estimation) shows clear anti-

regression (estimated Slider p being further from .5 than true p).
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processes. This model assumes that people estimate descriptive and inferential probabili-

ties using a mechanism that follows standard frequentist probability theory, but it is

subject to the biasing effects of random noise in the reasoning process. In other work,

we have shown that this model accounts for patterns of bias and agreement with proba-

bility theory for various probabilistic expressions. Here we show that this model can

simultaneously explain the patterns of bias seen in people’s probability estimation and

inferential judgment (which arise in the model due to the regressive effects of random

noise) and the observed agreement with the underlying true probability in tasks such as

that of Gallistel et al.’s (where the regressive effect of noise in descriptive probability

estimation is counteracted by the anti-regressive effect of noise in inferential probability

judgment).

This model predicts a form of “cancellation of noise” in tasks such as Gallistel

et al.’s, which involve both descriptive estimation and inferential judgement. This can-

cellation doesn’t mean that estimates in such tasks will always exactly equal the correct

normative value, just that estimates will tend to settle at that value, and may move

around that value (in a quasi-random walk). In other words, this model predicts that

people’s estimates in these tasks will tend to agree with the normatively correct value,

but with random variation around that value. A similar point applies to expressions

such as that in Eq. 2, which combine descriptive probability estimates in a way that

cancels out the biasing effects of noise: For such expressions the model also predicts

that people’s estimates will on average match normatively correct value, a pattern that

is strongly confirmed in experimental results (see Costello & Watts, 2014, 2016). More

broadly, while our model assumes that people reason in a way that follows probability

theory, it does not in general predict agreement with probability theory in people’s

probability estimates. Instead, it predicts that, in certain specific probability estimation

tasks where the effect of noise is cancelled (Gallistel et al.’s task, and the noise-cancel-

ling expressions mentioned above) there will be average agreement with probability the-

ory, while in most other aspects of probability estimation there will be systematic

biases away from probability theory.

Our proposal has implications for research on bias in people’s decision-making in

general. A common pattern in such research is to identify a systematic bias (a system-

atic violation of normative requirements) in people’s decision-making and take that bias

as evidence that people do not reason using the normatively correct procedure, but

instead use some normatively incorrect heuristic (e.g., Kahneman & Tversky, 1979).

Our results, however, suggest that this leap from an observed bias to an inferred heuris-

tic (motivated by, and intended to explain, that bias) is premature. This is because ran-

dom noise in reasoning can cause systematic biases in people’s responses even when

people are using normatively correct reasoning processes (see Budescu, Erev, & Wall-

sten, 1997; Erev et al., 1994, for similar arguments). To demonstrate conclusively that

people are using heuristics (are using any nonnormative reasoning process), researchers

must show that observed biases cannot be explained as the result of systematic effects

caused by random noise.
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Notes

1. For this model’s account of other biases, such as subadditivity and the conjunction

fallacy, see Costello and Watts (2014, 2017).

2. Note that our decision to use 100 random samples when estimating inferential

probabilities here is essentially arbitrary: This number was chosen to allow us to

use values for the decision criteria T1 and T2 that correspond to standard signifi-

cance level values such as .01 and .05. Versions of the simulation that make use of

much smaller numbers of samples give essentially the same results as seen here.
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Appendix A

We take p�ðAÞ to represent an individual estimate of the probability of A, produced
by randomly sampling some set of events from memory and counting the proportion
that are A (subject to random error in reading an item as A). Since P�ðAÞ is the
probability of an item being counted as A, and since these samples are drawn ran-
domly, these estimates p�ðAÞ will vary randomly following the binomial proportion
distribution

BinðN;P�ðAÞÞ
N

where N is the size of the sample drawn. A property of the binomial proportion distribu-

tion is that

�
BinðN;P�ðAÞÞ

N

�
¼ P�ðAÞ

for any sample size N. Given this, we take hp�ðAÞi to represent the expected value of

estimates p�ðAÞ independent of sample size: the value we would get if we averaged an

infinite number of individual estimates p�ðAÞ, each based on a sample drawn randomly

from a population with probability P(A) noise rate d, and with sample size varying across

samples. Let pi represent the probability of a sample being drawn with a particular size

N = i, and we have

hp�ðAÞi ¼
X1
i¼1

pi

�
Binði;P�ðAÞÞ

i

�
¼

X1
i¼1

piP�ðAÞ ¼ P�ðAÞ
X1
i¼1

pi

Since the sum of probabilities pi across all sample sizes necessarily equals 1, we thus

have

hp�ðAÞi ¼ P�ðAÞ ¼ ð1� 2dÞPðAÞ þ d ð8Þ

as required.
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Appendix B

We take

R�ðx; n; pÞ ¼ p�ðx; njpÞ
p�ðx; njpÞ þ p�ðx; nj1 � pÞ

to represent an individual noisy estimate for the relative probability that a sample x,n
came from a population with P(A) = p rather than one with P(A) = 1�p, as in Eq. 5. The

expected value of this expression is

hR�ðx; n; pÞi ¼
�

p�ðx; njpÞ
p�ðx; njpÞ þ p�ðx; nj1 � pÞ

�

For p > .5 this function REðx; n; pÞ will be concave for all x > n/2 (since as x increases

from n/2, the probability p�ðx; njpÞ increases while the probability p�ðx; nj1� pÞ simulta-

neously falls). Since from Jensen’s Inequality we have 〈f(x)〉 < f(〈x〉) for concave func-

tions (the expected value of a concave function is less than that function of the expected

value of its argument), we get

�
p�ðx; njpÞ

p�ðx; njpÞ þ p�ðx; nj1� pÞ
�
� hp�ðx; njpÞi

hp�ðx; njpÞi þ hp�ðx; nj1� pÞi

and so

hREðx; n; pÞi� hp�ðx; njpÞi
hp�ðx; njpÞi þ hp�ðx; nj1� pÞi ¼

1

1þ ð1� 2dÞð1� pÞþ d
ð1� 2dÞpþ d

h ix ð1� 2dÞpþ d
ð1� 2dÞð1� pÞþ d

h in�x

as required.
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