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Abstract. In recent years, complex network analysis facilitated the identification of universal and unex-
pected patterns in complex climate systems. However, the analysis and representation of a multiscale
complex relationship that exists in the global climate system are limited. A logical first step in addressing
this issue is to construct multiple networks over different timescales. Therefore, we propose to apply the
wavelet multiscale correlation (WMC) similarity measure, which is a combination of two state-of-the-art
methods, viz. wavelet and Pearson’s correlation, for investigating multiscale processes through complex
networks. Firstly we decompose the data over different timescales using the wavelet approach and subse-
quently construct a corresponding network by Pearson’s correlation. The proposed approach is illustrated
and tested on two synthetics and one real-world example. The first synthetic case study shows the efficacy
of the proposed approach to unravel scale-specific connections, which are often undiscovered at a single
scale. The second synthetic case study illustrates that by dividing and constructing a separate network for
each time window we can detect significant changes in the signal structure. The real-world example investi-
gates the behavior of the global sea surface temperature (SST) network at different timescales. Intriguingly,
we notice that spatial dependent structure in SST evolves temporally. Overall, the proposed measure has
an immense potential to provide essential insights on understanding and extending complex multivariate
process studies at multiple scales.

1 Introduction

Networks provide analytical capabilities to uncover struc-
ture and patterns of geophysical processes in which nodes
denote geographic locations, and links indicate connec-
tions between these locations not by spatial proximity
but rather on the basis of a similar dynamics in the pro-
cess. The strength of the connection (link) is estimated
using similarity measures that quantify the interrelation
between the two nodes. In the past, several similarity mea-
sures have been investigated in the context of climate
networks. Most prominent include Pearson’s correlation
coefficient (PCC) [1–6] mean distance [7] event synchro-
nization [8–10] spike synchronization [11], mutual infor-
mation [1,12–15] and more recently multiscale event syn-
chronization [16]. The selection of the similarity measure
is generally a function of (a) characteristics of the data
(Gaussian, non-Gaussian) and (b) nature of relationships
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(linear, nonlinear, or multiscale, etc.) between the nodes
in the networks [17]. For example, nonlinear connections
between nodes are better captured by mutual informa-
tion than the linear counterpart correlation. Malik et al.
showed that for signals having an event like structure
(non-Gaussian data) such as extreme precipitation, event
synchronization performs better than PCC, as it statisti-
cally measures the coincidence of single events and uses a
dynamic (not fixed) time delay [9,18]. Most of the meth-
ods mentioned above have been successfully applied in the
construction of networks in order to understand several
complex processes [3,9,19–23]. However, the present set
of network node similarity measures are limited to cap-
ture multiscale relationships in Gaussian data that are
prominent in many natural processes. In the past, several
studies have reported that complex systems, in general,
are governed by coupling mechanisms, and these couplings
are typically exhibited at unique temporal and spatial
scales [5,24,25]. For example, Molini et al. investigated
the presence of causality across rainfall timescales and
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showed a significant influence of coarser time scales on
the finer scaled rainfall variability [26]. Similarly, Varotsos
et al. showed the presence of information transfer from
larger to smaller time scales in the global daily mean
surface air temperature [27]. Hatla et al. and Sturtevant
et al. identified the presence of scale-emergent processes
in wetland methane exchange processes [28,29]. On sim-
ilar lines, a study [30] revealed the dynamics of the soil
moisture–temperature coupling over a wide range of tem-
poral scales (from days to several months). More recently,
Paluš showed evidence of scale-specific relationship emerg-
ing between sea surface temperature (SST) and large-scale
climate oscillations such as El Niño/Southern Oscillation
(ENSO) and North Atlantic Oscillation (NAO) [14]. These
studies strengthen the hypothesis of the presence of multi-
scale processes in geophysical systems. Casagrande et al.,
Miralles et al., Okin et al., and Peters et al. argue that
multiscale processes can act as a triggering mechanism for
extreme events, abrupt regime transition, and pattern for-
mation [30–33]. Therefore, it is essential to investigate the
process at several dominant temporal scales for improved
understanding and modeling.

Advancing towards these goals will necessitate the
development of a more detailed measure, which can
unravel underlying multiscale relationships and changes
in network structure over time. This is achieved using
wavelets that obtain a set of scales reflecting the under-
lying oscillations at different scale levels [34–36]. In the
past, wavelets based multiscale correlation and coherence
have already been successfully used to characterize the
temporal scales interaction between extreme events and
large-scale climatic oscillations [14,26,37–46].

In this study, we suggest applying a multiscale similarity
measure using wavelets and PCC for network construc-
tion. In wavelet multiscale correlation (WMC) measure,
wavelets are used to isolate the time scales of variation
and correlation to identify the node–node interactions at
these scales. This would help in systematically (1) iden-
tifying the dominant processes and the timescales they
act on, and (2) understanding how the network evolves
with temporal scales. The multiscale similarity measure is
applied to two prototypical examples and a real-time case
study of SST networks. The results are finally compared
with the results derived with simple Pearson correlation.

The essential background on wavelet is discussed in
Section 2; Section 3 is devoted to testing the perfor-
mance of the proposed approach in assessing scale-by-scale
interaction in a synthetic network of known multiscale
coupling. Following the test on synthetic data, Section 4
deals with the multiscale nature of SST. Finally, a further
discussion of wavelet cross-correlation strength and criti-
cality is provided in Section 5, together with concluding
remarks and an outlook on future developments.

2 Methodology

2.1 Wavelet transform

In order to develop WMC as a similarity measure for
network formation in analyzing complex systems, the

methods of wavelet analysis [38] and PCC are combined.
This section provides an introduction to the basic con-
cepts of the wavelet analysis relevant to this study. We
use the maximal overlapping discrete wavelet transform
(MODWT) which is a modification of the discrete wavelet
transform (DWT) [44,47]. We prefer MODWT to DWT
because pyramidal structures of coefficients limit DWT.
More clearly, in DWT, decimation is carried out so that
only half of the coefficients of the detailed component are
left at the current level, and half of the coefficients of
the smooth version are recursively processed using high
pass and low pass filters for coarser resolution levels. Due
to this decimation, the number of wavelet coefficients is
halved with each move to a coarser level [48]. This problem
may be overcome by using the stationary maximal overlap
discrete wavelet transform (MODWT) where the result-
ing gaps are filled using redundant information obtained
from the original series.

MODWT decomposes the time series into different time
scales or frequency components. The wavelet decomposi-
tion is realized using the two basis functions known as
father wavelet (ϕ(t)) and mother wavelet (ψ(t)). The gen-
eral admissibility conditions for ψ to be called a wavelet
function are ∫ ∞

−∞
ψ (t) dt = 0. (1)

∫ ∞
−∞
|ψ (t)|2dt = 1. (2)

Any function f(t) can be expressed through these basis
functions and their scaled and translated versions are

f (t) =
∑
k

sJ,kϕJ,k (t) +
∑
k

dJ,kψJ,k (t)

+
∑
k

dJ−1,kψJ−1,k (t) · · ·+
∑
k

d1,kψ1,k (t)

(3)

where J is the total number of scales to be analyzed, and
k is in the range of 1 to l (length of the time series).
The coefficients sJ,k are the approximation coefficients
and dJ,k, . . . , d1,k are the wavelet transform coefficients
at scales J to 1, while the functions ϕJ,k (t) and ψj,k (t) |
j = 1, . . . , J − 1, J} are the basis functions which are
obtained through translation and dilation of the father
(ϕ (t)) and mother (ψ(t)) wavelet function, respectively.

The mother wavelet is scaled (or dilated) by a factor of
j and translated (or shifted) by a factor of k to give

ψj,k (t) = 2−j/2ψ
(
2−jt− k

)
. (4)

Further, the values of the wavelet transform coefficients
at each of the scales and the approximation coefficients at
scale J are estimated by

dj,k ≈
∫
ψj,k (t) f (t) dt, j = 1, . . . , J − 1, J (5)
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sJ,k ≈
∫
ϕJ,k (t) f (t) dt, (6)

where the scaling coefficients sJ,k, which are also called
smooth coefficients, capture the smooth trend of the time
series at the coarse scale 2J ; and the wavelet coeffi-
cients dj,k, also known as detail coefficients, can detect
deviations from the coarsest scale to the finest one.

The original series f(t) can be reconstructed by sum-
ming up the detailed components and the smooth compo-
nents:

f (t) = SJ,k +DJ,k +DJ−1,k + · · ·+D1,k, (7)

where SJ,k =
∑

k sJ,kϕJ,k (t) , DJ,k =
∑

k dJ,kψJ,k (t) ,
. . . , D1,k =

∑
k d1,kψ1,k (t).

2.2 Wavelet multiscale correlation

Consider two time series {X(t)} and {Y (t)} with the
same length T. The WMC measure between both time
series can be estimated as [34,35]

WMC = ρ
lj
X,Y ≡

COV
lj
X,Y

Var
lj
Y Var

lj
X

, (8)

where

Var
lj
X ≡

1

T́j

T−1∑
t=Mj−1

[
dXj,t
]2
, (9)

Var
lj
Y ≡

1

T́j

T−1∑
t=Mj−1

[
dYj,t
]2
, (10)

COV
lj
X,Y ≡

1

T́j

T−1∑
t=Mj−1

dXj,td
Y

j,t
. (11)

d
(.)
j,t denotes the MODWT wavelet coefficient of variables

{X, Y } at scale lj ; T́j = T −Mj + 1 stands for the
number of coefficients unaffected by the boundary; Mj =
(2j − 1)(M − 1) + 1 represents the length of the scale lj
wavelet filter, and M is the width of the wavelet filter. The

multiscale correlation measure ρ
lj
X,Y denotes the scale-wise

correlation between X and Y at different lj scales. Like

the PCC, the value of ρ
lj
X,Y ranges between −1 and 1.

ρ
lj
X,Y = 0 implies the variables X and Y are not corre-

lated at scale lj . ρ
lj
X,Y = 1 and ρ

lj
X,Y = −1 indicate that

the variables are perfectly correlated and anti-correlated,

respectively. The values of
{
ρ
1lj
X,Y . . .ρ

lj
X,Y

}
indicate the

strength of the relation between X and Y at different
temporal scale bands.

2.3 Network construction

In the context of the application of WMC as a network
measure, consider a network Z = {N, E} containing
a set of N nodes together with a set of E edges {j, k}
which are 2 element subsets of N . Let each of the nodes
be characterized by a time series of a certain variable of
interest. The WMC between two nodes is estimated using
equation (8).

We begin the network construction at each temporal
scale by finding the WMC measure between each pair
of nodes. Since an inverse relationship is equally rele-
vant in the present application, we set the edge weight

to absolute values of WMC
∣∣∣ρljX,Y

∣∣∣ [6,49]. By doing so, we

generate the N × N matrix of ρlj values for each scale
lj. We are only interested in the highly correlated links.

Therefore, we apply a threshold to the |ρlj | values which

is the θ = 95th percentile of all |ρlj | values. This converts

the |ρlj | matrix to a binary matrix, the adjacency matrix
(A) of an undirected and unweighted network:

Am,n =

{
1, if |ρljm,n| ≥ θlj

0, else.
(12)

Here, θlj is the chosen threshold for each scale lj, and
Am,n = 1 denotes a link between the mth and nth node
and 0 denotes otherwise.

The application of the WMC as the network measure
reveals the network topology at each of the lj scales and
allows the investigation of the network at different tempo-
ral scales. In the following, we demonstrate the potential
of this proposed method with prototypical examples and
real world application with a finite number of nodes.

3 Testing WMC with synthetic data

The prototypical examples aim to test the efficacy of the
proposed WMC method over the traditional Pearson’s
correlation as an effective network reconstruction mea-
sure while dealing with multiscale processes. Following the
approach by Agarwal et al. [16], we test WMC using a set
of case studies including stationary and non-stationary
synthetic data [16]. The different scales are included as
periodic signals of different frequency. Correlated noise is
added to mimic real-world processes where stochasticity
and autocorrelation are important features. The math-
ematical details of the case studies and wavelet power
spectra are given in Table 1 and Figure 1.

Case I. We construct a synthetic network (Fig. 2)
of 30 nodes (Xi (t); i = 1, 2, . . . , 30). For each of the
nodes (Xi (t); i = 1, 2, . . . , 30) different time series
are generated by combining a 2nd order autoregressive
process (AR) and periodic signals (Tab. 1). The mathe-
matical expression for the periodic signal and time series
formulation are provided in the Table 1.

The mathematical construction of the time series
(Tab. 1) shows that 30 nodes of the network are clas-
sified into three group such that each group encom-
passes a particular cosine function (frequency). Group I:
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Table 1. Details of synthetic models. Here, f denotes a function.

Mathematical expression Other details

Periodic signals S1 = cos (2πω1) ;
S2 = cos (2πω2) ;
S3 = cos (2πω3)

ω1 = 0.4t;
ω2 = 0.09t;
ω3 = 0.01t

Refer Figure 1

Case I
(t = 1:1000)

Xi (t) = ϕ1X (t− 1) + ϕ2X (t− 2) + εt + Y1 , 1 < i<
=

10

Xi (t) = ϕ1X (t− 1) + ϕ2X (t− 2) + εt + Y2,11 < i<
=

20

Xi (t) = ϕ1X (t− 1) + ϕ2X (t− 2) + εt + Y3,21 < i<
=

30

Y1 = f (S1) ;
Y2 = f (S2) ;
Y3 = f (S1, S2) ;

Case II
(t = 1:2000)

Xi (t) = ϕ1X (t− 1) + ϕ2X (t− 2) + εt+
(Y1)t=1:1000 + (Y2)t=1001:2000

Xi (t) = ϕ1X (t− 1) + ϕ2X (t− 2) + εt+
(Y3)t=1:1000 + (Y4)t=1001:2000

Xi (t) = ϕ1X (t− 1) + ϕ2X (t− 2) + εt +
(Y5)t=1:2000

1 < i<
=

10

11 < i<
=

20

21 < i<
=

30

Y1 = f (S1) ; Y 2 = f (S2) ;

Y3 = f(S1, S2); Y 4 = f(S2, S3);

Y 5 = f(S1, S2, S3) (refer Fig. 3)

Fig. 1. The top row (a–c) shows the plot of the synthetic time series generated for network formation. Ten simulations were
generated for each group of nodes. The bottom plot (d–f) shows the wavelet power spectra for one single time series from each
of the group. The regions within the black contours denote the 95% significant values and the cones of influence denote the
extent of the boundary distortion.

node 1 to 10, group II: node 11 to 20, and group III:
node 21 to 30 encompass the cosine functions Y1, Y2,
and Y3 with different frequencies, thus, different scales.
The particular cosine functions (signal) are plotted in
Figures 1a–1c and the corresponding power spectra are
shown in Figures 1d–1f.

The ϕ1 = 2.5 and ϕ2 = 0.4 are autoregressive constants,
while εt represents white noise with the signal/noise ratio
of amplitude (SNR) = 0.90. The resultant node’s time
series have features that are often found in geophysi-
cal, hydrological, and climatic data, where auto-correlated
noise and high frequency, small-scale processes are super-
imposed on low frequency, coarse-scale processes [16,50].
Such structures are widespread in time series of seismic
signals, turbulence, air temperature, precipitation, hydro-
logic fluxes, or the ENSO. They can also be found in
spatial data, e.g., in ocean waves, seafloor bathymetry,
or land surface topography [50].

First, the network is constructed using absolute correla-
tion values of PCC applying the 95th percentile threshold
(Fig. 2a). Even though, group I (nodes 1 to 10, pink circles
in Fig. 2) and group III (nodes 21 to 30, blue circles) nodes
share a strong similarity owing to the common periodicity
(signal S1, Tab. 1) the network link does not reflect the
expected similarity (strong connections) in the dynamics.
Hence, it does not give an appropriate impression of the
connection. A similar misleading result is inferred between
the group II and group III nodes. Further, owing to the
strong self-similarity between the nodes of group III, we
observe links connecting the nodes 21–30 with each other.
However, self-similar links are absent in the group I and
group II because of the low signal to noise ratio, which
makes the underlying correlation.

Next, for the same 30 nodes, the similarity mea-

sure WMC, |ρljX,Y | (Eq. (7)), is calculated at different
timescales and the corresponding network is formed using

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 296 Page 5 of 12

Fig. 2. Network structure and significant links obtained using the (a) PCC (original scale) and (b–h) WMC at scales 1–7. A
significant link is defined when the value of the correlation is higher than the 95th percentile.

Fig. 3. Visualization of the common periodicities presents among the group of 30 nodes.

a 95th percentile threshold (Figs. 2b–2h). Out of 7 scales
considered, the links are present only at scales 2 (period
4–8) and 7 (period 128–256) owing to the common cosine
function (frequency) between group I and III (i.e., Y1),
and group II and III (i.e., Y2). Since at other timescales
no significant common information is present, we do not
see any linkage between the nodes as expected.

Case II. Here, we attempt to test the efficiency of the
proposed approach for a non-stationary signal wherein
the similarity between two different variables is chang-
ing with time. In this case, we generate three groups of
time series following a similar approach as in the previous
case except that the groups have a non-stationary rela-
tionship in terms of time. The mathematical formulation
used for the generation of the time series (case II) is given
in Table 1, and the common periodicities present between
the three groups are shown in Figure 3 for easy visualiza-
tion. Figure 3 shows that the common periodicity between
all the 30 nodes is S1 for the time period t = 1:1000 and
S2 for t = 1001:2000. Similarly, other details are intuitive
from Figure 3. The particular cosine functions (signal)

are plotted in Figures 4a–4c and the corresponding power
spectra are shown in Figures 4d–4f.

For all 30 nodes presented, initially, we create a network
using absolute correlation values of PCC (Fig. 5a) and
then WMC (Figs. 5b–5h) by applying the 95th percentile
threshold. We observe that PCC only uncovers the inter-
nal connection among a group of nodes (Fig. 5a), whereas
WMC captures the true relationship present in the signal
of the 30 nodes (Figs. 5b–5h). For instance, in Figures 5c
and 5e all 30 nodes are significantly correlated correspond-
ing to the presence of the signal S1 and S2 (Fig. 3) at
scale 2 and 4, respectively. Similarly, nodes 11–30 have a
common periodicity (S3, Fig. 3) at scale 7 hence the same
is captured in Figure 5h. As expected, all other temporal
scales do not show any significant correlation among the
nodes.

Albeit, WMC is able to capture the dynamics of the
non-stationary signal, still the time evolution pattern is
not revealed completely. Hence, we propose to break the
signal into two time windows t = 1 : 1000 and t = 1001 :
2000, respectively.

https://epjb.epj.org/
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Fig. 4. The top row (a–c) shows the plot of the synthetic time series generated for network formation. Ten simulations were
generated for each group of nodes. The bottom plot (d–f) shows the wavelet power spectra for one single time series from each
of the group. The regions within the black contours denote the 95% significant values and the cones of influence denote the
extent of the boundary distortion.

Fig. 5. Network structure and significant links obtained using the (a) PCC (original scale) and (b–h) WMC at scales 1–7. A
significant link is defined when the value of the correlation is higher than the 95th percentile.

For the time period t = 1 : 1000, the network formed
using PCC (panel I, Fig. 6) does not show any links
between the node groups even though there is a signif-
icant common periodicity between the nodes. However,
constructing a network using WMC clearly captures the
significant relationships between the node groups. For
example, at scale 2, all the node groups are connected with
each other owing to the common periodicity (S1). Simi-
larly, at scale 4, only nodes belonging to groups II and III

are linked because of the common periodicity (S2). Fur-
ther at scale 7 the significant links show the intra-group
connections which are present in group III owing to the
periodicity (S3).

Now, looking at the network formed for the time period
t = 1001:2000, the PCC-based network (panel II, Fig. 6)
does not clearly demarcate the changes in the signal,
rather this network is very similar to what was observed
during t = 1 : 1000 (panel I, Fig. 6). On the other hand,

https://epjb.epj.org/
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Panel I:  = 1: 1000 

Panel II:  = 1001: 2000 

Fig. 6. Network structure and significant links obtained using the PCC (original scale) and WMC at scales 1–7. A significant
link is defined when the value of correlation is higher than the 95th percentile. Panel I corresponds to t = 1:1000 and panel II
corresponds to t = 1001 : 2000. The few scattered links at scale 6 might be credited to the overlap/spill of information across
scales in the wavelet transform.

the network formed using the WMC measure clearly delin-
eates the changes in the connection between the node
groups. For instance, the common periodicity between all
the node groups in S2 and that is clearly captured at
scale 4. Similarly, the significant links at scale 7 between

the nodes belonging to group II and III are due to the
presence of the common periodicity (S3). The intra-group
links present between nodes 21–30 at scale 2 is due to the
presence of periodicity S1 in that group of nodes. Further-
more, few scattered links at scale 6 might be credited to

https://epjb.epj.org/


Page 8 of 12 Eur. Phys. J. B (2018) 91: 296

the overlap/spill of information across scales in the wavelet
transform. This phenomenon is more dominant at higher
scales since moving from a finer to a coarser scale the
width between the scales decreases (for more details refer
to Addison [38] and Polikar [51]).

Thus from this case study, we conclude that the WMC
measure clearly captures the non-stationary relationship
between the nodes and also clearly unravels at which scale
the changes occurred.

From the presented two case studies, it can be inferred
that the PCC is unable to capture the significant mul-
tiscale similarity between two variables, whereas the
proposed WMC categorically captures the similarity at
the specific time scales.

4 Real world application

To illustrate the applicability of the proposed multi-
scale similarity measure on real-world data, we present
the global monthly SST network at different scales con-
structed using PCC and WMC measure. Here, we have
used monthly gridded temperature data of 2◦ × 2◦ grid
resolution for the period 1979–2015. The data is provided
by the NOAA/OAR/ESRL PSD and freely available at
https://www.esrl.noaa.gov/psd/. As a preprocessing step
of the data we have removed all grid points of SST with
missing values or gaps, hence a total of 9456 grid points
are considered in this study; and further, we calculate
anomaly series by subtracting the mean for each month
from each time series.

Initially, we construct the network using absolute val-
ues of PCC similarity measure on an observed scale, and
then we begin the network construction at another tempo-
ral scale based on the WMC measure between each pair
of nodes. By doing so, we generate a similarity matrix

| ρlj | of size 9456× 9456 on a particular scale lj and apply
the θ = 95th percentile threshold to obtain the adjacency
matrix (A). In this study, the maximum scale J was taken
as 7 owing to the distortion created due to the boundary
effects of wavelet transform [52].

The comparison of the results obtained using PCC and
WMC are shown in Figures 7a and 7b–7h. We present the

95th percentile values of |ρlj | at each SST grid point to
all other grid points, which is equivalent to the number of
other nodes this node is highly correlated to (i.e., corre-
sponds to the network measure degree). Additional plots
(Figs. A.1 and A.2) that show positive and negative values
of ρlj separately are presented in the Appendix.

Analysis of the PCC-based plot (Fig. 7a) shows that
regions around the Indian and the Pacific Ocean are cor-
relating on the order of ≈0.60 as well as regions in the
North Atlantic, the plot does not reveal on what time
scales these correlations are the most prominent. It also
does not reveal whether there exists one link between all
regions of a high correlation or whether there are several
different links between these regions. This emphasizes the
need for a more sophisticated multiscale analysis measure

like the WMC as analyzing the |ρlj | values at different
scales results in far more detailed findings in the SST
patterns as described in the following.

Moving from lower to higher temporal scales we find
that there is not much significant interaction between
SST at the finer, intra-annual temporal scales (up to
4–8 months). This can be expected as we are working
with monthly anomalies and thus removed the annual
cycle from the data. However, at the 8–16 months scale
(Fig. 7e), we observe two zones with a relatively large
number of significant connections in the equatorial Pacific
and the Indian Ocean that are in accordance with the
pattern observed during the ENSO phase and the Indian
Ocean Dipole (IOD) which are known to impact each
other via the atmosphere [53–55]. When looking at the
signs of the correlation one can see that the ENSO tongue
pattern west of South America is positively correlated
with the SST pattern in the Indian Ocean (Fig. A.1e) and
both are negatively correlated with the horseshoe pattern
about the ENSO tongue (Fig. A.2e). This is the canonical
SST pattern associated with an ENSO event and the cor-
responding IOD phase that can be excited by the ENSO
event [24]. At inter-annual scale (16–32 months, Figs. 7f,
A.1f, A.2f), these patterns become more pronounced as at
least ENSO events can be predicted and act on scales of
up to 2 years [56].

At the scale of 32–64 months (Fig. 7g), the region of
high correlation in the Eastern Pacific Ocean is fading
away but coexist with a spot of high correlations on the
Northern Pacific – forming together a pattern known as
Pacific Decadal Oscillation (PDO) which has been in a
warm phase since the late 1970s, but with time inter-
vals of the cold phase, this variability is forced by Rossby
waves [57] and can be seen in our analysis. Additionally,
a new spot of high correlations around the subtropical
part of the North Atlantic Ocean appears. The latter
becomes more prominent on the 64–128 months scale
(Fig. 7h). It resembles the SST patterns that are linked
with the NAO [58] an atmospheric mode affecting SST.
This becomes even clearer when analyzing the positive
correlations (Fig. A.1h). One can see that the region in
the subpolar North Atlantic and the subtropical North
Atlantic are positively correlated, a known response of the
ocean surface temperatures to the NAO. When focusing
at the regions that have a high negative correlation with
the other nodes, the most prominent feature is the cor-
relation between the Southern Ocean around Antarctica
and the subtropical/tropical the Pacific Ocean, west of
South America. This correlation indicates what has just
been confirmed by Ferster et al. [59]: a link between SST
in the Southern Ocean and the Southern Annular Mode
(SAM) with teleconnections to ENSO events [59]. As the
SAM has a positive trend over the analyzed time period
(1979–2015), this pattern emerges on the long time scales
of several years. The positive states of SAM correlate
with negative (cooling) trends in SST in the high-latitude
Southern Ocean and positive (warming) trends within the
Southern Hemisphere sub-tropics and mid-latitudes [59].

In conclusion, it can be said that the changes in the
correlation patterns in the SST field when viewing at the
different scale regimes as well as the difference in patterns
between the positive and negative correlation strength
show the complexity of the climate system and empha-
size the importance of detecting correlations at multiple

https://epjb.epj.org/
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Fig. 7. 95th percentile of absolute wavelet multiscale correlation (WMC) values for the SST network constructed on multiscale
using the PCC (original scale) and WMC at scales 1–7. Color represents the strength of correlation on each scale.

time scales. The PCC-based plot (Fig. 7a) on the origi-
nal scale does not give the information needed to divide
between the different modes of climate variability that
are affecting SSTs in different regions and on different
timescales. But by using the WMC measure instead of
PCC, we can re-confirm known physics-based associations
such as the well-known ENSO pattern in the Pacific at
interannual scale (16–32 months, Fig. 7f), the NAO in the
North Atlantic at intradecadal scale (Fig. 7g), but also
the coupling of ENSO and IOD at interannual (Fig. 7f)
and interdecadal (Fig. 7h) scales as well as the coupling
between SAM, Southern Ocean SST and ENSO at the
interdecadal scale (Fig. 7h). These findings are vital in
(a) assigning the right temporal scales to the specific
climate phenomena, (b) improving climate and ocean
models. This implicitly affirms the validity of our approach
and furthermore shows the efficacy of the method in
detecting a variety of climate modes.

The proposed approach therefore clearly highlights
the importance of advanced detecting methods, like the
WMC, when dealing with such complex and big data, like
global SSTs.

5 Conclusion

We have introduced a novel methodology to infer multi-
scale interactions from observations of dynamical climate
systems that evolve over diverse temporal scales. The
adopted metric – WMC – relies on the direct estimation
of scale-by-scale correlations in the wavelet domain and
is formulated here as an ensemble statistics across differ-
ent temporal subsamples, with associated scale-dependent
significance levels. Using a range of prototypical situations
and a real-world case study, it is evident that the analysis
at single observational scales using Pearson’s correlation is
not enough to capture the underlying multiscale features
of complex systems with many nodes, as it is often the

case with geophysical data, and thereby resulting in poor
network reconstruction.

On the other hand, the significance of the results using
WMC shows its ability to unravel the hidden similarity
structure at different temporal scales. The obvious advan-
tages of the proposed approach over the other single scale
measures are (i) we can study the cross-scale relation-
ship among dataset and systems on different time scales,
(ii) network obtained using the WMC measure offer a
wider perspective to unravel the network scale varying
dynamics, and (iii) efficient in dealing with multiscale non-
stationary complex systems, since, as shown, the effect of
non-stationary can be handled with the help of wavelets.
On investigating global SSTs at multiscale, i.e., with the
WMC measure, new insights were obtained which had
remained hidden at the observational scale, i.e., a simple
PCC. Our findings re-confirm the known climate modes
that affect SST like the ENSO patterns in the Pacific
Ocean at inter-annual scale and the NAO that affects SST
in the North Atlantic on the intra-annual scale. We also
detect the coupling of ENSO and IOD at inter-annual and
interdecadal scale as well as the coupling between SAM,
Southern Ocean SST, and ENSO. We thereby affirm the
validity of the WMC measure to detect climate modes on
different temporal and spatial scales.

The proposed approach offers a new paradigm and pos-
sibilities for applications in other natural processes where
interactions at multiple time scales exist e.g. in neuro-
science, ecology, and economy. By studying on what time
scale the factors are related and how the network prop-
erties emerge at that time scale, we may be in a better
position to interpret the complex system and provide
accurate predictions for future conditions. As a future
work, the investigation could be extended to understand
the causal effect of different climate drivers using the pro-
posed WMC measure. This might give an understanding
of the time scale relationships, which could be used to
detect, attribute, and understand complex systems.

https://epjb.epj.org/
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Appendix

Fig. A.1. 95th percentile of positive wavelet multiscale correlation (WMC) values for the SST network constructed on multiscale
using the PCC (original scale) and WMC at scales 1–7. Color represents the strength of correlation on each scale.

Fig. A.2. 95th percentile of negative wavelet multiscale correlation (WMC) values for the SST network constructed on multiscale
using the PCC (original scale) and WMC at scales 1–7. Color represents the strength of correlation on each scale.
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