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Abstract: Real-time prediction of free-surface elevation is necessary for a variety of applications.
Assuming a Gaussian wave field, the wave spectrum can be used to calculate the statistically-
optimal predictor, for a given prediction configuration (i.e. for a given combination of measure-
ment instants and spatial locations, relative to the instants and locations where and when the
wave is predicted). More specifically, the optimal predictor is linear, and its coefficients need
only be updated as the wave condition evolves. This spectrum-based prediction (SBP) approach
encompasses, in a unified theoretical framework, both “time-series” and “spatially-distributed”
prediction configurations. In this paper, the validity of the SBP theoretical framework is tested
against real-sea wave data, which originate from a measurement campaign using an Acoustic
Doppler Current Profiler (ADCP), and consist of free-surface elevation time series, at the corners
and centre of a 25m-by-25m square. The directional wave spectra, corresponding to the sea states
where the time series are provided, have also been calculated. The empirical SBP accuracy,
obtained by applying the SBP in the real-sea time series, is assessed in various sea conditions
and prediction configurations, and compared with the theoretical SBP accuracy, evaluated based
on the wave spectra. Although the ADCP measurement layout is clearly not ideal for the purpose
of wave forecasting, empirical results are physically and statistically consistent, and show good
agreement with theoretical results, thus supporting the relevance of the SBP framework.
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1. INTRODUCTION The two categories of methods are hereafter termed
“spatially-distributed” and “time-series” techniques, re-
spectively.

Real-time prediction of sea surface elevation has received . )

significant interest in the past 20 years, see Abusedra A recent study by Mérigaud and R{HSWOOd (2918) con-
and Belmont (2011). Applications include the detection of 51.ders the geperal problerp of the statls.tlcall'y—optlmal.pre-
quiescent periods for safe marine operations, as reviewed d}ctor for a given Predwﬁlon cgnﬁguratlgn, l.e. f.OT a glven,
by Giron-Sierra and Esteban (2010), and real-time optimal cl.lscrete set of. obser.vatwn points (at dnfferent instants in
control of wave energy converters (WECs) to improve time and possibly different spatial locations) used to pre-

power capture, as investigated by Fusco and Ringwood dict the wave elevation at a given, discrete set of prediction
(2010). points. Assuming stationary Gaussian waves, and for a

) ) given prediction configuration, Mérigaud and Ringwood
Two main approaghes are generally considered for short- (2018) show that the optimal predictor is linear, and that
term wave forecasting: its coefficients can be calculated from the wave spectrum,

e methods based on spatial prediction of wave eleva- assuming that the latter is known.

tion, through physical or stochastic propagation mod-  Several characteristics make the method (hereafter termed
els, requiring observations in the vicinity of the point  the spectrum-based predictor, or SBP) theoretically at-
of interest, see e.g. Belmont et al. (2014); Abusedra  tractive. Firstly, under the assumption of a stationary,
and Belmont (2011); Naaijen and Blondel-Couprie  Gaussian wave field, and assuming perfect knowledge of
(2012); the wave spectrum, the SBP is statistically optimal (in a
e methods using only past measurements at the point  mean-square error sense) for a given prediction configu-

of interest, thus treating the wave elevation as a time  ration. Secondly, the SBP handles in a unified framework
series, as in Fusco and Ringwood (2010).
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both spatially-distributed and time-series approaches. Fi-
nally, instead of requiring identification of prediction co-
efficients based on a long dataset, the SBP directly makes
use of wave spectrum information. However, the practical
applicability of the SBP remains to be demonstrated, since
Mérigaud and Ringwood (2018) only show theoretical re-
sults - using idealised spectral formulations as examples.

A scientific wave measurement campaign was run in 2017
by University College Dublin, deploying state-of-the-art
ADCP technology, off Inis Medin, Co. Galway, off the
West coast of Ireland, with the aim of recording extreme
wave conditions, similarly to the 2015 campaign reported
by Flanagan et al. (2016). The bed-mounted, Sentinel V
ADCP! has 5 acoustic sensors, forming 5 beams along
which echo intensity and particle velocity are recorded.
ADCP measurements have been used to reconstruct wave
elevation time series at the five points, formed by the beam
intersections with the ocean surface. Besides, half-hourly
directional wave spectra have been estimated from the
ADCP measurements.

The ADCP layout is not ideal for the purpose of wave
prediction, for two main reasons:

e As calculated in several studies using different meth-
ods (Abusedra and Belmont (2011); Mérigaud and
Ringwood (2018); Naaijen et al. (2014)), a long fore-
cast horizon necessitates that measurements are taken
far up-wave with respect to the point of interest
(typically, several hundred meters for a 1-min time
horizon, the exact ratio depending on the maximum
group velocity present in the wave spectrum). In
comparison, the maximum distance between two mea-
surement points of the ADCP is 40m;

e The examples provided by Mérigaud and Ringwood
(2018), for 3D wave fields, seem to indicate that, even
with sharply concentrated spectra, directional spread-
ing affects significantly the quality of the forecasts
obtained using spatially-distributed measurements.
More specifically, accurate forecasts would require a
large number of up-wave measurement points (typ-
ically more than 10) to capture the wave direction-
ality. In contrast, the ADCP layout consists of five
measurement points only.

Nevertheless, the data obtained from the ADCP measure-
ment campaign contain good-quality real-sea wave time
series, along with the directional wave spectra for the sea-
states where those measurements were recorded. There-
fore, although not ideal, the dataset resulting from the
campaign provided a valuable opportunity for the authors
to investigate the SBP practical applicability. The objec-
tive of this study is not to promote the use of ADCP as a
wave forecasting set-up, but merely to check the validity
of the theoretical framework proposed by Mérigaud and
Ringwood (2018), against an appropriate real-sea dataset.

The remainder of this paper is organised as follows: the
SBP approach is detailed in Section 2, and the ADCP
measurement layout and the resulting wave dataset are
described in Section 3. Sample experimental results are
shown in Section 4. Finally, conclusions are drawn in
Section 5.

L http://www.teledynemarine.com/rdi/

2. SPECTRUM-BASED PREDICTION
2.1 Wawve spectrum and space-time correlation function

Assume a Gaussian, stationary, homogeneous and ergodic
random wave field - which, see for example Ochi (2005),
excludes severe storms and shallow water conditions. The
waves are characterised by a directional spectral density
function S(w,d), where w denotes the frequency and 6
denotes an angle relative to a reference direction.

For waves with a given frequency w, the wave dispersion
equation defines how w and the wave number k are related
to each other. In the general case, for intermediate water
depths, the dispersion relation is written as:

w? = gk tanh(hk) (1)
where g is the acceleration due to gravity and h the water
depth. In practice, Eq. (1) defines an implicit function

k(w), which can be numerically evaluated for any arbitrary
w.

Consider the random experiment of measuring the wave
elevation, 7, at two different times (¢; and t3) and two
different locations (x; and x2). By definition of a Gaus-
sian field, the two measurements are jointly Gaussian.
Furthermore, because of the stationarity and homogene-
ity assumption, the covariance of the two measurements,
E[n(x1,t1)n(x2,t2)], only depends on the relative location
and relative instant of the two measurements. More specif-
ically, denoting r = x5 — x; as relative spatial coordinates,
and 7 = ty — t; as the relative measurement instant, the
space-time covariance function can be derived from the
directional spectrum as follows - see de Boer (1969):

Ry,(r,7) = /d@/de(w,Q) cos[k(w)r.ug — wr] (2)
—T 0

where up is the unit vector with direction 6. (2) is
the 3-dimensional equivalent of the well-known Wiener-
Khinchin theorem, see e.g. Ochi (2005).

In summary, the covariance of any given pair of measure-
ments, taken at two different instants and locations, can
be derived from the wave spectrum using (2).

2.2 Statistically-optimal predictor

Consider:

e a finite, discrete set of M wave observations, taken at
various points in space and time, together forming a
multivariate, Gaussian random vector, denoted p;

e a finite, discrete set of N wave unknown values, taken
at various points in space and time, together forming
a multivariate, Gaussian random vector, denoted q.

The prediction problem consists of calculating the best
estimate for q, using observations p. Define

(3

and (r;,t;) the space-time coordinate of the i-th random
component of v. v is a multivariate Gaussian random
vector. Its mean is Ogm+n~ and its covariance matrix, noted
Yv, can be derived from the correlation values between
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any pair of points in time and space, i.e. 3yv; ; = Ryp(r; —
r;,t; —t;) calculated using (2).

Yv can be written as:
Zvv — (gqq 2leP) (4)
pPq ~pp

where Xgp = EIT)q. The conditional distribution of q|p is
multivariate Gaussian (see for example Eaton (2007)) and,
using pp = g = 0, its mean is:

Hqlp = Equ{,éP (5)
and its variance is:
qup =3gq — Equggzpq (6)

The best predictor of g, in a least mean-square sense, is
given as q = [iqg|p-

For a stationary, homogeneous wave field, the covariance
of observation and prediction points only depends on
their relative position in time and space; in other words,
Yvij = Rpy(r; — ryt; —t;). Hence, the prediction
matrix, Q := EqpX,}, which maps M observed values
to N predicted values, also depends solely on the relative
position of observation and prediction points.

Define a measurement configuration as the relative spatial
and temporal coordinates of the components of p and q. If
the measurement configuration is constant, the prediction
matrix, Q, needs only be computed once for a given
sea condition, and thus needs only be updated as the
wave spectrum evolves significantly, for example every 30
minutes. Therefore, the only operation to be carried out
in real time is the matrix multiplication q = Qp.

For example, consider an experiment where 7 is measured
at a location X,ns to predict n at another location Xpreq.
The sampling time is At and the prediction is carried out
every At seconds. At the k' instance of the prediction, at
kAt, the observations are the latest M measured values of
N at Xobs, 1.6. P; = N(Xobs, 1AL) for i = k — M + 1,..., k.
The predicted values are the wave elevation at x,cq over,
say, the next N sampling instants, i.e. q; = 7(Xpred, jA?)
for j =k+1,...,k+ N. In such an experiment, the relative
spatial and temporal coordinates corresponding to the
components of p and q are the same at each instance k
of the prediction, and thus the prediction matrix Q needs
only be calculated once for a given sea state.

The theoretical mean-square prediction error €2 € RY,
which characterises the error for each component of the
predicted vector q, is given by the diagonal terms of
3gp- For a given measurement configuration, any other
forecasting method is sub-optimal with respect to the law
derived in (5).

2.8 Accounting for measurement noise

Although theoretically attractive, deriving the prediction
matrix Q from the wave spectrum requires some care
when exerted in practice. In particular, measurement noise
must be taken into account. For example, assuming that
the measurement errors are stationary white noise (i.e.
uncorrelated in time and space), with variance o2, then
the diagonal terms of 3, should be modified as ¥p;; =
R,,(0,0)+0?, instead of R,,(0,0), prior to calculating Q.

As will be exemplified in Section 4, failing to do so can
result in the predictor being exceedingly sensitive to the
presence of noise in actual measurements.

3. REAL WAVE DATASET

A state-of-the-art Sentinel V. ADCP was deployed at a site
off the West coast of Ireland 2 , throughout the winter and
spring 2017, in order to gather accurate wave measure-
ments in extreme conditions. The Sentinel V comprises 5
acoustic sensors (1 vertical beam and 4 slant beams, form-
ing a 25° angle with the vertical beam), and records echo
intensity and velocity values along each beam. A quality
control procedure, described in Flanagan et al. (2016), was
implemented in order to clean the data, and wave elevation
time series were computed, at the locations formed by the
intersection of each beam with the free-surface. The free-
surface heights are corrected for the pitch, roll, and head-
ing of the ADCP device, and converted from instrument
coordinates to geographical coordinates using standard
transformations®. The time series are organised in half-
hourly data-sets, with a 0.5s sampling time, and they are
corrected from the effect of tidal changes. Flanagan et al.
(2016) provide additional detail about the ADCP set-up.

The corresponding half-hourly directional spectral density
functions (SDF) were calculated, using the Bayesian di-
rectional spectrum estimation method (BDM) proposed
by Hashimoto (1997), and implemented in the Matlab*
DIWASP® toolbox. The DIWASP inputs are the half-
hourly surface-height measurements from the four slant
beams and their positions. For this study, SDFs have a 0.5°
angular resolution, and a 0.005Hz frequency resolution,
ranging from 0.005 to 1Hz (the latter being the Nyquist
frequency for the 0.5s sampling interval). The SDF is
denoted S(f,0). For this study, the spectra are further
smoothed through a 1h30 moving average, i.e. by averaging
S(f,0) at the k*" half-hour with S(f,6) at the k — 1*" and
k + 1*" half-hours. Thus, the spectral estimates used for
SBP are less dependent on short-term randomness.

Two particular days of data are considered for the purpose
of this study, and contrasted in Figs 1 and 2: one with
relatively low sea states (5" Jan 2017 starting 0:00am;
average significant wave height H,,, = 1.73m), and one
with significantly more energetic seas (9" Jan 2017 start-
ing 11:03am; H,,, = 4.86m on average).

The positions of the points formed by the intersection of
each beam with the free-surface are denoted VB (for the
vertical beam) and SB1, ... SB4 (for the slant beams). In
Fig. 1, the average positions of SBs 1-4 relative to VB are
indicated, along with the average directional distribution
of the wave spectral energy, for the two days considered.
A 0° angle indicates waves propagating from the North;
a 270° angle indicates waves propagating from the West
(which is the most common situation off the West Irish
coast). Waves on the 5" Jan mainly come from a South-
West direction, facing the SB3-SB2 side of the square, al-

2 West of the Aran islands; the ADCP frame has coordinates
(53°4.0285 N, —009°37.596 W)

3 ADCP Coordinate Transformation: Formulas and Calculations.
Teledyne RD Instruments (2010)

4 www.mathworks.co.uk

5 DIrectional WAve SPectra, see www.metocean.com
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though some smaller energy content appears coming from
other directions. In contrast, on the 9*" Jan, the waves are
sharply focused, coming from a westerly direction.

(a) 5th Jan

(b) 9th Jan

Fig. 1. ADCP measurement layout and average wave
directional spreading, for the two datasets.

The two datasets are further contrasted by examining Fig.
2, where the spectral frequency content (i.e. integrated
over all directions‘?l are compared for the two days. Wave
energy on the 9*® Jan is sharply concentrated around
low frequencies (7, ~ 14s), while the 5" Jan exhibits
a higher-frequency content, and bimodal characteristics.
The latter case is unfavourable from the point of view
of wave forecasting, as documented by Mérigaud and
Ringwood (2018).

4. EXPERIMENTAL RESULTS
4.1 Prediction configurations

Spatial prediction configurations are abbreviated in the
form {measurement locations} — {prediction location}.
For example, {SB1, SB2, SB3, VB} — {SB4} indicates
that n at SB4 is predicted using the latest measurements
at the four other beams.

Define 7; as the time duration over which latest ob-
served values are used for the prediction. Assume for
example {SB1} — {VB}. At instant t; = kAt, the
prediction for 7n(xvp,tr+;) is calculated, using p =
[n(xsB1, th—n1)s ---N(XsB1, tx)]T, where MAt = Tj. In all
prediction configurations presented throughout the rest of
this paper, T; = 60s (therefore M = 60/At = 120), since
a short preliminary study suggested no benefit in further
increasing 7j.

3.5 30

.| ——SDF (24h average). ——SDF (24h average).
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2. Non-directional spectra: 24-h average, and 10",
25t and 40" half-hourly spectra, on the 5" Jan (left)
and 9*® Jan (right). For readability the two plots have
different scales.

Fig.

4.2 Performance metrics

Denoting €2(iAt) the mean-square prediction error for the
time horizon iAt, the SBP accuracy is assessed for each i
using the goodness of fit (GoF) as a performance metrics:

€2(iAt)
E[n?]

where a GoF of 1 indicates perfect prediction© .

G(iAt) =1 —

(7)

For a given half-hourly data-set, and for a given prediction
configuration, the prediction matrix Q and error matrix
Yg4p are computed using (5) and (6), derived from the
half-hourly spectrum as explained in Section 2.1. The
theoretical GoF, Gy, (iAt), predicted by the SBP theory, is
obtained using (7), where €?(iAt) is given by the diagonal
terms of Xq|p and E[n?] = mq (obtained as the area under
S(w,0)). Gy, thus only depends on the wave spectrum.

The empirical GoF is estimated from the actual mean-
square error, calculated by applying SBP in the actual
time series and comparing predicted with actual values.
More specifically, denote, Vn, n, = n(nAt) at the beam
where 7 is predicted, and 74 the predicted value for
Nk+i, as predicted at instant ¢;. Then, for each time
horizon iAt, Gemp(¢At) is estimated as:

1 Ns—Nyp /~ 2
N,—N,—M+1 Zk:M (ﬁk+z‘\k — Mhti)
1 Ng—Np 2

N, 2uk=M Tk

Gemp (i) =1—

(8)
where Ny = 1800/At = 3600 is the number of samples in
a half-hourly data-set, M At = T; = 60s as explained in
Section 4.1, and N, At = T}, is the maximum time horizon
considered (20s for the results shown in this study).

4.8 Calibration of the measurement noise model

The variance mg of the wave signal, recorded at the
SBs, is slightly larger than that recorded at the VB, by
approximately 0.1m?2, due to noisier backscattering at the
SBs. As explained in Section 2.3, and assuming white
noise errors, this can be taken into account by adding the
appropriate noise variance, o2, to the diagonal terms of
Y pp corresponding to the SBs, prior to computing the
prediction matrix Q.

A short calibration study was carried out, to determine
the appropriate noise level o2 that should be modelled
in ¥,,. Using {SB1,SB2,SB3,SB4}—{VB} as a configu-
ration, Gemp, obtained assuming various levels of white
noise, is shown in Fig. 3, for the 40" half-hourly dataset of
the 9*" Jan. Gy, computed from the corresponding half-
hourly spectrum (without assuming any white noise) is
also plotted for comparison. It can be seen that, if o2 is
assumed zero or too small when computing Q, the SBP
performs poorly, yielding sometimes negative values for
Gemp- When the noise level is appropriately quantified,
(02 = 0.1m?), Gemp closely matches Gyy. Finally, over-
estimating o2 does not significantly affect the predictor

6 Note that G is a less flattering metrics than the correlation C, used
by Belmont et al. (2014) and other authors: using orthogonality of
predictions and errors under optimal forecast, it can be shown that

C = +/G(2—G), so that G = 50% corresponds to C = 87%.
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{SB1-4} — VB

----------- Theoretical GoF

—— Empirical GoF, #“=0

—— Empirical GoF, % = 107
1t | —e—Empirical GoF, o° =102
—o— Empirical GoF, +2 = 10"
—O— Empirical GoF, o2 = 1

-10 -5 o 5 10 15 20
time horizon [s]

Fig. 3. Calibration of the measurement noise model.
Configuration {SB1,5B2,SB3,5B4}—{VB}. 40! half-
hour of the 9*" Jan dataset.

performance. In the remainder of this study, o2 is modelled
at 02 = 0.2m? for the computation of Q.

In Fig. 3, note that negative time horizons correspond to
reconstructions, as opposed to proper forecasts.

4.4 Sample results

For the sample numerical results presented in this paper,
predictions at VB (the central beam) and SB4 (which is
“down-wave” with respect to all other beams) are carried
out, in each half-hourly dataset of both 5" and 9" Jan,
using three prediction configurations:

e “time-series” (TSC): {beam of interest} — {beam of
interest};

e “spatially distributed” (SDC): {all other beams} —
{beam of interest};

e “mixed” (MC): {all beams} — {beam of interest}.

Empirical results, i.e. Gemp, are shown in Fig. 4 for three
different half-hours of each day, along with Gemp averaged
over the 48 half-hours of each day. In addition, Gy
corresponding to the MC is shown for each case, assuming
no measurement noise.

The first striking feature of the results is the relatively
poor predictor performance, with both theoretical and
empirical GoFs fading out to zero after as little as 20s,
at best. This is because the five observation points are
too close to each other to provide information sufficiently
in advance, as mentioned in the introduction. In the MC,
Gemp and Gy show reasonable agreement, although the
latter, obtained assuming no measurement noise, is always
slightly better. The discrepancies are larger when 7 is
predicted at VB, than when 7 is predicted at SB4. Overall,
G'h provides a reliable upper bound to the accuracy which
can be expected, in a given prediction configuration and
wave spectrum.

Compared to the TSC, the SDC makes use of up-wave
information - and thus has a larger forecasting horizon.
This is particularly the case at SB4, due to its down-
wave location with respect to the other beams (while, in
contrast, at VB the forecasting horizon is barely improved
by measurements at other beams). Compared to the SDC,
TSC makes use of past wave observations at the beam
of interest - and thus has a GoF of 1 for negative time
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(b) 9P Jan.

— "time-series", empirical

"spatially-distributed", empirical
——"mixed", empirical
[roeeeeee "mixed", theoretical

Fig. 4. Empirical and theoretical GoF's, in various sea
states and prediction configurations. For both days,
the " half-hourly dataset is denoted “hhi”.

horizons. The MC combines the observations of both TSC
and SDC, and thus performs better for all time horizons.

With the SDC, waves can be, to some extent, predicted at
the beam of interest, using measurements at other beams.
In particular, n at VB can be better reconstructed (i.e.
predicted for negative time horizons) than that at SB4,
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because of the central location of VB. In contrast, given
the “down-wave” location of SB4, the forecasting horizon
is better at SB4 than at VB, but the reconstruction is
worse. The fact that the reconstruction GoF is not 1 can
be interpreted as a result of the wave directional spreading,
which prevents all wave information from being captured
through only four measurement points.

Comparing the variety of sea states across the two
datasets, it can be appreciated how the wave spectrum
characteristics affect the prediction accuracy. Sea states
with a broad frequency content (e.g. hh5, hh20 of the
5" Jan dataset) result in extremely poor accuracy for all
prediction configurations, while more sharply concentrated
sea states (e.g. hh35 of the 5" Jan dataset, all sea states
of the 9" Jan dataset) are significantly more favourable.

(a) Meas. layout (3 rows at resp. 60, 120 and 180m
up-wave). 7 is predicted at the centre of the diagram.

-10 0 10 20 30 40
time horizon [s]

(b) Theoretical GoF, 9*" Jan. hh40

Fig. 5. Theoretical GoF, in a hypothetical measurement
layout. Green: TSC, blue: SDC, red: MC.

Finally, Fig. 5 shows what could theoretically be achieved
with many more, far up-wave measurement locations, in
a wave spectra from the 9*" Jan. Of course, obtaining
measurements at such a large number of points would
require a different technology, such as an X-band radar, as
did Belmont et al. (2014). Unsurprisingly, the forecasting
horizon is greatly increased.

5. CONCLUSION

Overall, the ADCP measurement layout is not appropriate
to yield accurate forecasts beyond a few seconds ahead.
Schematically stated, larger distances between observation
and prediction points would be necessary to increase the
forecasting horizon, while a larger number of measurement
locations would help capturing more of the wave direc-
tional spreading.

However, empirical SBP results using the ADCP layout
are physically and statistically consistent. In particular,
using more measurement locations improves the prediction
accuracy; up-wave observations increase the forecasting
horizon; and a broader frequency content negatively affects
the prediction performance in all configurations. Finally,
in spite of noise being present in the data, reasonably
good agreement is found with the theoretically-optimal

accuracy, the latter indicating the achievable performance
with a given prediction configuration. Therefore, the SBP
theoretical framework can provide useful guidelines with
regards to the potential of specific prediction configura-
tions, in given sea spectra.
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