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A B S T R A C T

We describe 4 experiments testing contrasting predictions of two recent models of probability judgment: the
quantum probability model (Busemeyer, Pothos, Franco, & Trueblood, 2011) and the probability theory plus
noise model (Costello & Watts, 2014, 2016a). Both models assume that people estimate probability using formal
processes that follow or subsume standard probability theory. One set of predictions concerned agreement be-
tween people’s probability estimates and standard probability theory identities. The quantum probability model
predicts people’s estimates should agree with one set of identities, while the probability theory plus noise model
predicts a specific pattern of violation of those identities. Experimental results show the specific pattern of
violation predicted by the probability theory plus noise model. Another set of predictions concerned the con-
junction fallacy, which occurs when people judge the probability of a conjunction ∧P A B( ) to be greater than
one or other constituent probabilities P A( ) or P B( ), contrary to the requirements of probability theory. In cases
where A causes B, the quantum probability model predicts that the conjunction fallacy should only occur for
constituent B and not for constituent A: the noise model predicts that the fallacy should occur for both A and B.
Experimental results show that the fallacy occurs equally for both, contrary to the quantum probability pre-
diction. These results suggest that people’s probability estimates do not follow quantum probability theory.
These results support the idea that people estimate probabilities using mechanisms that follow standard prob-
ability theory but are subject to random noise.

1. Introduction

Researchers over the last 50 years have identified a large number of
systematic biases in people’s judgments of probability. These biases are
typically taken as evidence that people do not follow the normative rules
of probability theory when estimating probabilities, but instead use a
series of heuristics (mental shortcuts or ‘rules of thumb’) that sometimes
yield reasonable judgments but sometimes lead to severe and systematic
errors, causing the observed biases (Kahneman & Tversky, 1973). This
‘heuristics and biases’ view has had a major impact in psychology
(Gigerenzer & Gaissmaier, 2011; Kahneman & Tversky, 1982), economics
(Camerer, Loewenstein, & Rabin, 2003; Kahneman, 2003), law (Korobkin
& Ulen, 2000; Sunstein, 2000), medicine (Eva & Norman, 2005) and other
fields, and has influenced government policy in a number of countries
(Oliver, 2013; Vallgårda, 2012).

The existence of these systematic biases in people’s probabilistic
reasoning is incontrovertible. The conclusion that these biases ne-
cessarily demonstrate heuristic reasoning processes is, however, less

sure. Recent research has shown that many of these biases can be ex-
plained if we assume that people estimate probability using formal
processes that follow or subsume standard probability theory. Two such
formal models are the quantum probability model proposed by
Busemeyer, Pothos, Franco, and Trueblood (2011) and Busemeyer and
Bruza (2012), and our own probability theory plus noise model
(Costello & Watts, 2014, 2016a). Both models can account for a number
of well-known biases seen in people’s probabilistic reasoning. Im-
portantly, however, both models predict that people’s probability
judgments will follow the rules of standard probability theory, with no
systematic bias, for certain specific expressions. Experimental results
confirm these predictions, suggesting that people’s mechanisms for
probabilistic reasoning are ‘surprisingly rational’ (Costello & Mathison,
2014; Costello & Watts, 2014, 2017, 2016a, 2016b).

While these two models predict agreement with probability theory
for certain expressions, they also predict systematic bias away from the
rules of standard probability theory for a range of other expressions.
Importantly, these two models make contrasting predictions about the
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occurrence and direction of these biases. In this paper we describe a
series of experiments testing these contrasting predictions about two
different aspects of people’s judgments of probability.

First, the models make different predictions about the occurrence of
the ‘conjunction fallacy’. The conjunction fallacy arises when people
judge some conjunction of events ∧A B1 to be more probable than one
of the constituents of that event (that is, when ∧ >P A B P A( ) ( ) or

∧ >P A B P B( ) ( ) in people’s probability estimates), contrary to the
rules of probability theory. The quantum probability model predicts
that the conjunction fallacy will never occur when the events in ques-
tion are ‘compatible’, but will only occur for ‘incompatible’ events
(Section 3 gives a detailed explanation of the meaning of compatibility
in quantum probability). Further, when two events are incompatible
and there is some causal relationship between events A and B (that is, if
A in some way causes B), the quantum probability account predicts that
the conjunction fallacy will only occur for the caused event B, and not
for the causing event A. The probability theory plus noise account, by
contrast, predicts that the conjunction fallacy will be most likely to
occur when there is little difference between the probability of the
conjunction and the probability of the constituent, irrespective of event
compatibility and irrespective of the direction of cause between the two
events. The model also predicts that there will be no overall difference
between total fallacy rates for the caused event and total fallacy rates
for the causing event, summing across all forms of conjunction

∧ ∧ ¬A B A B, , ¬ ∧A B and ¬ ∧ ¬A B.
Second, and perhaps more importantly, both models make a number

of significantly contrasting predictions about the extent to which peo-
ple’s probability judgments will agree or disagree with various iden-
tities in probability theory. These identities are expressions which
probability theory requires must have a value of 0 for all events A and
B. In the quantum probability account, these predictions depend again
on both the compatibility of events A and B and on the direction of the
causal relationship between A and B. If A and B are compatible, the
quantum probability theory account predicts that the probability theory
identities

∧ + ∧ ¬ − =P A B P A B P A( ) ( ) ( ) 0 (1)

and

∧ + ∧ ¬ − =P A B P B A P B( ) ( ) ( ) 0 (2)

will both hold in people’s probability estimates: if we ask people to
estimate ∧ ∧ ¬P A P B P A B P A B( ), ( ), ( ), ( ) and ∧ ¬P B A( ) for some pair
of events A and B and then sum those estimates according to the
identities, the prediction is that the average value of these sums will be
0, as required by probability theory. If A and B are incompatible and A
causes B, the quantum probability model predicts that the first identity
(involving the causing event A), will hold while the second identity
(involving the incompatible caused event B) can be violated. The
probability theory plus noise account, by contrast, predicts that neither
of these identities will ever hold: in this model both identities will be
reliably violated in people’s estimates for all events (compatible or in-
compatible, and causing or caused) and will, on average, have positive
values.

In the first two sections below we present these two models and
derive these contrasting predictions. In the third section we describe an
experiment investigating the occurrence of the conjunction fallacy for
compatible events. In the fourth section we describe an experiment
investigating violations of identities such as Eqs. (1) and (2). In the fifth
section we describe an experiment investigating the relationship be-
tween direction of causality and both the conjunction fallacy and values
of these probability theory identities. In the sixth section we describe an
experiment more directly examining the role of causality in the

occurrence of the conjunction fallacy. In the seventh section we apply a
simulation of the noise model to the specific results from Experiments 1
and 2. The results, across all these experiments, agreed with the prob-
ability theory plus noise account and contradicted the quantum prob-
ability account: conjunction fallacy rates and violation of these iden-
tities did not depend on event compatibility; there was no difference
between fallacy rates relative to causing constituents and relative to
caused constituents, and people’s probability estimates violated prob-
ability theory for identities such as (1) and (2) for all events in just the
way predicted by the probability theory plus noise model.

2. The probability theory plus noise model

The probability theory plus noise model assumes that people esti-
mate probabilities via a mechanism that is fundamentally rational
(following standard frequentist probability theory), but is perturbed in
various ways by the systematic effects or biases caused by purely
random noise or error. This approach follows a line of research leading
back at least to Thurstone (1927) and continued by various more recent
researchers (see, e.g. Dougherty, Gettys, & Ogden, 1999; Erev, Wallsten,
& Budescu, 1994; Hilbert, 2012). This model explains a wide range of
results on bias in people’s direct and conditional probability judgments
across a range of event types, and identifies various probabilistic ex-
pressions in which this bias is ‘cancelled out’ and for which people’s
probability judgments agree with the requirements of standard prob-
ability theory (see Costello & Mathison, 2014; Costello & Watts, 2014,
2017, 2016a, 2016b).

In standard frequentist probability theory the probability of some
event A is estimated by drawing a random sample of events, counting
the number of those events that are instances of A, and dividing by the
sample size. The expected value of these estimates is P A( ), the prob-
ability of A; individual estimates will vary with a binomial proportion
distribution around this expected value. Our model assumes that people
estimate the probability of some event A in exactly the same way: by
randomly sampling items from memory, counting the number that are
instances of A, and dividing by the sample size. If this process was error-
free, people’s estimates would be expected to have an average value of
P A( ) (and to vary randomly around that average, due to sampling
error). Human memory is subject to various forms of random error,
however. To reflect this we assume events have some chance <d 0.5 of
randomly being read incorrectly: there is a chance d that a ¬A (not A)
event will be incorrectly counted as A, and the same chance d that an A
event will be incorrectly counted as ¬A. We take P A( )E to represent
P read as A( ): the probability that a single randomly sampled item from
this population will be read as an instance of A (subject to this random
error in counting). Since a randomly sampled event will be counted as A
if the event truly is A and is counted correctly (this occurs with a
probability −d P A(1 ) ( ), since P A( ) events are truly A and events have a
−d1 chance of being counted correctly), or if the event is truly ¬A and is
counted incorrectly as A (this occurs with a probability −P A d(1 ( )) ,
since −P A1 ( ) events are truly ¬A, and events have a d chance of being
counted incorrectly), the population probability of a single randomly
sampled item being read as A is

= = − + − = − +P read as A P A d P A P A d d P A d( ) ( ) (1 ) ( ) (1 ( )) (1 2 ) ( )E

(3)

We now consider the process of probability estimation. We take
p A( )e to represent an individual estimate of the probability of A, pro-
duced by randomly sampling some set of events from memory and
counting the proportion that are A (subject to random error in reading
an item as A). Since P A( )E is the probability of an item being read as A,
and since these samples are drawn randomly, these estimates p A( )e will
vary randomly following the binomial proportion distribution

Bin N P A
N

( , ( ))E1 Following the standard notation for logical connectives, we take ∧A B to represent
‘A and B’, ∨A B to represent ‘A or B’ and ¬A to represent ‘not A’.
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where N is the size of the sample drawn. Using 〈 〉X to represent the
expected value of some randomly varying variable X (the value we
would get if we averaged an infinite number of samples of that vari-
able), a property of the binomial proportion distribution is that

=
Bin N P A

N
P A( , ( )) ( )E

E

for any sample size N. Given this, we take 〈 〉p A( )e to represent the ex-
pected value of estimates p A( )e independent of sample size: the value
we would get if we averaged an infinite number of individual estimates
p A( )e , each based on a sample drawn randomly from a population with
probability P A( ) noise rate d, and with sample size varying across
samples. Let pi represent the probability of a sample being drawn with a
particular size =N i, and we have

∑ ∑ ∑〈 〉 = = =
=

∞

=

∞

=

∞

p A p Bin i P A
i

p P A P A p( ) ( , ( )) ( ) ( )e
i

i
E

i
i E E

i
i

1 1 1

Since the sum of probabilities pi across all sample sizes necessarily
equals 1, we thus have

〈 〉 = = − +p A P A d P A d( ) ( ) (1 2 ) ( )e E (4)

This equation gives the expected value or predicted average for people’s
estimates for the probability of some event A: individual estimates will
vary randomly around this expected value in a binomial proportion
distribution. Note that this predicted average embodies a regression
towards the center, due to random noise: estimates are systematically
biased away from the ‘true’ probability P A( ), such that on average es-
timates will tend to be greater than P A( ) when <P A( ) 0.5, and will
tend to be less than P A( ) when >P A( ) 0.5, and will tend to equal P A( )
when =P A( ) 0.5.

According to the model, this regressive effect of random error is
predicted for all types of events, but the rate of error (and so the degree
of regression) will be higher for complex events such as conjunctions

∧A B and disjunctions ∨A B. This idea of increased error for con-
junctive or disjunctive events follows the standard statistical concept of
propagation of error, which states that if two variables A and B are
subject to random error, then a complex variable (e.g. ∧A B) that is a
function of those two variables will have a higher rate of error than
either variable on its own. To reflect this, we assume a rate of random
error of d for single events but of +d dΔ for conjunctions and dis-
junctions (where dΔ represents a small increase in the rate of random
error). In this model the expected value of estimates for a conjunctive
event ∧A B is

∧ = − + ∧ + +P A B d d P A B d d( ) (1 2[ Δ ]) ( ) [ Δ ]E (5)

and the expected value of estimates for a disjunctive event ∨A B is

∨ = − + ∨ + +P A B d d P A B d d( ) (1 2[ Δ ]) ( ) [ Δ ]E (6)

Since this model assumes that the probability P A( ) is estimated by
retrieving a random sample of episodes from memory and counting the
number of A’s, it may seem that the model is only able to give prob-
ability estimates for events that have already been seen. This view
depends on a conception of memory as being nothing but a store of
recorded events. We can, however, take an alternative conception of
memory as a constructive process that can generate representations of
events even if those specific events have not previously been seen
(events that might occur in the future, for example). Support for this
view comes from evidence that remembering past events and imagining
future events are very similar cognitive processes (see e.g. Schacter,
2012).

If we take this ‘constructive’ or ‘simulation’ view of memory then
our model can apply to probability estimates for all forms of event,
whether previously seen or completely novel. In this view estimating
the probability of some event A happening in the future, for example,
would involve generating or imagining a number of possible future
outcomes and counting the proportion that contained event A (subject

to random error in counting). We follow this constructive view of
memory, and so assume that this model applies to all forms of event,
both previously seen and completely novel.

2.1. Predictions: the conjunction fallacy

For any two events A and B where ⩽P B P A( ) ( ), probability theory’s
‘conjunction rule’ requires that ∧ ⩽ ⩽P A B P B P A( ) ( ) ( ) must always
hold. This follows from the fact that ∧A B can only occur if A and B
themselves occur. People reliably violate this requirement for some
events, and commit the conjunction fallacy by giving probability esti-
mates for the conjunction ∧A B that are greater than the estimates they
gave the lower constituent B. Numerous experimental studies have
demonstrated the reliable nature of this fallacy in people’s probability
judgment (Costello, 2009; Fantino, Kulik, Stolarz-Fantino, & Wright,
1997; Gavanski & Roskos-Ewoldsen, 1991). Rates of conjunction fallacy
occurrence vary widely, with some conjunctions producing fallacy rates
higher than 85% and others producing fallacy rates lower than 10% (Fisk
& Pidgeon, 1996). Extensive experimental results demonstrate a reli-
able relationship between the difference of constituent probabilities
P A( ) and P B( ) and the rate of occurrence of the conjunction fallacy
(with high fallacy rates arising when P B( ) is low and P A( ) is high, and
lower rates arising when both are low or both are high; see Costello,
2009; Fantino et al., 1997; Fisk & Pidgeon, 1996; Gavanski & Roskos-
Ewoldsen, 1991; Sides, Osherson, Bonini, & Viale, 2002; Stolarz-
Fantino, Fantino, Zizzo, & Wen, 2003; Tversky & Kahneman, 1983;
Wedell & Moro, 2008). A range of experimental results also show a
relationship between conditional probability values P B A( | ) and P A B( | )
and conjunction fallacy rates, with fallacies being more frequent when
conditional probabilities are high (Fabre, Caverni, & Jungermann,
1995; Locksley & Stangor, 1984; Pidgeon & Fisk, 1998; Tversky &
Kahneman, 1983). The relationship between conditional probabilities
and conjunction fallacy rates appears somewhat weaker than the in-
fluence of constituent probability values: Tversky and Kahneman
(1983) observed fallacy rates higher than 85% for conjunctions where
P A( ) was low and P B( ) high, but around 60% for conjunctions where
the conditional probability P A B( | ) was high, and Thüring and
Jungermann (1990) found a much stronger relationship between con-
stituent probability difference and conjunction fallacy rate than be-
tween conditional probability and fallacy rate.

Finally, more recent experimental results have shown a reliable
relationship between inductive confirmation (as represented, for ex-
ample, by the degree to which the added conjunct B is confirmed by the
presence of A; that is, the degree to which >P B A P B( | ) ( )) and con-
junction fallacy rates (Tentori, Crupi, & Russo, 2013). Importantly, the
relationship between inductive confirmation and fallacy rates, in
Tentori et al.’s experiments, was significantly stronger than the re-
lationship between constituent probability difference and fallacy rates:
materials for which constituent probability difference was low, but
inductive confirmation was high, produced higher fallacy rates than
materials for which constituent probability difference was high, but
inductive confirmation was low. It is worth noting, however, that
Tentori et al.’s inductive confirmation account of the conjunction fal-
lacy is currently somewhat controversial in the literature, with both
Busemeyer, Wang, Pothos, and Trueblood (2015) and Costello and
Watts (2016b) pointing to various experimental results that seem to
contradict the proposal that the conjunction fallacy is a consequence of
inductive confirmation.

These general patterns of conjunction fallacy occurrence arise as a
consequence of random variation in our model. Assuming without loss
of generality that ⩽P B P A( ) ( ), the general idea is that a reasoner’s
probability estimates for the probabilities of B and ∧A B will both vary
randomly around their expected values P B( )E and ∧P A B( )E . This
random variation means that some individual estimates will occur
where < ∧p B p A B( ) ( )e e , producing a conjunction fallacy response.
The closer the expected values P B( )E and ∧P A B( )E are to each other,
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the greater the chance of this fallacy response occurring. More speci-
fically, this model predicts that the rate of conjunction fallacy responses
will increase with the difference between average estimates

∧ −

= − + ∧ + + − − −

= − ∧ − + − ∧

P A B P B
d d P A B d d d P B d

d P A B P B d P A B

( ) ( )
(1 2[ Δ ]) ( ) [ Δ ] (1 2 ) ( )
(1 2 )[ ( ) ( )] Δ [1 2 ( )]

E E

(7)

(being low when this difference is negative and high when it is posi-
tive). When this difference is negative we have ∧ <P A B P B( ) ( )E E .
Since individual estimates ∧p A B( )e and p B( )e are both perturbed by
random noise (which is equally likely to be positive or negative), when
this difference is negative we expect that an individual estimate

∧p A B( )e will randomly fall above an estimate p B( )e less than 50% of
the time, producing a conjunction fallacy rate of less than 50%.
Rearranging, we see that this difference will be positive when

− ∧ > − − ∧d P A B d P B P A BΔ [1 2 ( )] (1 2 )[ ( ) ( )] (8)

and when this inequality holds we expect that an individual estimate
∧p A B( )e will randomly fall above an estimate p B( )e more than 50% of

the time, producing fallacy rates of over 50% (and indeed as high as 85%
or 90%) for some events. This model can thus account for the wide range
of conjunction fallacy rates seen in experimental studies. Since prob-
ability theory imposes the requirement that ∧ ⩽P A B P B( ) ( ), the left-
hand side of the inequality in Eq. (8) will be highest when P B( ) is low.
Since probability theory also imposes the requirement that
− ⩾ − ∧ ⩾P A P B P A B1 ( ) ( ) ( ) 0, the right-hand side of this inequality
will be lowest when −P A1 ( ) is low: that is, when P A( ) is high. In other
words, this model predicts that conjunction fallacy rates will be highest
when P B( ) is low and P A( ) is high, just as observed in experimental
results. Since in probability theory high values for the conditional
probabilities P A B( | ) (or P B A( | )) imply values for the conjunction

∧P A B( ) that are close to P B( ) (or P A( )), the right-hand side of the
inequality in Eq. (8) will also be lower when the conditional prob-
abilities P A B( | ) and P B A( | ) are high (again, increasing fallacy rates).
The left-hand side of this inequality, however, will be lower when these
conditional probabilities are high (reducing fallacy rates), and so the
model predicts a weaker link between conditional probability values
and conjunction fallacy rates, just as observed in experimental results.

Finally, this model is at least potentially consistent with Tentori
et al.’s results showing a link between inductive confirmation and
conjunction fallacy rates: there are a range of reasonable values of our
noise parameters d and dΔ for which the model can reproduce these
results (see Costello & Watts, 2016b, for this model’s account of the link
between the conjunction fallacy & inductive confirmation). More gen-
erally, applying a computational simulation of this model to conjunc-
tion fallacy data from Fisk and Pidgeon (1996), this model gave a close
match to a wide range of high and low fallacy rates produced for dif-
ferent conjunctions (Costello & Watts, 2017).

Note that the conjunction fallacy in this account does not depend in
any way on the direction of causation between A and B: the conjunction
fallacy can occur in this model if A causes B or if B causes A (or if there
is no causal relationship). Since by assumption dΔ is small, we expect
the rate of conjunction fallacy responses ∧ >p A B p B( ) ( )e e to primarily
follow the expression − ∧ −d P A B P B(1 2 )[ ( ) ( )]: we use this expression to
extend the model’s predictions about conjunction fallacy rates below.

This model allows us to make predictions about conjunction fallacy
rates for different forms of conjunction. In particular, we can use the
rules of probability theory to identify a number of conjunction-con-
stituent pairs which will have related conjunction fallacy rates in our
model. For example, consider the conjunction fallacy

¬ ∧ ¬ > ¬P A B P A( ) ( ) (that is, ‘not A and not B’ is judged more likely
to occur than ‘not A’ alone). From Eq. (7) the rate of conjunction fallacy
responses ¬ ∧ ¬ > ¬p A B p A( ) ( )e e will be related to the difference be-
tween average estimates

¬ ∧ ¬ − ¬ = − ¬ ∧ ¬ − ¬

+ − ¬ ∧ ¬

P A B P A d P A B P A

d P A B

( ) ( ) (1 2 )[ ( ) ( )]

Δ [1 2 ( )]
E E

and so will follow the expression − ¬ ∧ ¬ − ¬d P A B P A(1 2 )[ ( ) ( )]. From
probability theory, however, we have

¬ ∧ ¬ − ¬ = ∧ −P A B P A P A B P B( ) ( ) ( ) ( )

and so we expect the rate of conjunction fallacy responses
¬ ∧ ¬ > ¬p A B p A( ) ( )e e to follow the rate of conjunction fallacy re-

sponses ∧ >p A B p A( ) ( )e e . Table 1 identifies a number of other such
conjunction-constituent pairs for which this model predicts approxi-
mately matched conjunction fallacy rates.

Note that Table 1 includes every possible way in which the con-
junction fallacy can occur (all possible conjunctions ∧A B, ∧ ¬A B,
¬ ∧A B and ¬ ∧ ¬A B, with each conjunction being compared with both
of its constituents). From this we see that the model makes a further
prediction about conjunction fallacy rates: it predicts that the overall
conjunction fallacy rate, summed across all pairs in the first column
(pairs involving the constituents A and ¬A) should, on average, be ap-
proximately equal to the average conjunction fallacy rate across all
pairs in the second column (pairs involving the constituents B and ¬B).
This relationship should hold for all events A and B, irrespective of the
causal relationship between those events. As we show below, the
quantum probability model makes a different prediction, which de-
pends on the causal relationship between A and B.

2.2. Predictions: probability theory identities

Probability theory requires that identities such as Eqs. (1) and (2)
must have a value of 0 for all events A and B. We can use our model’s
expressions for expected value (Eqs. (3), (5) and (6)) to make predic-
tions about the expected value of these identities in people’s probability
estimates. For the identity in Eq. (1), for example, our model predicts an
average value of

∧ + ∧ ¬ −

= − + ∧ + +

+ − + ∧ ¬ + + − − −

= + − ∧ − ∧ ¬

= + −

P A B P A B P A
d d d P A B d d

d d d P A B d d d P A d
d d P A B P A B
d d P A

( ) ( ) ( )
(1 2 [ Δ ]) ( ) [ Δ ]

(1 2 [ Δ ]) ( ) [ Δ ] (1 2 ) ( )
2Δ [1 ( ) ( )]
2Δ [1 ( )]

E E E

(9)

(with values varying randomly around that average). Since −P A1 ( ) is
never less than zero or greater than 1, we see that the model predicts an
average value for this identity that is between d and +d d2Δ , and so is
necessarily positive (since d represents the chance of random error in
counting, which is always positive in this model), and which varies
around the midpoint of that range, which is +d dΔ . Table 2 gives a
number of identities which in probability theory are required to have a
value of 0, but which in this model are predicted to have a similar
positive value, on average, in people’s estimates. As we see below, the
quantum probability model makes a different prediction.

Table 1
Conjunction-constituent pairs for which the probability theory plus noise model predicts
approximately the same rate of conjunction fallacy occurrence for all events A and B. If
observables A and B are compatible, the quantum probability model predicts no con-
junction fallacy occurrence for any of these pairs. If observables are incompatible and A
causes B, the quantum probability model predicts that the fallacy will never occur for
pairs in column 1, but will occur for pairs in column 2.

Conjunction-constituent pair 1 Conjunction-constituent pair 2

∧P A B( ) vs P A( ) ¬ ∧ ¬P A B( ) vs ¬P B( )
∧ ¬P A B( ) vs P A( ) ¬ ∧P A B( ) vs P B( )

¬ ∧P A B( ) vs ¬P A( ) ∧ ¬P A B( ) vs ¬P B( )
¬ ∧ ¬P A B( ) vs ¬P A( ) ∧P A B( ) vs P B( )
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3. The quantum probability model

The quantum probability model assumes that people’s probabilistic
reasoning follows the mathematical rules used to calculate event
probability in quantum theory. In these rules the probability of some
event is measured by projecting a vector representing the current state
onto a space representing that event. Each such projection causes a
change in the current state vector, and so has an effect on subsequent
probabilities. This means that a fundamental aspect of quantum theory
is that the probability of two quantum events can depend on the order
in which those events are measured (if the probabilities of events A B,
are measured in the order A then B, the results obtained can be different
from those obtained when measured in the order B then A).

This order dependence allows the quantum probability model to
address various order effects seen in people’s sequential inference and
judgment. A reliable finding in research on sequential inference judg-
ments is that the order in which evidence is presented reliably influ-
ences the final inference made, with in most cases more recent evidence
having a stronger impact on the final inference. In testing the quantum
probability model against another leading model for these effects,
Hogarth and Einhorn’s belief-adjustment model, Trueblood and
Busemeyer (2011) found that the quantum model gave a more accurate
account of these effects. The model has also been applied to order ef-
fects in question answering, again producing impressive results and in
particular, showing that a specific relationship predicted by the
quantum model very reliably holds in question-answering studies
(Wang & Busemeyer, 2013).

Just as importantly, the quantum probability model assumes that
these order effects apply, not only to separate and sequential inferences
or judgments, but to the components of individual judgments; and in
particular to judgments of conjunctive and disjunctive probabilities.
These quantum order effects in judgments of conjunctive and dis-
junctive probabilities allow the quantum probability model to address
observed patterns of conjunction and disjunction fallacy occurrence. In
comparing the competing predictions of the noise and quantum models
here, we focus on the two models’ contrasting accounts for these con-
junctive and disjunctive probability judgments (we return to the issue
of order effects in sequential inference and judgment in the General
Discussion).

In presenting the quantum probability model we don’t go into the
mathematical details of quantum theory. Instead, we focus on de-
scribing the ways in which quantum probability agrees with, and de-
viates from, standard probability theory. The primary theoretical dis-
tinction between quantum and standard probability lies in the idea of
‘compatible’ or ‘incompatible’ observables. An observable defines the
set of all possible distinct outcomes for a given measurement. For ex-
ample, if we are checking to see whether some event A has occurred or
not, we are, in the terminology of quantum theory, measuring an ob-
servable A, which returns one of two distinct outcomes: A (the event

has occurred) and ¬A (the event has not occurred).2 Two observables A
and B are incompatible, in quantum theory, if the outcome of a joint
observation (such as ∧P A B( )) depends on the order in which A and B
were measured (see Busemeyer et al., 2011, p. 199). We use this dif-
ference as a measure of incompatibility below, with the idea that the
greater the difference between ∧P A B( ) under the ordering thenA B
and ∧P A B( ) under the ordering thenB A, the more confident we are
that the observables in question are incompatible. (Just to be clear on
our notation: we take expressions such as ∧P A B( ) to represent the
probability of both A and B occurring. When, in quantum probability
theory, the value of ∧P A B( ) depends on the order of measurement, we
give that order explicitly in the text.)

If two observables are compatible, then quantum probability ex-
pressions for all possible outcomes of those observables (that is, for

¬ ¬ ∧ ∧ ¬ ∨P A P A P B P B P A B P A B P A B( ), ( ), ( ), ( ), ( ), ( ), ( ), and so on)
are exactly equivalent to the standard probability theory expressions for
those outcomes. In other words, if two observables are compatible then
all the probability theory identities given in Table 2 should have the
value of 0, as required in standard probability theory. Similarly, if two
observables are compatible then the conjunction fallacy should never
occur for outcomes of those observables.

If two observables are incompatible, in quantum theory those ob-
servables cannot both be measured simultaneously: instead they must
be measured separately, one after the other. If two incompatible ob-
servables are measured in the order thenA B, then quantum prob-
ability expressions for the outcomes the second observable can deviate
from the requirements of probability theory, giving, for example

= ¬ ∧ + ∧ +P B P A B P A B δ( ) ( ) ( ) B (10)

where P B( ) is the probability obtained when B is measured with no
prior measurement of ¬ ∧P A BA, ( ) and ∧P A B( ) are the probabilities
obtained when A and B are measured in the order thenA B, and where
δB is a ‘quantum interference’ term for observable B. This quantum
interference term arises because, contrary to the ‘macroscopic realism’
view of the world and thus to the assumptions of standard probability
theory, in quantum theory if A is not measured, it is not necessarily in
either state A or state ¬A: it may be in some ‘superposition’ of states.
This means that the two probabilities ¬ ∧P A B( ) and ∧P A B( ) do not
necessarily cover all possible cases arising when estimating P B( ) with
no prior measurement of A, and so = ¬ ∧ + ∧P B P A B P A B( ) ( ) ( )
does not necessarily hold. Note that quantum interference is not an
error term here: for a given observable B (and a given state, in quantum
theory; or a given participant, in Busemeyer et al.’s model) this

Table 2
Predicted values of the noise model and the quantum model for a series of probability theory identities. Standard probability theory requires these identities to have a value of 0. The
probability theory plus noise model predicts that, if we ask people to estimate these probabilities for some events A B, and combine them as in these identities, the average value for these
identities will be positive for all events, deviating from 0 by +d dΔ or +d d2( Δ ) (where d represents the chance of random error). The quantum probability model makes different
predictions for three mutually-exclusive situations: when the assumed observables A and B are compatible; when the assumed observables are incompatible and measured in the order

thenA B (e.g., when A causes B); or when the assumed observables are incompatible and measured in the order thenB A (e.g., when B causes A).

Label Identity Noise model Quantum model

Compatible Incompatible: Incompatible:
thenA B thenB A

1 + ¬ ∧ − ∨P A P A B P A B( ) ( ) ( ) +d dΔ 0 0 δA
2 + ¬ ∧ − ∨P B P A B P A B( ) ( ) ( ) +d dΔ 0 δB 0
3 ∧ + ∧ ¬ −P A B P A B P A( ) ( ) ( ) +d dΔ 0 0 −δA
4 ∧ + ¬ ∧ −P A B P A B P B( ) ( ) ( ) +d dΔ 0 −δB 0
5 ∧ + ¬ ∧ + ∧ ¬ − ∨P A B P A B P A B P A B( ) ( ) ( ) ( ) +d d2( Δ ) 0 0 0
6 ∧ + ¬ ∧ + ∧ ¬ + ¬ ∧ ¬ −P A B P A B P A B P A B( ) ( ) ( ) ( ) 1 +d d2( Δ ) 0 0 0

2 In quantum theory, each of these outcomes A and ¬A would be referred to as an
eigenvalue of the observable, with the observable defining orthonormal vectors of unit
length (eigenvectors) in a multidimensional state space. We don’t need to use this detailed
view of quantum theory in our discussion here, and so avoid this more complex termi-
nology.
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quantum interference term δB has a fixed value that specifies the re-
lationship between P B( ) and ¬ ∧ + ∧P A B P A B( ) ( ) for that ob-
servable. The quantum interference term δB can take on different values
for different observables A and B (and different participants): in some
cases positive, in some negative, and in some cases 0.

If two incompatible observables are measured in the order thenA B
then P A( ) has no such interference term, and so remains exactly
equivalent to the corresponding standard probability theory expression,
giving, for example

= ∧ ¬ + ∧P A P A B P A B( ) ( ) ( )

This is because measurement of A causes the observable to collapse out
of superposition and take on either state A or state ¬A: the two prob-
abilities ∧ ¬P A B( ) and ∧P A B( ) arising from subsequent measure-
ment of B do cover all possible cases arising after the outcome A, and so
their sum equals P A( ). If incompatible observables are measured in the
opposite order thenB A, there is a parallel interference δA for ob-
servable A, and no interference term for observable B.

Note that, in quantum theory, deviations from the requirements of
standard probability theory only arise for single event probabilities
(P A( ) or P B( )) because only these single-event probabilities have as-
sociated quantum interference terms. Assuming a fixed ordering of
observables thenA B (or thenB A), in quantum theory we have

∨ + ¬ ∧ ¬ =

∧ + ¬ ∧ + ∧ ¬ + − ∨ =

∧ + ¬ ∧ + ∧ ¬ + ¬ ∧ ¬ =

P A B P A B
P A B P A B P A B P A B
P A B P A B P A B P A B

( ) ( ) 1
( ) ( ) ( ) (1 ( )) 1
( ) ( ) ( ) ( ) 1

simply because each of these expressions cover all possible measure-
ments from the observables A and B (for example, the two terms ∨A B
and ¬ ∧ ¬A B in the first expression are mutually exclusive and either
one or the other must be true: in a given quantum mechanical experi-
ment – a given fixed ordering – the probabilities of these terms must
necessarily sum to 1). Rearranging, then, we see that with a fixed or-
dering of observables the identities

∧ + ¬ ∧ + ∧ ¬ + ¬ ∧ ¬ − =P A B P A B P A B P A B( ) ( ) ( ) ( ) 1 0

∧ + ¬ ∧ + ∧ ¬ − ∨ =P A B P A B P A B P A B( ) ( ) ( ) ( ) 0

(identities 5 and 6 in Table 2) must hold in quantum theory, just as in
standard probability theory.

The quantum probability model’s predictions about deviations from
probability theory depend on the compatibility of observables (there is no
such deviation for compatible observables) and the order of observables
(even for incompatible observables, deviation from probability theory
occurs only for the second observable). In what circumstances could in-
compatibility arise in people’s probability judgments? Busemeyer et al.
(2011) use the quantum theory requirement that incompatible observables
cannot be measured simultaneously to identify two circumstances in
which incompatibility can arise for events A and B: incompatibility can
arise when A and B are not known to occur together (and so a simulta-
neous assessment of their probabilities is not possible) or when A and B
must be assessed against different sets of background knowledge (and so,
again, simultaneous assessment of both is not possible). Busemeyer et al.
(2011) illustrate these circumstances using the well-known example of
Linda, from Tversky and Kahneman (1983):

Linda is 31 years old, single, outspoken, and very bright. She majored in
philosophy. As a student she was deeply concerned with issues of dis-
crimination and social justice, and also participated in anti-nuclear de-
monstrations.
What is the probability that:

Linda is a bank teller. (A)
Linda is a bank teller and active in the feminist movement. ( ∧A B)

Tversky and Kahneman found that people’s probability judgments
significantly violated probability theory in this example, with more
than 85% of participants committing the conjunction fallacy by judging

∧A B as more probable than A. In Busemeyer et al.’s model events A
(‘Linda being a bank teller’) and B (‘Linda being active in the feminist
movement’) are incompatible because first, A and B are not known to
occur together; and second, assessment of P A( ) requires background
knowledge about career prospects for college graduates, while assess-
ment of P B( ) requires background knowledge about concern for social
justice and feminist activism. Since these events are incompatible, the
quantum model allows for deviation from probability theory for these
events, just as seen in Tversky and Kahneman’s conjunction fallacy
results.

How does the quantum probability model impose an ordering on
incompatible events? If two incompatible events have a particular
causal ordering (if one event A necessarily occurs before the other event
B), the quantum model assumes that the observables A and B are
measured in this causal order. If event A happens before and in some
way causes event B, the model assumes that observable A is measured
first and B is measured second, and so there is a quantum interference
term δB associated with the caused event B but no such term associated
with the causing event A (Busemeyer et al., 2011). In cases where there
is a causal ordering between events, the quantum probability model
thus allows for occurrence of the conjunction fallacy for the caused
event B but not for the causing event A (because there is a quantum
interference term associated with the caused event B but not the
causing event A). Note that the locus of occurrence of the conjunction
fallacy in this model is not in the conjunctive probability ∧P A B( ), but
in the single probability P B( ): the quantum interference term δB asso-
ciated with that single probability can ‘move’ that probability below the
conjunctive probability ∧P A B( ), producing a conjunction fallacy re-
sponse relative to the caused event B.

If A and B have no causal ordering, Busemeyer et al. (2011) take a
different approach and assume that the most probable of the two events
is measured first when calculating the conjunctive probability

∧P A B( ): that is, if >P A P B( ) ( ) then the conjunctive probability is
measured in the order thenA B, but if >P B P A( ) ( ) it is measured in
the order thenB A. Our primary focus in this paper is on the causal
ordering of observables, and so for clarity and ease of presentation we
will typically assume that observables are ordered by cause (though we
do address the proposal that observables are ordered by probability in
Experiment 1, below).

3.1. Predictions: the conjunction fallacy

The conjunction fallacy occurs when people judge < ∧P A P A B( ) ( )
or < ∧P B P A B( ) ( ), contrary to the rules of standard probability
theory. In the quantum model, probability judgments deviate from
standard probability theory only when the observables A and B are
incompatible; for compatible events, probability judgments exactly
follow the requirements of probability theory. Given this, the main
prediction in this model is that the conjunction fallacy will be rare for
compatible events (that is, for events which are known to occur to-
gether and which are assessed relative to the same background
knowledge). Note that, even though probability judgments for compa-
tible events are assumed to exactly follow the requirements of standard
probability theory, the model does not predict 0 conjunction fallacy
occurrence for such events: instead it allows that some conjunction
errors can occur by chance for such events, due to noise in measure-
ment (Busemeyer et al., 2011). For incompatible events, by contrast,
probability judgments do not follow the requirements of standard
probability theory (interference terms arising due to incompatibility),
and so the conjunction fallacy can be frequent for incompatible events.

Assume we have two incompatible observables A and B that have a
causal order from event A to event B (where event A occurs before and
in some way causes event B). In the quantum probability model this
means that deviations from probability theory (such as the conjunction
fallacy) can only occur for the second observable (the caused event),
and cannot occur for the first observable (the causing event). In other
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words, the quantum model predicts that the conjunction fallacy will be
rare for compatible observables, and even for incompatible observables
that are causally linked, will be rare for the first causing event A (that
is, < ∧P A P A B( ) ( ) will not occur), but can only occur frequently for
the caused event B ( < ∧P B P A B( ) ( ) can occur).

In terms of Table 1, the quantum probability model predicts that, if
A causes B, the conjunction fallacy should occur rarely for conjunction-
constituent pairs in column 1 (which all involve a comparison relative
to the causing event A), and should only occur frequently for pairs in
column 2 (which involve a comparison relative to the caused event B).
This is in contrast to the predictions of the probability theory plus noise
model, which says that the fallacy should arise at approximately the
same rate for the comparisons in column 1 and 2 in that table.

3.2. Predictions: probability theory identities

A similar point applies to deviations from probability theory in the
various identities given in Table 2. All of these identitites have a value
of 0 in standard probability theory. In the quantum model, probability
judgments necessarily agree with standard probability theory when the
observables A and B are compatible; and so in this model, all of these
identities should have a value of 0 for compatible observables and will
only deviate from 0 for incompatible observables.

If observables are incompatible, then the values of these identities
depend on the ordering of observables A and B and on whether the
identity contains P A( ) or P B( ). If an identity contains a probability
expression for the first measured observable, there is no interference
term and the identity has a value of 0, as in standard probability theory.
If an identity contains the second observable, however, there is an in-
terference term for that observable, and the identity’s value will equal
the value of that term. Consider, for example, identity 2 in Table 2. This
identity contains P B( ). If observables are incompatible and B causes A,
then there is no interference term for B and identity 2 has a value of 0.
If observables are incompatible and A causes B, however, there is an
interference term for B and identity 2 has the value

+ ∧ ¬ − ∨

= ¬ ∧ + ∧ + + ∧ ¬ − ∨

= + ¬ ∧ + ∧ + ∧ ¬ − ∨

=

P B P A B P A B
P A B P A B δ P A B P A B

δ P A B P A B P A B P A B
δ

( ) ( ) ( )
[ ( ) ( ) ] ( ) ( )

[ ( ) ( ) ( ) ( )]
B

B

B

(from Eq. (10)): this identity is predicted to have a value equal to the
interference term δB.

Next consider identity 4 in Table 2. This identity again contains
P B( ). If observables are incompatible and B causes A, then there is no
interference term for B and identity 4 has a value of 0. If observables
are incompatible and A causes B, however, there is an interference term
for B and identity 4 has the value

∧ + ∧ ¬ −

= ∧ + ∧ ¬ − ¬ ∧ + ∧ +

= −

P A B P A B P B
P A B P A B P A B P A B δ

δ

( ) ( ) ( )
( ) ( ) [ ( ) ( ) ]B

B

and this identity is predicted to have a value equal to the negative of the
interference term, or in other words, equal to that of identity 2 but with
the opposite sign.

Parallel predictions hold for identities 1 and 3. These identities are
expected to have values of 0 if A causes B, while if B causes A these
identities have values equal to the interference term δA but with op-
posite signs. Note that, since identities 2 and 4 can only have values δB

and −δB when A causes B, while identities 1 and 4 can only have values
δA and −δA when B causes A, these two cases are mutually exclusive.
This means that, if identities 2 and 4 have values significantly different
from 0 for a given pair of events A and B, then the quantum probability
model requires that identities 1 and 3 have a value equal to 0 (no in-
terference term) for those events, and vice versa.

Finally, consider identities 5 and 6. Neither of these identities

contain an expression P A( ) or P B( ), and so neither expression contains
a quantum interference term. As we saw earlier, the quantum prob-
ability model thus predicts that, as long as the ordering of observables is
fixed, these two identities will always have a value of 0 irrespective of
whether A and B are compatible or incompatible, and irrespective of
whether A causes B or B causes A.

We can summarise the quantum model’s predictions for the iden-
tities in Table 2 as follows. For a given pair of events A and B, there are
three possible situations: First, A and B are compatible, in which case
the quantum model predicts a value of 0 for all identities. Second, A
and B are incompatible and A causes B, in which case the quantum
model predicts a value of 0 for all identities but 2 and 4: these two
identities are predicted to have opposite signs (one positive, one ne-
gative). Third, A and B are incompatible and B causes A, in which case
the quantum model predicts a value of 0 for all identities but 1 and 3:
these two identities are predicted to have opposite signs (one positive,
one negative). The probability theory plus noise model, by contrast,
predicts that every one of these identities will deviate from 0, and all
will have positive values.

In the next sections we describe a series of experiments testing these
contrasting predictions about the occurrence of the conjunction fallacy
and about the values of these identities. We begin by considering the
relationship between compatibility and the occurrence of the con-
junction fallacy.

4. Experiment 1: conjunction fallacies with compatible
observables

In this section we assess the occurrence of the conjunction fallacy
for compatible events. Recall that the probability theory plus noise
model predicts that the rate of conjunction fallacy occurrence for B (the
rate at which ∧A B is judged more likely than B) should follow the
difference between the average of probability estimates for ∧A B and
the average of estimates for B, and should be greater than 50% when this
difference is positive. In the probability theory plus noise model,
whether or not A and B are incompatible should have no impact on the
rate of fallacy occurrence. In the quantum probability model, by con-
trast, the fallacy should not occur when A and B are compatible, but can
only occur when they are incompatible.

We tested these contrasting predictions about the occurrence of the
conjunction fallacy using data from Experiment 1 in Costello and Watts
(2014). This experiment asked participants about the probability of
various different weather events (such as sunny, cloudy, cold, and so
on), and about the probability of conjunctions of various different pairs
of those events. We expect that these conjunctions will have a relatively
high degree of compatibility, in terms of the quantum probability
model, for two reasons. First, people have a relatively large amount of
experience with most of these conjunctions (people are familiar with
days that are rainy and cold, for example). Second, the same back-
ground knowledge seems to be important in assessing the probability of
different kinds of weather event (in assessing the likelihood that a given
day will be cloudy, for example, important background knowledge
might be the time of year, the degree of wind, the level of humidity, and
so on; in assessing the likelihood that a day will be cold, the same
knowledge is important). Since these events match the requirements for
compatibility in the quantum probability account, it predicts low con-
junction fallacy rates for these events. The probability theory plus noise
model, by contrast, predicts high fallacy rates for some of these events:
those where the average difference between ∧P A B( ) and P A( ) (or
P B( )) is small or positive. (Note that the quantum probability model
also predicts that fallacy rates will be high for events where the average
difference between ∧P A B( ) and P A( ) (or P B( )) is small, but only for
incompatible events: for compatible events the model predicts low
fallacy occurrence in all cases.)

As a check, we test the assumption of compatibility in these mate-
rials. The pairs of weather events A B, used in this experiment do not
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have a causal order (event A does not necessarily happen before event
B). Participants in the experiment, however, did give different prob-
ability estimates for P A( ) and P B( ): for each pair some individual
participants gave estimates where >P A P B( ) ( ), while other partici-
pants gave estimates where >P B P A( ) ( ). The quantum model suggests
that a participant who gave >P A P B( ) ( ) for a pair will use the ordering

thenA B when estimating that conjunctive probability ∧P A B( ), while
a participant who gave >P B P A( ) ( ) for some pair will use the ordering

thenB A when estimating that conjunctive probability. To test for in-
compatibility of a pair of events A and B we compare values of

∧P A B( ) for participants who gave >P A P B( ) ( ) (and so presumably
used the ordering thenA B) against values of ∧P A B( ) for participants
who gave >P B P A( ) ( ) (and so presumably used the ordering

thenB A). If these two sets of values for ∧P A B( ) are significantly
different, we conclude that this pair of events would be counted as
incompatible in the quantum probability model.

4.1. Participants

Participants were 83 students at the School of Computer Science and
Informatics, UCD, who participated as part of a course requirement.
Participants had not taken part in any previous studies of probability
estimation or the conjunction fallacy.

4.2. Materials

This experiment gathered estimates P A( )E , P B( )E , ∧P A B( )E ,
∨P A B( )E and P A B( | )E from 83 participants for 12 pairs A B, of weather

events. Two sets of weather events (the set ‘cloudy, windy, sunny,
thundery’ and the set ‘cold, frosty, sleety’) were used to form these
pairs. These sets were selected so that they contained events of high,
medium and low probabilities. Conjunctive and disjunctive weather
events were formed by pairing each member of the first set with every
member of the second set and placing ‘and’/‘or’ between the elements
as required, generating weather events such as ‘cloudy and cold’,
‘cloudy and frosty’, and so on. One group of participants ( =N 42) were
asked questions in terms of probability, of the form

• What is the probability that the weather will be W on a randomly-
selected day in Ireland?

for some weather event W. This weather event could be a single event

such as ‘cloudy’, a conjunctive event such as ‘cloudy and cold’ or a
disjunctive event such as ‘cloudy or cold’. The second group ( =N 41)
were asked questions in terms of frequency, of the form

• Imagine a set of 100 different days, selected at random. On how
many of those 100 days do you think the weather in Ireland would
be W?

where the weather events were as before. These two question forms
were used because of a range of previous work showing that frequency
questions can reduce fallacies in people’s probability judgments; the
aim was to check whether this question form could eliminate fallacy
responses for everyday repeated events. (We also asked people to es-
timate conditional probabilities for these events: we do not use those
estimates here).

4.3. Procedure

Participants were given questions containing all single events and
all conjunctive and disjunctive events, with questions presented in
random order on a web browser. Responses were on an integer scale
from 0 to 100 and were divided by 100 prior to analysis, and so
probability estimates were given in units of 0.01.

For every pair of weather events A B, used in the experiment, each
participant gave estimates for the two constituents A and B, and for
their conjunction, disjunction and conditional. Each participant gave
these estimates for 12 such pairs.

4.4. Results

We analysed the data from this experiment by considering the re-
lationship between average conjunction estimates and the minimum of
average constituent estimates, and by assessing the degree of in-
compatibility of the event pairs used (see Table 3). There was little
difference in fallacy rates between the ‘frequency format’ and ‘prob-
ability format’ forms of question, so for simplicity we collapse the
groups together in our analysis.

Table 3 shows the rate of occurrence of the conjunction fallacy for
the twelve A B, event pairs, the average probability estimate for the two
constituent events A and B in the twelve event pairs, and the average
probability estimate for their conjunction. Events are ordered in each
pair so that event B has a lower average probability estimate than event

Table 3
This table shows the conjunction fallacy rate for the twelve event pairs in Experiment 1. The table also shows the average probability estimate for two constituent events A and B in these
pairs, along with the average probability estimate for their conjunction, and the average difference between the estimate for the conjunction ∧A B and for the lower constituent B
(positive values for this difference indicate the occurrence of the conjunction fallacy in averaged data). Fallacy rates were reliably predicted by this difference ( = <r p0.93, 0.00001), and
fallacy rates were less than 50% in all cases where this difference was negative and greater than 50% in all cases where this difference was positive, just as predicted by the probability
theory plus noise model. Only one pair showed statistically significant evidence of incompatibility. Fallacy rates were relatively high across all pairs, and indeed were lowest for the pair
with significant evidence of incompatibility, contrary to the quantum probability model.

A B P A( )E P B( )E ∧P A B( )E ∧ −P A B P B( ) ( )E E Fallacy rate

Cold Windy 0.74 0.72 0.64 −0.08∗ 40%
Cloudy Cold 0.75 0.74 0.67 −0.07∗ 46%
Sunny Sleety∗∗ 0.39 0.24 0.18 −0.06 37%
Sunny Frosty 0.39 0.31 0.28 −0.03 49%
Frosty Thundery 0.31 0.17 0.19 0.02 51%
Sleety Thundery 0.24 0.17 0.19 0.02 58%
Cloudy Frosty 0.75 0.31 0.35 0.04 52%
Cold Sunny 0.74 0.39 0.45 0.06 54%
Windy Frosty 0.72 0.31 0.37 0.06 60%
Windy Sleety 0.72 0.24 0.31 0.07∗ 61%
Cold Thundery 0.74 0.17 0.28 0.11∗ 64%

Cloudy Sleety 0.75 0.24 0.37 0.13∗ 66%

∗ Significantly different from 0 in a one-sample t-tests(significant at the 0.005 level with no correction for multiple comparisons, significant at the 0.05 level with Bonferroni correction).
Positive values indicate that the average for ∧P A B( ) was reliably greater than the average for P B( ) (a conjunction fallacy at the average, rather than the individual participant, level).

∗∗ Significant difference between ∧P A B( ) for participants who judged >P A P B( ) ( ) and ∧P A B( ) for participants who judged >P B P A( ) ( ) (unpaired t-test, = =t p(79) 3.12, 0.0026),
suggesting incompatibility (significant at the 0.05 level with Bonferroni correction).
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A. The table also shows the difference between the average estimate for
the conjunction ∧A B and the average estimate for the lower con-
stituent B: from Eq. (7) this difference predicts the rate of conjunction
fallacy occurrence in the probability theory plus noise model. The table
also shows overall conjunction fallacy rate for each pair. Pairs are
sorted in order of increasing value of the difference between con-
junctive and minimum constituent estimates. Fallacy rates were reliably
predicted by this difference ( = <r p0.93, 0.00001), just as predicted by
the probability theory plus noise model. Also just as predicted by the
probability theory plus noise model, fallacy rates were less than 50% in
all cases where this difference was negative, and greater than 50% in all
cases where this difference was positive.

As Table 3 shows, the conjunction fallacy was frequent for con-
junctions of these event pairs (typically occurring at rates above 50%,
indicating that more than half of participants produced the conjunction
fallacy). This is problematic for the quantum probability model, be-
cause these conjunctions meet the criteria for compatibility in that
model (people have a relatively large amount of experience with most
of these conjunctions – people in Ireland are familiar with days that are
cloudy and cold, or cold and sunny – and the same background
knowledge seems to be important in assessing the probability of these
different weather events) and so the conjunction fallacy should not
occur for these conjunctions. For each of the 12 pairs of weather events
A B, used in the experiment, we divided participants into two groups
(those who rated >P A P B( ) ( ) and those who rated >P B P A( ) ( )) and
carried out an unpaired t-test comparing values for ∧P A B( ) in those
two groups. Responses from participants who rated =P A P B( ) ( ) were
excluded from this analysis. Of these 12 t-tests, only one was significant
at the <p 0.01 level, with no correction for multiple comparisons; with
Bonferroni correction, this pair was significant at the <p 0.05 level, and
no other pair showed a significant difference. The fact that there was no
significant difference in values for ∧P A B( ) for the other 11 event pairs
suggests that these pairs are compatible, in line with our initial as-
sumptions. The one event pair that showed a significant difference in
estimates for ∧P A B( ) between the two groups (suggesting incompat-
ibility) also had the lowest rate of conjunction fallacy occurrence in the
experiment. This again is problematic for the quantum probability
model, which predicts the conjunction fallacy only for incompatible
events.

Taken together, these results are consistent with the probability
theory plus noise model, in that they show that fallacy rates are reliably
related to the difference between the average probability estimate for a
conjunction and the minimum of the average probability estimates for
the constituents of that conjunction. This pattern is just what we would
expect to see if the conjunction fallacy arises in individual estimates

because those estimates vary randomly around their average values.
These results give evidence against a fundamental proposal of the

quantum probability model: that the conjunction fallacy only occurs for
conjunctions of incompatible events. These results show that the con-
junction fallacy can occur frequently for conjunctions which we would
expect to be compatible. Note, however, that these results depend on a
somewhat indirect test of incompatibility. In the next section we ad-
dress this problem by examining predictions of the quantum probability
model that hold whether events are compatible or incompatible.

5. Experiment 2: Probability theory identities

In this section we assess the two models’ predictions for values of
the probability theory identities in Table 2. Recall that the probability
theory plus noise model predicts that values for these identities should
be reliably positive for all pairs of events A and B. The quantum
probability model, by contrast, predicts that, if a given pair of events
are compatible, then all identities will have a value of 0. If the events
are incompatible then the quantum model predicts that all identities
have a value of 0 but identities 1 and 3 (and identities 2 and 4) and
these identities will have opposite signs (one positive, one negative).

We tested these predictions using data from another experiment on
conjunction and disjunction fallacies (Experiment 2 in Costello & Watts,
2014). This experiment gathered 68 participants’ estimates for

∧ ∨ ∧ ¬P A P B P A B P A B P A B( ), ( ), ( ), ( ), ( ) and ¬ ∧P A B( ) for 9 dif-
ferent pairs A B, of weather events (see Table 4). As in the previous
experiment, we expect that these weather events will have a relatively
high degree of compatibility in terms of the quantum probability
model, because people have a relatively large amount of experience
with these events, and because the same background knowledge is
important in assessing the probability of these weather events.

Materials were constructed and presented just as in the previous
experiment. Half of the participants saw ‘frequency format’ questions
and half ‘probability format’ questions. As in the previous experiment,
participants were given questions containing all single events and all
conjunctive and disjunctive events, with questions presented in random
order on a web browser. Responses were on an integer scale from 0 to
100 and were divided by 100 prior to analysis, and so probability es-
timates were given in units of 0.01.

5.1. Results

Two participants were excluded (one because they gave responses of
100 to all but 4 questions and the other because they gave responses of 0
to all but 2 questions), leaving 66 participants in total. For every pair of
weather events A B, used in the experiment, each participant gave prob-
ability estimates for the two constituents A and B and for every conjunc-
tion/disjunction. For each participant we calculated the values of various
identities from Table 2 for each of the nine pairs A B, . We also measured
the degree of incompatibility between these event pairs just as in the
previous experiment, by comparing, for each event pair, the estimates for

∧P A B( ) given by participants who judged >P A P B( ) ( ) against the es-
timates for ∧P A B( ) given by participants who judged <P A P B( ) ( ).

Table 4 shows the average values obtained for the relevant identities
for each of the 9 event pairs in the experiment. For each of these pairs,
we divided participants into two groups (those who rated >P A P B( ) ( )
and those who rated >P B P A( ) ( )) and carried out an unpaired t-test
comparing values for ∧P A B( ) in those two groups (excluding re-
sponses from participants who rated =P A P B( ) ( )). None of these tests
were significant at the <p 0.01 level, with no correction for multiple
comparisons; with Bonferroni correction, no pair showed a significant
difference, and so we have no significant evidence for incompatibility
among the events in these pairs. The quantum probability model pre-
dicts that values for all identities should be 0 for compatible events. For
each identity and each event pair, we carried out a single sample t-test
comparing individual values for that identity against 0. Since there are

Table 4
This table shows the average values for various identities from Table 2, when computed
from individual participant’s estimates for each event pair A B, in Experiment 2. No pair
showed statistically significant evidence of incompatibility. The quantum probability
model predicts that these identities should have a value of 0 when events A and B are
compatible. When events are incompatible, the quantum model predicts that identities 1
and 3, and identities 2 and 4, should have values of opposite signs (one positive, one
negative). The probability theory plus noise model predicts that both of these expressions
will have a positive value across all pairs of events (around the value of the error rate d).

A B Identity

1 2 3 4 5

Cloudy Rainy 0.13 (0.26) 0.35 (0.29) 0.43 (0.28) 0.20 (0.26) 0.57 (0.35)
Rainy Windy 0.34 (0.32) 0.27 (0.31) 0.33 (0.27) 0.39 (0.35) 0.67 (0.47)
Sunny Rainy 0.17 (0.28) 0.13 (0.25) 0.23 (0.24) 0.27 (0.30) 0.40 (0.38)
Cold Cloudy 0.34 (0.27) 0.29 (0.27) 0.23 (0.30) 0.28 (0.28) 0.58 (0.41)
Windy Cold 0.56 (0.31) 0.25 (0.24) 0.26 (0.27) 0.29 (0.29) 0.55 (0.40)
Cold Sunny 0.24 (0.28) 0.14 (0.30) 0.21 (0.32) 0.31 (0.29) 0.47 (0.44)

Cloudy Icy 0.22 (0.30) 0.21 (0.29) 0.22 (0.27) 0.24 (0.27) 0.46 (0.46)
Icy Windy 0.17 (0.28) 0.21 (0.24) 0.20 (0.21) 0.16 (0.27) 0.38 (0.38)

Sunny Icy 0.11 (0.27) 0.16 (0.27) 0.27 (0.29) 0.22 (0.27) 0.39 (0.40)
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9 event pairs, and 6 identities, this gives 45 separate t-tests. All these t-
tests were significant at least the <p 0.001 level; with Bonferroni cor-
rection for multiple comparisons, all these tests were significant at the
0.05 level (the adjusted significance level for individual tests being

=0.05/45 0.0011). Values for all identities were reliably positive as
predicted by the probability theory plus noise model and contrary to
the predictions of the quantum model.

The above analysis assumes that all pairs of events used in this
experiment are essentially compatible. Even if we assume that these
pairs are in fact incompatible, however, the results shown in Table 4
remain inconsistent with the quantum probability model. Recall that,
for a given pair of incompatible events, the quantum probability model
predicts values of opposite signs (one positive, one negative) for iden-
tities 1 and 3 and for identities 2 and 4 (see Table 2), and predicts a
value of 0 for identity 5. As Table 4 shows, however, values for all these
identities are positive, contradicting the quantum model’s prediction
and supporting the noise model.

The same difficulty for the quantum probability model arises even if
we assume that the degree of compatibility of a given pair of events
varies from participant to participant. In the quantum probability
model, the degree of incompatibility of a given pair of events A and B is
given by the values of the quantum interference terms δA and δB: when
these terms are 0 the events are compatible, when one or other term
differs from zero, the events are incompatible. Assume, for a given pair
of events A and B, that each participant i has associated quantum in-
terference terms δAi and δBi, which vary from participant to participant.
For a given participant i the value of identity 1, in the quantum prob-
ability model, is equal to δAi (see Table 2), and so across a set of n
participants the average value of identity 1 is

∑〈 〉 =δ
n

δ1
A

n

Ai

Similarly, for participant i the value of identity 3, in the quantum
probability model, is equal to −δAi and so across a set of n participants
the average value of identity 1 is

∑ − = −〈 〉
n

δ δ1 ( )
n

A Ai

The values of these two identities 1 and 3 in the quantum probability
are thus necessarily of opposite signs, irrespective of how compatibility
varies individually across participants (except in the case where
〈 〉 = −〈 〉 =δ δ 0A A ). Since for participant i the value of identity 2, in the
quantum probability model, is equal to δBi and the value of identity 4 is
equal to −δBi, exactly the same point applies to identities 2 and 4: in the
quantum probability the values of these identities must necessarily be
of opposite signs, irrespective of how compatibility varies individually
across participants (except where 〈 〉 = −〈 〉 =δ δ 0B B ). As Table 4 shows,
however, the values of all these identities are in fact positive, contra-
dicting the predictions of the quantum probability model, and following
the predictions of the probability theory plus noise model.

Finally, the value of identity 5, in the quantum probability model, is
expected to be 0 irrespective of the compatibility or incompatibility of
events A and B (because this identity does not involve any quantum
interference terms). In the probability theory plus noise model, by
contrast, this identity is predicted to have a value of +d d2( Δ ) (that is,
twice the values of identities …1 4). The values in Table 4 are all positive
and are approximately twice the values for the other identities, sup-
porting the noise model and going against the quantum probability
model.

5.2. Rates of noise

Our primary aim, in giving values for the identities in Table 4, is to
test the conflicting predictions of the quantum and the probability
theory plus noise models. It is worth noting also, however, that values
for these identities reflect in some way the average rate of assumed

noise in that model (that is, reflect the average value of the assumed
parameters d and dΔ ). The average noise rate suggested by these
identities (around 0.25 in Table 4) seems, however, to be unreasonably
high: in simulations fitting the model to conjunction fallacy results from
(Fisk & Pidgeon, 1996), we found the best match with lower noise rates
of around 0.1 (Costello & Watts, 2017). One possible reason for the
relatively high rate of noise suggested by the average values for iden-
tities …1 4 comes from the fact that the frequency distribution of values
for these identities is significantly skewed (see Fig. 1). This skew means
that the average is not an accurate indication of the central tendency of
this distribution: the distribution’s central tendency is better reflected
by its median or its mode, both of which give more reasonable estimates
for the rate of noise in recall. The modal value for noise rate in this
graph is around 0.1, which is both more reasonable and more consistent
with previous simulation results. We return to this issue in our ‘simu-
lations’ section, below. In the next section we describe an experiment
testing a different set of predictions of the quantum probability model:
those connected to the causal order of observables.

6. Experiment 3: causally linked events

Recall that if two observables A and B are compatible then the
quantum probability model reduces exactly to standard probability
theory, and so predicts agreement with all probability theory identities
and no conjunction fallacy occurrence. If observables A and B are in-
compatible and are causally ordered so that A causes B in some way,
then the quantum probability model predicts that the conjunction fal-
lacy should never occur relative to causing events A or ¬A but can occur
relative to subsequent caused events B or ¬B. If the observables are
incompatible the quantum model also predicts that values of identities
involving the causing event A (identities 1 and 3) should be 0, as re-
quired by probability theory, while those involving the caused event B
(identities 2 and 4) should have opposite signs.

To test these predictions we gathered people’s estimates of prob-
ability of occurrence for a range of causally linked event pairs A B, , all
constructed so that event A occurs before event B and so that the oc-
currence of event A in some way causes (and so increases the likelihood
of) the subsequent event B.

Note that this design, where A causes B, imposes certain constraints

Fig. 1. Frequency of occurrence of different values for Identities …1 4 in Experiment 2,
grouped into ‘bins’ from − … +v v0.025 0.025 for v from −0.5 to + 1.5 in steps of 0.05.
According to the probability theory plus noise model, values of these identities represent
estimates of the underlying noise rate +d dΔ . The mean value across all these identities is
around 0.25, initially suggesting a relatively high noise rate. Note, however, that this
distribution is significantly skewed, and so this mean value is not an accurate indication
of the central tendency of the distribution: the distribution’s central tendency is better
reflected by its median or its mode. The median value of this distribution is 0.2 and the
mode is 0.1: these values suggest lower rates of noise.
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on the probability of B. To recognise that A is in some way a cause of B,
the probability of B must be higher in cases where A has occurred than
otherwise: in other words, when A causes B we have the requirement
that >P B A P B( | ) ( ). If P B( ) is already high, this requirement is hard to
satisfy: if P B( ) is already high then P B( ) cannot be much higher in cases
where A has occurred, and so a causal link between A and B will not be
seen. In other words, our experimental design, because it is constructed
to test causally linked events, tends to exclude cases where P B( ) is high.
Recall, however, that in previous experimental results (and our model’s
predictions), the conjunction fallacy occurs most frequently in cases
where P B( ) is high (and P A( ) is low). Our design will tend to exclude
such cases, and so we do not expect to see especially high conjunction
fallacy rates for all materials in this experiment.

6.1. Participants

Participants were 19 students at the School of Computer Science and
Informatics, UCD, who participated as part of a course requirement.
Participants had not taken part in any other probability estimation or
conjunction fallacy studies.

6.2. Materials

This experiment asked participants to estimate the probability of
events that could occur in the relatively near future (relative to the
experiment; the experiment took place in September 2014). Events
were grouped into 5 event-sets, with each set having two events (event
A and its negation ¬A) that would occur before and were in some way
causally linked to two other later-occurring events (event B and its
negation ¬B). All events included an explicit statement of the year in
which the event would occur, to ensure that the ordering of events was
clear to participants. Each event set also contained all 4 possible con-
junctions of these basic events (conjunctive events ∧A B, ∧ ¬A B,
¬ ∧A B, ¬ ∧ ¬A B), and also contained the disjunctive event ∨A B. For
example, in set 1 the A and ¬A events were

• The Irish Government increases taxes on cigarettes in the next budget
(October 2014)

• The Irish Government does NOT increase taxes on cigarettes in the next
budget (October 2014)

and the B and ¬B events were

• Smoking rates in Ireland decrease significantly in 2015

• Smoking rates in Ireland do NOT decrease significantly in 2015

and conjunctive and disjunctive events were constructed by placing
‘AND’ or ‘OR’ between these events. The ¬A A, and ¬B B, events in each
event-set are shown in Table 5.

6.3. Procedure

Each event-set contained 9 events in total (4 constituents, 4 con-
junctions, and 1 disjunction). Participants were asked to estimate the
probability of each of these 9 events, for all 5 event sets (giving 45
probability estimations in total). Questions were presented in a printed
booklet. On each page of the booklet there were 4 boxes, with each box
containing a statement of one of these 45 events followed by the
question

What is the probability (the chance) that the above statement will come
true? (give your answer on a scale from 0% to 100%)

Events were presented in a different random order for each parti-
cipant, with the constraint that events from the same event-set did not
occur on the same page. The booklet took about 30 min to complete. Ta
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6.4. Results

Participants gave their probability estimates on a percentage scale
going from 0% to 100%. Before analysis we transformed these estimates
to the 0 to 1 probability scale by dividing by 100. We analysed parti-
cipants responses by considering the occurrences of the conjunction
fallacy in participants’ individual responses for causing events and
consequent events (as in Table 1), and by considering the individual
values obtained for the probability theory identities of interest (from
Table 2).

For each event-set in this experiment there are 4 conjunctions
( ∧ ∧ ¬ ¬ ∧ ¬ ∧ ¬A B A B A B A B, , , ) each of which has 2 constituents.
There are thus 8 distinct constituent-conjunction pairs for each event
sets (those given in Table 1). The conjunction fallacy can potentially
occur for all 8 of these cases. Table 6 shows the rate of occurrence of the
conjunction fallacy for all eight of these cases for each event set (that is,
the proportion of participants who judged < ∧P A P A B( ) ( ) or

< ∧ < ∧ ¬P B P A B P A P A B( ) ( ), ( ) ( ) and so on, for that event-set). The
organisation of Table 6 follows that of Table 1, with conjunction fallacy
rates relative to a causing event (A) in the left column, and fallacy rates
relative to a caused event (B) in the right column. As in Table 1, the
paired left and right (causing and caused) cases in this table are pre-
dicted to have related conjunction fallacy rates in the probability theory
plus noise model, while the quantum model predicts no fallacies re-
lative to the causing event A.

As can be seen from this table, a wide range of conjunction fallacy
rates occurred in the experiment. Recall that the quantum probability
model predicts no conjunction fallacy occurrence relative to the causing
event A (the constituent-conjunction pairs in the left column), but
predicts fallacy occurrence relative to the caused event B (the pairs in
the right column). The probability theory plus noise model predicts that
the fallacy will occur in both columns at a rate linear with the con-
junction-constituent probability difference, and with the fallacy oc-
curring at a rate over 50% when this difference is positive. The model
also predicts the same overall average fallacy rate for both columns,
and predicts a positive correlation between fallacy rates in the left and
right columns.

The results seen in Table 6 go against the quantum probability
model’s predictions, and support the probability theory plus noise
model. There was no difference between the rate of fallacy occurrence
in the left column, causing-event cases (mean conjunction fallacy rate
of =SD33.7%, 25.6) and the fallacy rate in the right column, caused-
event cases (mean conjunction fallacy rate of 29.7%, =SD 18.1;

=t (19) 0.29, >p 0.1 in a paired t-test). There was a reliable correlation
between fallacy rates for paired causing-event (left column) and caused
event (right column) cases ( =r (19) 0.76, =p 0.00015), supporting the
probability theory plus noise prediction that these fallacy rates would
be positively related. There was a reliable correlation between con-
junction-constituent differences and fallacy rates in the left column
( = <r p(19) 0.85, 0.0000001)and in the right column ( =r (19) 0.70,

=p 0.0006), as predicted by the probability theory plus noise model. Of
the 14 individual cases where the conjunction-constituent difference
was positive, 9 had a fallacy rate greater than 50% (as predicted by the
noise model); all of the 26 individual cases where the conjunction-
constituent difference was negative also had a fallacy rate less than 50%
(again, as predicted by the noise model).

To test the two models’ competing predictions about the probability
theory identities in Table 2, we calculated, for each event-set and each
individual participant, the values obtained by substituting into each
identity that participant’s estimates for probabilities in that event set.
For example, for the event-set 1 (increase in taxes on cigarettes in 2014,
and subsequent decrease in smoking rates in 2015) and the identity

∧ + ∧ ¬ −P A B P A B P A( ) ( ) ( )) we calculated the value of the expression

+

−

P taxes increase AND smoking rates decrease

P taxes increase AND smoking rates do NOT decrease

P taxes increase

( )

( )

( )

for each participant. We carried out similar calculations for all other
identities in Table 2 and all other event-sets. We carried out 30 one-
sample t-tests comparing the values obtained for each identity in each
event set against 0, the value predicted for those identities in the
quantum probability model. Table 7 shows the average value obtained
for each identity in each event set, and the results of these comparisons.
In each event-set, average values obtained for all identities were posi-
tive and significantly different from 0, as predicted by the probability
theory plus noise model ( <p 0.01 in all cases). With Bonferroni cor-
rection for multiple comparisons, all but 2 of these tests were significant
at the 0.05 level (the adjusted significance level for individual tests
being =0.05/30 0.0017: all but 2 tests had p values less than this value).
The quantum probability model predicts a value of 0 for identities in-
volving the causing event A (identities 1 and 3), and values of differing
signs for identities involving the caused event B (identities 2 and 4): the
results contradict these predictions. Finally, values obtained for iden-
tities 5 and 6 were double those for other identities, as predicted by the
probability theory plus noise model and contrary to the quantum model
( <p 0.0001 in all cases).

7. Experiment 4: direct conjunction fallacy tests

The previous three experiments give a range of evidence, involving

Table 6
Conjunction fallacy rates, and average conjunction versus constituent probability differ-
ences, for each of the 8 possible constituent-conjunction pairs from Table 1 and each of
the 5 event sets used in Experiment 3. The quantum probability model predicts no con-
junction fallacy occurrence relative to causing events A and ¬A (the constituent-con-
junction pairs in the left column), but predicts fallacy occurrence relative to caused events
B and ¬B (the pairs in the right column). The probability theory plus noise model predicts
that the fallacy will occur in both columns, at a rate related to the conjunction-constituent
probability difference, with the fallacy occurring at a rate over 50% when this difference is
positive. The model also predicts the same overall average fallacy rate for both columns.

Fallacies relative to causing events Fallacies relative to caused
events

Event set Probability
difference

Fallacy rate Probability
difference

Fallacy rate

∧P A B( ) vs P A( ) ¬ ∧ ¬P A B( ) vs ¬P B( )
1 −0.14 16% −0.09 37%
2 −0.29∗ 11% −0.20 32%
3 −0.22 26% −0.01 32%
4 −0.10 16% −0.07 16%
5 −0.17∗ 5% −0.01 21%

∧ ¬P A B( ) vs P A( ) ¬ ∧P A B( ) vs P B( )
1 −0.24 26% −0.11 11%
2 −0.22 21% 0.13 16%
3 −0.27∗ 11% −0.10 32%
4 −0.17 11% −0.12 5%
5 −0.15 0% −0.12 11%

¬ ∧P A B( ) vs ¬P A( ) ∧ ¬P A B( ) vs ¬P B( )
1 0.08 63% 0.05 47%
2 0.06 58% −0.06 32%
3 0.23∗ 89% 0.26∗ 84%
4 0.08 63% 0.06 42%
5 0.08 53% 0.07 58%

¬ ∧ ¬P A B( ) vs ¬P A( ) ∧P A B( ) vs P B( )
1 0.06 26% −0.01 26%
2 0.18 68% 0.06 37%
3 0.06 58% −0.05 32%
4 −0.01 37% −0.05 21%
5 −0.02 16% −0.14 5%

Average fallacy rate 33.7% 29.7%

∗ Significantly different from 0 in a one-sample t-test (at the 0.001 level with no cor-
rection for multiple comparisons, at the 0.05 level with Bonferroni correction). Positive
values indicate a conjunction fallacy at the average, rather than the individual partici-
pant, level.
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the value of various probability theory identities and the occurrence of
the conjunction fallacy, that contradict the quantum probability model
(Busemeyer et al., 2011), and support the probability theory plus noise
model (Costello & Watts, 2014, 2016a, 2016b). One possible concern
about this evidence is that our assessment of the conjunction fallacy in
these experiments was indirect, and did not follow the approach used in
many well known studies of the conjunction fallacy, such as Tversky
and Kahneman’s Linda example. Where our experiments asked people
to assess conjunctive and constituent probabilities separately, those
studies typically present conjunctive and constituent statements to-
gether, and ask participants to rank them in order of probability. An-
other concern is that our experiments involved quite large numbers of
probability judgments and responses, and so participants’ responses
could have been distorted by effects of fatigue or loss of interest in the
task. In this experiment we address these concerns by carrying out a
direct assessment of conjunction fallacy rates in a standard probability
ranking task that took participants around 5 min to complete.

As in the previous experiment, the materials used here were de-
signed so that event A occurred before, and in some way caused, event
B. As before, this design tends to exclude cases where P B( ) is high, and
again we do not expect to see especially high conjunction fallacy rates
in this experiment.

7.1. Participants

We recruited 100 American participants via Amazon’s Mechanical
Turk (mTurk), an online marketplace for crowdsourcing tasks, including
psychological experiments. Participants had to be 18 years or older to be
eligible for participation. On average, participants were 37.48
( =SD 12.25) years old and 46% female. All participants indicated English
as their native language, except one person who declined to answer.

7.2. Materials

A set of six problems was used in this experiment. Each problem
consisted of a short scenario along with an event-set of four statements
arrayed in a vertical list. The event-set included statements for events

∧A B A B, , and one thematically related filler statement. The scenarios
and corresponding events A and B are listed in Table 8. We designed the
materials to maximally discriminate between the noise and quantum
model. In particular, event A was selected to be a cause of event B;
additionally, the statements clearly indicated that events A and B oc-
curred in temporal succession. Since A causes B and occurs before B, in
the quantum probability model A will be the first observable and B the
second observable. The quantum probability model thus predicts no
violations of probability theory relative to event A: and in particular, no
occurrence of the conjunction fallacy relative to A. The quantum
probability model does allow the conjunction fallacy to occur relative
to event B. The probability theory plus noise model, by contrast, allows
for occurrence of the conjunction fallacy for both A and B.

One potential concern with conducting research on mTurk is that
the quality of data may be lower than that of standard laboratory stu-
dies. To allay these concerns, we included a “catch” question from
Wolfe and Fisher (2013) designed to distinguish purposeful from hap-
hazard responding. The catch question describes the following scenario
then asks participants to rate the probability of a highly improbable
event on a scale of 0 to 100:

Richard is an avid skier and spends 90% of his vacations skiing.
Today he has plane tickets to Aspen, Colorado and has been looking
forward to this weekend trip for months. Unfortunately, Richard had
a bad accident in which he broke both of his legs and is in a coma.
What is the probability that Richard will go skiing this weekend?

The objectively correct answer is 0 because Richard has two broken
legs and is in a coma. One advantage of this question is that the ob-
jectively correct answer provides a basis for determining whether

Table 7
Average value (SD) for identities from Table 2, computed from participants’ probability estimates for events in the 5 event sets in Table 5. The quantum probability model predicts that
these identities should have a value of 0 when events A and B are compatible. When events are incompatible, the quantum model predicts that identities 1 and 3, and identities 2 and 4,
should have values of opposite signs (one positive, one negative). The noise model predicts positive values of + d for identities 1–4, and values of + d2 for identities 5 and 6. Values for
each identity in each event-set were compared against 0 in a one-sample t-test. Significance levels hold for all values in that row.

A B Identity

1 2 3 4 5 6

Cigarette tax Smoking 0.30 (0.35) 0.31 (0.30) 0.32 (0.18) 0.31 (0.29) 0.61 (0.38) 0.63 (0.49)
Greenhouse gas Climate change 0.36 (0.25) 0.26 (0.31) 0.22 (0.33)∗ 0.32 (0.29) 0.59 (0.37) 0.60 (0.45)

Bus tickets passenger numbers 0.48 (0.28) 0.4 (0.40) 0.31 (0.42)∗ 0.39 (0.36) 0.79 (0.46) 0.81 (0.59)
Euro champions World cup 0.41 (0.28) 0.41 (0.30) 0.39 (0.24) 0.40 (0.24) 0.81 (0.44) 0.88 (0.43)

Hurling finals 2015 Hurling finals 2016 0.48 (0.19) 0.44 (0.26) 0.31 (0.24) 0.36 (0.21) 0.79 (0.36) 0.85 (0.47)

∗ Not significantly different from 0 at the <p 0.05 level after Bonferroni correction for multiple comparisons ( =p 0.008 and =p 0.005 respectively, where the Bonferroni-corrected
significance level is =0.05/30 0.0017). All other differences were significantly different from 0 after Bonferroni correction.

Table 8
Scenarios and events A and B used in Experiment 4.

Scenario A event B event

1 Michael works as a financial advisor and enjoys reading and
doing puzzles in his downtime

Michael has been eating a pint of ice cream
for dessert on a regular basis

Michael will become overweight in the next year

2 Andrew is 32 and lives with his wife and two children, who
are 1 and 3 years old

Andrew has recently began to use steroids Andrew will be able to bench press two-thirds of his body
weight during his physical examination

3 Jason has worked as a taxi driver in New York city for the past
25 years

Jason was recently laid-off from his job Jason will have high stress in the next month

4 Stephanie is a college sophomore and will be giving a big
presentation in her biology class next week

Stephanie has been diagnosed with social
anxiety disorder in the past

Stephanie will be very nervous during her presentation next
week

5 Jerry is 60 years old and works as an electrician Jerry recently won 10 million dollars in the
lottery

Jerry will retire within the next 5 years

6 Steven is 43 years old and lives in Minnesota Steven has been diagnosed with an auto-
immune disease in the past

Steven will become sick with the flu this coming winter
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participants were attentive and taking the task seriously. Catch ques-
tions similar to the one above have been shown to separate good from
bad quality data in terms of internal consistency and replicability of
classic effects (Aust, Diedenhofen, Ullrich, & Musch, 2013).

A second causal-link task was used to assess whether event A was
perceived to be a cause of event B. In this task participants judged the
degree and direction of causation between events A and B on the fol-
lowing scale: (7) Event A is a strong cause of B; (6) Event A is a mod-
erate cause of event B; (5) Event A is a weak cause of event B; (4) Event
A does not cause event B and event B does not cause event A; (3) Event
B is a weak cause of event A; (2) Event B is a moderate cause of event A;
(1) Event B is a strong cause of event A.

A demographic questionnaire asked participants their age, gender,
race, level of education and familiarity with probability and statistics,
and whether English was his or her native language.

7.3. Procedure

Participants self-selected into Experiment 4 on mTurk. First, parti-
cipants read instructions informing them to read each scenario carefully
and rank order a vertical set of statements from most likely at the top to
least likely at the bottom by dragging and dropping the statements into
the desired order. Participants then completed a simple practice trial to
familiarise themselves with the experimental layout and ensure they
understood the instructions. The practice trial instructed participants to
rank order a vertical list of numbers from largest at the top to smallest
at the bottom. Participants could not proceed to the experiment until
they provided the correct rank order. Next, participants completed the
probability rank order task. The problems were presented in a different
randomised order for each participant. Each problem was presented on
a separate page, with the scenario located at the top and the list of four
statements arrayed vertically below the scenario. The statements were
also randomised for each participant. After completing the probability
rank order task, participants completed the causal-link task in which
they rated the degree and direction of causation between events A and
B for each problem. The order of questions for the causal-link task was
randomised and presented on a separate page. Finally, participants
completed the demographic questionnaire and were paid 20 cents for
their participation. Most participants completed the experiment in
2–6 min.

7.4. Results

15 participants failed to give the correct answer to the catch ques-
tion and were excluded from analysis. This left 85 participants in total.

Results from the causal-link task showed that participants typically
saw event A as a strong or moderate cause of event B. The mean

judgement on the ‘direction of causation’ scale was greater than 5 for
the A B, pairs in every scenario, and was significantly different from the
neutral value of 4 in every scenario ( <p 0.001 in a one-sample t-test).
Since participants typically saw event A as a moderate or strong cause
of event B, and since event A was explicitly described as occurring
before event B in each scenario, the quantum probability model pre-
dicts no conjunction fallacy occurrence relative to event A, but allows
fallacy occurrence relative to event B. The probability theory plus noise
model predicts that the conjunction fallacy can occur relative to either
event.

The conjunction fallacy occurred fairly frequently in participants’
responses. 64% of participants gave a conjunction fallacy response in at
least 1 scenario they saw, and 46% of participants gave a fallacy re-
sponse to at least 2 scenarios (out of the 6 scenarios in total). 36% of
participants did avoid the fallacy entirely, however.

The conjunction fallacy occurred more frequently for the causing
event A than for the caused event B. 48% of participants gave at least
one conjunction fallacy response relative to A, while 42% of participants
gave at least one fallacy response relative to B; 33% of participants gave
two or more conjunction fallacy responses relative to A, while 18% of
participants gave two or more fallacy responses relative to B. Table 9
shows the rates of conjunction fallacy occurrence relative to A and B for
the six scenarios used in the experiment. As this table shows, fallacy
rates were not lower for event A than event B: there were two scenarios
where participants gave significantly more fallacy responses relative to
A than to B ( <p 0.01 in McNeary’s Chi-squared test for equality of
proportions).

These results are problematic for the quantum probability model,
which predicts no fallacy responses relative to the causing event A.
Participants’ judgments of the causal link between A and B did vary,
however. It could be that the problematic fallacy occurrence for the
causing event A arose from situations where participants did not, in
fact, judge event A as definitely a cause of event B. To test this, we
carried out a second analysis where we included an individual parti-
cipant’s probability rankings in a given scenario only if that participant
judged the A event in that scenario as a ‘strong cause’ of event B (if the
participant gave a response of 7 in the causal-link task for that sce-
nario). Table 9 also shows the rates of conjunction fallacy occurrence
relative to A and B in this selected subset of responses, for the six
scenarios used in the experiment. Overall, fallacy rates were equal for
events A and B. As before, there were two scenarios where participants
gave significantly more fallacy responses relative to A than to B
( <p 0.05 in McNeary’s Chi-squared test for equality of proportions).
These results are difficult for the quantum probability model to explain.

8. Simulation of Experiments 1 and 2

The above experiments tested a series of specific contrasting pre-
dictions of the quantum and noise accounts, and gave results con-
firming the noise model’s predictions while contradicting those of the
quantum account. In this section we examine the noise model’s ability
to account for the data in these experiments more generally, by ap-
plying a Monte Carlo simulation of the model to the data from
Experiments 1 and 2.

We first wrote a computer program that simulates the process by
which, in the noise model, an individual produces probability estimates
associated with a given pair of events A and B. This ‘single-individual’
simulation program takes as input three parameters P A P B( ), ( )I I , and

∧P A B( )I (representing the ‘true’ underlying probabilities of events A B,
and ∧A B: the proportion of A B, , and ∧A B events that the ‘individual’
has seen), two parameters d and dΔ (representing the rate of noise in
that individual’s probability estimation), and one parameter S re-
presenting the sample size used in probability estimation.

The ‘true’ underlying probabilities P A P B( ), ( )I I , and ∧P A B( )I input
to this program are constrained to satisfy the requirements of standard
probability theory (so that each falls between 0 and 1, and

Table 9
Proportion of conjunction fallacy occurrences relative to causing event A ( ∧A B ranked
as more likely than A) and relative to caused event B ( ∧A B ranked as more likely than
B), for the six scenarios used in Experiment 4.

Scenario

Fallacy relative to 1 2 3 4 5 6 Overall

All pairs
Causing event A 12% 12% 25% 24%∗ 21%∗ 15% 18%
Caused event B 25%∗ 16% 14% 7% 6% 12% 13%

Only pairs where A was judged as being a ‘strong cause’ of B
Causing event A 11% 5% 30%∗∗ 18% 28%∗∗ 21% 17%
Caused event B 29%∗∗ 20% 13% 8% 6% 18% 17%

Significance of difference between causing event and caused event fallacy rates in this
scenario (McNeary’s Chi-squared test for equality of proportions).

∗ p < 0.01.
∗∗ p < 0.05.
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+ − ⩽ ∧ ⩽ +P A P B P A B Min P A P B( ) ( ) 1 ( ) ( ( ) ( ))I I I I I . All other true
probabilities ( ∧ ¬ ¬ ∧ ∨P A B P A B P A B( ), ( ), ( )I I I , and so on) are calcu-
lated from these input probabilities using the equations of standard
probability theory. This means that each single-individual simulation
program contains a set of true underlying probabilities that are fully
consistent with the requirements of probability theory.

For a given set of input parameters, this simulation program pro-
duces an estimate for some probability P A( ) by drawing a random
sample of S events from a Bernoulli distribution with a =p P A( )I
chance of returning 1 and −p1 chance of returning 0. The program then
counts the number of 1’s in this sample, with a random chance d of
miscounting (counting 1 as 0, or 0 as 1): the program’s estimate P A( )E is
equal to this count divided by the sample size S. When estimating the
probability of a combined event such as ∧P A B( ), the program uses the
same process but with parameter = ∧p P A B( )I for the Bernoulli dis-
tribution, and with +d dΔ as the chance of randomly miscounting an
item.

We use this single-individual simulation program to test the extent
to which the probability theory plus noise model can match the data
seen our experiments: matching the observed conjunction fallacy rates
for different event pairs, for example, or the distribution of probability
estimates for a given pair, or the distribution of values for the identities
as in Fig. 1. To simulate probability estimates from multiple experi-
mental participants for a given event pair A B, , we produced multiple
instances of this single-individual program, giving each instance ran-
domly-selected values for the noise parameters d and dΔ . Values for d
were selected randomly from a uniform distribution between 0 and 0.25
(based on the assumption that noise in reasoning does not occur at
particularly high rates). Values for dΔ were selected randomly from a
uniform distribution between 0 and 0.1 (based on our assumption that

dΔ is less than d). Each such instance was intended to represent an
individual participant with an individual rate of noise in recall. For
simplicity we fixed the sample size parameter S at 25 for all instances of
this program.

We also needed to give each individual instance of this program
(each individual simulated participant) values for the parameters
P A P B( ), ( )I I and ∧P A B( )I (values representing the ‘true’ observed
probability of those events). We assume that these ‘true’ values vary
from participant to participant (due to different experience with the
events in question), and so should vary from instance to instance. Since
we do not have access to these ‘true’ probabilities of these events, we
derived suitable input probabilities for a given event pair A B, using the
mean and standard deviation of probability estimates given by actual
experimental participants for that pair. For a given pair A, B, we ob-
tained M SD M SD, , ,P A P A P B P B( ) ( ) ( ) ( ) and ∧ ∧M SD,P A B P A B( ) ( ) (the means and
standard deviations of participants’ estimates for those events in
Experiments 1 or 2). For each instance of our program (each simulated
participant), we drew a random sample EA from a Gaussian distribution
with parameters M SD,P A P A( ) ( ), a random sample EB from a Gaussian
distribution with parameters M SD,P B P B( ) ( ), and a random sample ∧EA B
from a Gaussian distribution with parameters ∧ ∧M SD,P A B P A B( ) ( ). We
then transformed these sample estimates to underlying ‘true’ prob-
abilities, using the expressions

=
−
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where d and dΔ represent the values of the noise parameters for the
current simulated participant (the current instance of the program). To
ensure that these ‘true’ probabilities were consistent with the require-
ments of probability theory, if the obtained value for ∧P A B( )I was
greater than the minimum of P A( )I and P B( )I , or was less than either 0

or + −P A P B( ) ( ) 1I I (and so was inconsistent with probability theory’s
requirements), we adjusted ∧P A B( )I to the closest value that satisfied
these requirements.

These expressions for P A P B( ), ( )I I and ∧P A B( )I represent the in-
verse of our expressions for the average value of a noisy probability
estimate (Eqs. (3) and (5)), and so with these input probabilities the
average estimate produced by a given simulated participant should
equal the original sampled values EA EB and ∧EA B for that participant.
Since these sampled values E E,A B and ∧EA B are drawn from Gaussian
distributions with Means and Standard Deviations matching those seen
in the experiments, this simulation procedure produces a set of simu-
lated participants (individual instances of the simulation program) with
different noise rates d and dΔ and with different ‘true’ probabilities
P A P B( ), ( )I I and ∧P A B( )I , but for which the Mean and Standard De-
viation of estimates for some probability P A( ) across these simulated
participants should agree with the observed Mean and Standard De-
viation for estimates for P A( ) given by actual participants in the ex-
periments.

8.1. Simulation results

We tested this simulation by applying it to experimental data from
the combined set of 21 event pairs from Experiments 1 and 2 (the 12
A B, pairs listed in Table 1, plus the 9 pairs in Table 4).3 For each pair
we generated 10,000 instances of the simulation program (10,000 si-
mulated participants) with randomly selected values for parameters d
and dΔ , with the sample size parameter set at 25, and with input
probabilities drawn from Gaussian distributions with Means and SDs of
participants’ probability estimates for the event pair in question. Each
of these instances generated individual probability estimates

∧ ∧ ¬p A p B p A B p A B( ), ( ), ( ), ( )e e e e , and so on. We compared the Means
and SD of these simulation estimates against the Means and SDs of
participants estimates in the experiments. For each instance we re-
corded whether these estimates produced a conjunction fallacy
( ∧p A B( )e greater than p A( )e or p B( )e ): we compared the simulated
conjunction fallacy rate for each event pair (the percentage of instances
that produced a conjunction fallacy) with the observed fallacy rate for
that pair in the experiments. For each instance we also calculated va-
lues for identities 1–4 (values which, in the noise model, represent an
estimate for the noise parameter d): the distribution of values for these
identities across the full set of pairs was compared with the observed
distribution of these values seen in the experiments.

Across all these event pairs there was little difference between
participants’ average estimates for P A P B( ), ( ) and ∧P A B( ) and the
simulation’s average estimates (Root Mean Squared Difference between
experimental and simulated probability estimates was 0.03, correlation
between experimental and simulated probability estimates was

= <r p0.99, 0.00001). Similarly, there was little difference between the
SD of participants’ estimates for P A P B( ), ( ) and ∧P A B( ) and the SD of
simulated estimates (RMSD between experimental and simulated SD
was 0.04, correlation between experimental and simulated SDs was

= <r p0.27, 0.05).
Across all event pairs there was little difference between partici-

pants’ conjunction fallacy rates and the simulation’s fallacy rates: on
average, the simulated fallacy rate for a given pair differed from the
observed fallacy rate by around 7 percentage points (the average ab-
solute difference between experimental and simulated fallacy rates was
7.2 percentage points), and there was a reliable correlation between
observed and simulated fallacy rates ( = =r p0.64, 0.0016).

The distribution of simulated values for identities 1–4 is shown in
Fig. 2. This distribution had a form similar to that seen for values for

3 We do not apply this simulation to Experiments 3 and 4 because Experiment 3 does
not provide enough data to confidently estimate SD values (which are required for the
simulation) and because Experiment 4 does not provide probability estimates or SD va-
lues.
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these identities in Experiment 2 (see Fig. 1): both distributions are
noticeably skewed to the right with a tail of values falling below 0.
Despite the noise rate d being constrained to fall between 0 and 0.25 for
all simulated participants, values for d estimated from identities 1–4 in
this simulation could fall below 0 or above 0.5, purely due to random
variation in estimates (just as seen in the results from Experiment 2).

These simulation results show that this set of simulated ‘normative
but noisy’ participants produce probability estimates that match the
patterns seen in people’s probability estimates in our experiments
(agreeing with people in terms of the Means and SDs of estimates, in
terms of the rate of conjunction fallacy occurrence, and in terms of the
distribution of values for identities 1–4). It is important to stress that
every ‘participant’ (each individual program instance) in this simula-
tion was constrained to have a set of ‘true’ underlying probability va-
lues that were fully consistent with all the requirements of standard
probability theory (that were fully normative). This simulation shows,
in other words, a set of simulated participants who are fully normative
in their underlying ‘true’ probability representations (but subject to
random noise), can give an accurate account of the general patterns of
response seen in our experiments. In particular this simulation shows
that random noise in an otherwise normatively correct reasoning pro-
cess can produce deviations from the requirements of probability theory
(in terms of conjunction fallacy occurence and in terms of values for
identities 1–4) that match the deviations seen in our experimental re-
sults.

9. General discussion

We can draw a number of specific conclusions from the results of
these 4 experiments. First, these results give strong evidence against the
quantum probability model’s predictions about the relationships be-
tween people’s probability estimates (that is, about the values of
identities formed from those estimates). That model predicts that, when
people’s probability estimates are combined in the identities shown in
Table 2, the resulting values for most of those identities will be 0 (ir-
respective of the compatibility or incompatibility of events). This is
because, even for incompatible events, most these identities will not
involve any quantum interference term and so will have values of 0 as
required by standard probability theory. For incompatible events, two
of these identities will involve interference terms and so will have non-
zero values. For these identities the quantum model predicts values of
opposite signs (because these two identities both involve the same
quantum interference term, but with opposite signs). Contrary to these
predictions, the results show that when people’s probability estimates
are combined in these identities, the values obtained are reliably

positive for all identities and all event pairs: no identities have values
equal to 0, and no values have opposite signs. This is contrary to the
quantum model, but is just as predicted by the probability theory plus
noise model.

The results also give evidence against the quantum probability
model’s account of the conjunction fallacy in people’s probability esti-
mates. That model predicts that, when event A in some way causes
event B, the conjunction fallacy should only occur relative to the caused
event B and should never occur relative to the causing event A. This is
because, in the quantum probability model, the conjunction fallacy
arises as a consequence of quantum interference effects, which only
occur for the caused event B. Contrary to this prediction, results from
experiments studying conjunction fallacy rates for events specifically
designed so that A in some way causes B show that the conjunction
fallacy arises just as frequently for causing events as it does for caused
events. This is just as predicted by the probability theory plus noise
model.

It is important to note, however, that conjunction fallacy rates were
not especially high in these events overall (as a necessary consequence
of the causal design). This may leave the way open for some extension
of the quantum model (possibly involving noise) to account for con-
junction fallacy occurrence in both causing and causal events. Such an
extension would face two serious challenges. First, to explain why fal-
lacy rates are approximately equal in causing and caused events in our
experiments, an extended quantum model would need to somehow
counteract the effect of the quantum interference term (which applies
only to caused events) to produce the observed equality. Second, to
explain why identities 1 and 3 (and 2 and 4) have positive values for all
events in our experiments even though the quantum model predicts that
they will have opposite signs, such an extended model would need to
reverse the effect of the quantum interference term for one identity
while leaving the effect unchanged for the other identity. It is not clear
to us how such an extension to the quantum model can be produced.

These results support, or at least do not contradict, our theoretical
proposal in the probability theory plus noise model, which is that
human probabilistic reasoning is based on a fundamentally rational
process (one that follows frequentist probability theory) that is subject
to random noise. This model’s specific predictions about the rate of
occurrence of the conjunction fallacy and about the values of our var-
ious probability theory identities were reliably confirmed in our 4 ex-
periments, and a computer simulation of the model closely matched
people’s responses in those experiments in terms of Mean and SD of
probability estimates for single and conjunctive events, in terms of rate
of conjunction fallacy occurrence, and in terms of the distribution of
values for these probability theory identities.

It is important to stress that, in making this theoretical proposal, we
are not suggesting that people are consciously aware of the equations of
probability theory when estimating probabilities. That is clearly not the
case, given the high rates of conjunction fallacy occurrence in people’s
judgments for some events. Instead we propose that people’s prob-
ability judgments are derived from a ‘black box’ that estimates the
probability of an event by retrieving (some analogue of) a count of
instances of that event from memory. Such a mechanism is necessarily
subject to the requirements of set theory and therefore embodies the
rules of probability theory.

It is equally important to stress that we are not suggesting that
people’s probability estimates are themselves rational. Again, this is
clearly not the case: there is very extensive evidence demonstrating that
people’s probability estimates are systematically biased away from the
requirements of probability theory. We argue that these biases are a
consequence of the influence of random noise on the probability esti-
mates generated by an underlying rational process. While this noise is
random, it has systematic, directional effects: for example, our noisy
model’s expected averages for probability estimates are systematically
biased away from the ‘true’ probability values, in a way that seems to
match the biases seen in people’s estimates.

Fig. 2. Frequency of occurrence of different values for Identities …1 4 in the simulation,
grouped into ‘bins’ from − … +v v0.025 0.025 for v from −0.5 to + 1.5 in steps of 0.05. The
distribution of these values follows the pattern of distribution of these values in the
Experiments (compare with Fig. 1), showing a noticeable rightward skew and the oc-
curence of a tail of values less than 0. The mode of this distribution was 0.1, the median
0.14, and the average 0.19.
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Finally, we must be clear that we do not propose this model as a
fully-complete and final account of probabilistic reasoning. Instead, we
see this model as one step in a series of approximations which will,
hopefully, describe probabilistic reasoning in increasing detail and
precision. As such, the model is clearly open to criticism. Some criti-
cisms have already been presented (see Crupi & Tentori, 2016; Nilsson,
Juslin, & Winman, 2016) and addressed (see Costello & Watts, 2016b).
Further possible criticisms are worth addressing here. The first concerns
the model’s parameters d and dΔ , representing the rate of random error
in the frequentist counting process behind probability estimation. This
noise rates are an assumption of the model: it seems relatively rea-
sonable that there would be random error in the cognitive processes of
probability estimation, but we have no direct evidence that such
random error actually occurs. Our attempt to estimate noise rates via
values of the identities …1 4 is quite indirect: one aim for future work is
to investigate the rate of noise in probability estimation more directly.

A second criticism concerns order effects in sequential judgment.
Recall that one of the contributions the quantum probability model
makes is to provide an account for order effects in people’s judgments,
where, for example, people give one value for P A( ) when asked ques-
tions in the order P A( ) and then P B( ), but a different value when asked
in the order P B( ) and then P A( ). The probability theory plus noise
model clearly does not account for, and is not intended to account for,
such sequential effects: it assumes each probability estimate is a single
judgment (produced by sampling a random set of items from memory
and counting the proportion of A’s in that sample) that is independent
and separate from all other judgments. There are various ways in which
the noise model can extend to address sequential judgment effects. One
way would be to introduce the possibility of error in the production of
random samples, whereby items that have recently been used are
‘primed’ and so having a higher chance of being accidentally included
in such a random sample. Such an extension to the sampling process
would allow the estimate given for some probability P A( ) to be influ-
enced by judgment order in a natural way, within the overall frame-
work of approximation that the probability theory plus noise model
provides. Another aim for future work is to extend the model in this
way (by providing a more accurate approximation of the processes of
random sampling in sequential judgments).

Finally, a third criticism concerns the role of ‘inductive confirmation’
in the conjunction fallacy. As we noted earlier, Tentori et al. (2013)
provide experimental evidence suggesting that the degree of inductive
confirmation between the constituents of a conjunction (or between
some framing scenario and one of those constituents) is the prime de-
terminant of conjunction fallacy occurrence. This ‘inductive confirma-
tion’ proposal clearly goes against our model’s account, in which the
conjunction fallacy arises due to regression in conjunctive probability
judgments (caused by purely random noise), and in which inductive
confirmation plays no explicit role. As we noted earlier, this inductive
confirmation account is somewhat controversial, with both Busemeyer
et al. (2015) and Costello and Watts (2016b) pointing to various ex-
perimental evidence against this account, and with Costello and Watts
(2016b) showing that Tentori et al.’s ‘inductive confirmation’ results can
arise in the probability theory plus noise model, at least for a certain
range of values for the noise parameters d and dΔ . This last result, while
it shows that the noise model is at least potentially consistent with
Tentori et al.’s results, is to some extent unconvincing without some
theoretical justification for these noise parameter values. An aim for
future work is to investigate the inductive confirmation account more
fully both in terms of its experimental predictions and, more specifically,
in terms of theoretical motivation for the range of noise parameter va-
lues that produce ‘inductive confirmation’ results in the noise model.

More generally, our proposal has broader implications for research
on patterns of bias in aspects of people’s probabilistic decision-making.
A common pattern in such research is to identify a systematic bias in
people’s probability estimates, and to then take that bias as evidence
that people do not reason via the rules of probability theory but instead

use some alternative, normatively incorrect, heuristic process. The
conjunction fallacy is a major locus of this pattern. Our results, how-
ever, suggest that this leap from an observed bias to an inferred heur-
istic (motivated by, and intended to explain, that bias) is premature.
This is because random noise in reasoning can cause systematic biases
in people’s responses even when people are using normatively correct
reasoning processes, and so there is little need to propose an alternative
heuristic to explain those biases (see Budescu, Erev, & Wallsten, 1997;
Erev et al., 1994, for similar arguments). To demonstrate conclusively
that people are using heuristics, researchers must show that observed
biases cannot be explained as the result of systematic effects caused by
random noise.

This position leads to a particular view on the motivation for al-
ternative theories of probability estimation, such as the quantum
probability model. It seems to us that such accounts are motivated by
the assumption that the observed biases and errors seen in people’s
probability judgments cannot be explained by probability theory. This
motivation arises because probability theory is the normative model
against which these biases and errors are assessed. If researchers had
not taken those biases and errors as evidence that people don’t reason
using probability theory, they would have had no reason to propose
those alternative accounts. However, our model suggests that these
biases do not, in fact, count as evidence that people don’t reason using
probability theory. Such alternative models thus lose their fundamental
motivation: there is no reason for “moving” from probability theory to
those alternative accounts in an attempt to explain human probabilistic
reasoning. There is, in contrast, an underlying motivation for the
probability theory plus noise model: the probability of events in the
world necessarily follow the rules of probability theory, and our rea-
soning processes are necessarily subject to noise.

The fundamental idea in our model is that people’s process for esti-
mating probabilities follows the requirements of probability theory, and
that the systematic biases away from probability theory seen in people’s
judgments are simply the consequence of random error in that process. In
other work we’ve shown that this model can explain biases such as con-
servatism, subadditivity, and binary complementarity. We’ve also shown
that, for expressions in which this model predicts bias should be cancelled,
people’s probability estimates agree closely with the requirements of
probability theory just as predicted by the model (Costello & Watts, 2014,
2016a). Here we’ve shown further experimental evidence that supports
this model and goes against a competing formal model based on quantum
probability. Taken together, our results give evidence against the popular
idea that people estimate probabilities using heuristics that do not follow
the normative requirements of probability theory (Ariely, 2009;
Gigerenzer & Gaissmaier, 2011; Kahneman, 2011; Shafir & Leboeuf,
2002).

Supplementary material

Supplementary material including data from all 4 experiments are
available online in the Open Science Framework repository, at https://
osf.io/gz29m/.
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