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We introduce the notion of limit-depth, as a notion similar to Bennett depth, but well 
behaved on Turing degrees, as opposed to truth-table degrees for Bennett depth. We 
show limit-depth satisfies similar properties to Bennett depth, namely both recursive and 
sufficiently random sequences are not limit-deep, and limit-depth is preserved over Turing 
degrees. We show both the halting problem and Chaitin’s omega are limit-deep. We show 
every limit-deep set has DNR wtt-degree, and some limit-cuppable set does not have a 
limit-deep wtt degree.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

Bennett [1] introduced logical depth as a way to mea-
sure computationally useful information as opposed to Kol-
mogorov random information. Bennett’s notion has the fol-
lowing natural properties: Recursive sets are not Bennett 
deep (they only contain “trivial” patterns), Martin-Löf ran-
dom sequences are not Bennett deep (they contain no pat-
terns), and Bennett depth is preserved upwards by truth-
table reductions, i.e. if set S truth-table computes some 
Bennett deep set, then S is also Bennett deep (this prop-
erty is known as the slow growth law). The canonical ex-
ample of Bennett deep vs non-deep set is given by the 
halting problem and Chaitin’s omega. The halting prob-
lem and Chaitin’s omega are Turing equivalent, yet the 
halting problem’s information can be retrieved by polyno-
mial time reductions, whereas to be useful, omega needs 
to be decompressed, and this decompression running time 
grows asymptotically larger than every recursive function. 
It is known that the halting problem is Bennett deep [1], 
and since omega is Martin-Löf random, it is not Bennett 
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deep. Although these two sets are Turing-equivalent, this 
does not contradict the slow growth law, since they are 
not truth-table equivalent. Thus the appropriate reductions 
for Bennett depth are truth-table reductions, and Turing 
reductions are too general, as Turing degrees do not pre-
serve Bennett depth.

However many results in recursion theory rely on more 
general reductions than truth table, and Turing reduc-
tions are ubiquitous in recursion theory. This motivates 
the present paper, in which we investigate what a depth 
notion à la Bennett would look like, if one chooses Tur-
ing reductions as the appropriate reductions (instead of 
truth-table). We propose a depth notion called limit-depth, 
which can be viewed as a version of Bennett depth at 
the level of Turing-reductions. For Bennett, a sequence is 
Bennett deep if for almost all its prefixes, the difference 
between time-bounded and standard Kolmogorov com-
plexity is unbounded. In this paper we follow a similar 
idea, but consider the difference between standard Kol-
mogorov complexity and Kolmogorov complexity relative 
to the halting problem. We show that for every set, this 
difference of complexities is unbounded, therefore to ob-
tain a meaningful notion, we consider sets for which this 
difference grows faster than some recursive order; we call 
such sets limit-deep. It turns out this notion satisfies sim-
ilar natural properties to Bennett depth, namely: We show 
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that sets that are random relative to the halting problem 
(a.k.a. 2-random sets), are not limit-deep. We show that 
limit-depth satisfies a slow growth law for weak truth-
table reductions, i.e. limit-depth is closed upwards for wtt 
reductions. This implies that no recursive set is limit-deep. 
For Turing reductions, we show that the slow growth law 
holds for Turing degrees: If a set A computes some limit-
deep set, then the Turing degree of A contains a limit-deep 
set.

We show that both the halting problem and Chaitin’s 
omega are limit-deep. This is in stark contrast with Ben-
nett depth (where omega is not Bennett deep), but is not 
surprising, since at the Turing reductions level, omega and 
the halting problem are equivalent, therefore it is expected 
for both to be limit-deep. This implies that limit-depth and 
Bennett depth are incomparable notions.

In [7] Moser and Stephan proved that every Bennett 
deep set is either high or DNR. Here we show limit-deep 
sets share a similar property, namely every limit-deep set 
has DNR wtt-degree.

It was shown in [7] that every Bennett deep set is high. 
We do not know if a direct analogue holds for limit-depth. 
However we show the analogy does not hold for limit-
cuppable sets, where a set is limit-cuppable if its join with 
the halting problem is Turing above the 2nd jump ∅′′ . We 
show that there exists a limit-cuppable set whose wtt de-
gree does not contain any limit-deep set.

2. Preliminaries

We use standard computability/algorithmic randomness 
theory notations see [2,8,9]. We use ≤+ to denote less 
or equal up to a constant term. We fix a recursive 1-1 
pairing function 〈·〉 : N × N → N. We use sets and their 
characteristic sequences interchangeably. The join of two 
sets A, B is the set A ⊕ B whose characteristic sequence 
is A(0)B(0)A(1)B(1) . . ., that is, (A ⊕ B)(2n) = A(n) and 
(A ⊕ B)(2n + 1) = B(n) for all n. An order function is an 
unbounded non-decreasing function from N to N.

We consider standard Turing reductions ≤T , and weak 
truth-table reductions ≤wtt (where all queries are made 
in advance) and truth-table reductions ≤tt (total wtt re-
ductions). Two sets A, B are Turing equivalent (A ≡T B) if 
A ≤T B and B ≤T A. The Turing degree of a set A is the 
set of sets Turing equivalent to A. Fix a standard enumer-
ation of all oracle Turing machines ϕ1, ϕ2, . . .. The jump 
A′ of a set A is the halting problem relative to A, i.e., 
A′ = {e : ϕ A

e (e) ↓}. The halting problem is denoted ∅′ . A 
set A is high (that is, has high Turing degree) if its halt-
ing problem is as powerful as the halting problem of the 
halting problem, i.e., ∅′′ ≤T A′ . High sets are equivalent to 
sets that compute dominating functions (i.e., sets A such 
that there is a function f with f ≤T A such that for every 
recursive function g and for almost every n, f (n) ≥ g(n)), 
i.e., a set is high iff it computes a dominating function [9].

A total function g is DNR if for every e, g(e) = ϕe(e). 
A set is of DNR degree, if it computes a DNR function.

Fix a universal prefix free Turing machine U , i.e., such 
that no halting program of U is a prefix of another halt-
ing program. The prefix-free Kolmogorov complexity of 
string x, denoted KU (x), is the length of the length-
lexicographically first program x∗ such that U on input x∗
outputs x. It can be shown that the value of KU (x) does 
not depend on the choice of U up to an additive constant, 
therefore we drop U from the notation and write K (x). 
K (x, y) is the length of a shortest program that outputs 
the pair 〈x, y〉, and K (x|y) is the length of a shortest pro-
gram such that U outputs x when given y as an advice. If 
the universal TM U is provided oracle access to the halt-
ing problem, we denote by K ′ and C ′ the corresponding 
complexities. U−1(x) denotes the set of programs p such 
that U (p) = x, U (p)[n] ↓= x means machine U on input 
p halts within n steps of computation and outputs x, and 
m(x) = ∑

p∈U−1(x) 2−|p| is the probability that U outputs 
string x. It is well known that log m(x) =+ −K (x) (see e.g. 
[2]), the proof relies on the Kraft–Chaitin theorem which 
follows.

Theorem 1 (Kraft–Chaitin see e.g. [2]). Given an r.e. set of re-
quests {〈xi, ri〉 : i ∈ N} (where xi are strings and ri are natural 
numbers) with 

∑
2−ri ≤ 1, there exists a prefix free machine N

with domain {pi : i ∈ N}, such that for every i, N(pi) = xi and 
|pi | = ri .

It is easy to check that the Kraft–Chaitin Theorem rela-
tivises to ∅′ .

Another consequence is the following symmetry of in-
formation result.

Theorem 2 (Symmetry of information see e.g. [2]). For every 
strings x, y, we have K (x, y) =+ K (x) + K (y|x∗) where x∗ is 
a minimal U -program for x.

The proof of the symmetry of information theorem rel-
ativises to ∅′ .

A set A is Martin-Löf random (MLR) if none of its pre-
fixes are compressible by more than a constant term, i.e., 
∀n K (A � n) ≥ n − c for some constant c, where A � n de-
notes the first n bits of the characteristic function of A. See 
[2,8] for more on K -complexity.

A set A is order-complex [4] if its complexity is at least 
greater than some recursive order, i.e. there is a recursive 
order h such that for every n, K (A � n) ≥ h(n). It is known 
[4] that order-complex sets are exactly those sets whose 
wtt-degree is DNR.

Theorem 3 (Kjos-Hanssen, Merkle, and Stephan [4]). Set A is 
order-complex iff A wtt-computes a DNR function (iff A tt-
computes a DNR function).

The following lemma is a relativised version of a similar 
result in [5].

Lemma 4. There is a constant c such that for every string x
and every p ∈ U−1(x), we have K ′(p) ≤ |p| + log(m(x)) +
K ′(x) + c.

Proof. Consider the following request set r.e. in ∅′: given 
x∗ the shortest U∅′

-program for x, simulate U∅′
(x∗) to re-

cover x. Compute d = �log m(x)� ≤ 0 using the oracle for ∅′ . 



38 P. Moser, F. Stephan / Information Processing Letters 135 (2018) 36–40
Dovetail U till the next p is found with U (p) = x. Enumer-
ate request 〈p, |p| + d〉. The weight of this request set is at 
most 1 because,∑
p∈U−1(x)

2−|p|−d ≤ 2−d m(x) ≤ 1.

Let N∅′
be the prefix free machine given by Theorem 1. 

For every p ∈ U−1(x). We have K N(p) ≤ |p| + logm(x), thus 
K ′(p) ≤+ |p| + log m(x) + K ′(x). �
3. Limit-depth

Intuitively a sequence is limit-deep if the difference in 
compression of its prefixes is greater than some recursive 
order.

Definition 5. Let g(n) ≤ n be an order. A set S is
g-limit-deepK if for almost every n ∈ N, K (S � n) − K ′(S �
n) ≥ g(n).

A set is said limit-deep if it is g-limit-deepK for some 
recursive order g . It is easy to see that for every two orders 
f , g such that ∀n ∈ N f (n) ≤ g(n), every g-limit-deepK set 
is also f -limit-deepK .

Bennett’s original notion [1] considered O (1) terms in-
stead of order functions. Several authors have considered 
different order functions (see [6] for a summary) and as 
seen in [7] the choice has consequences on the compu-
tational power of the corresponding deep sets. Choosing 
O (1) is not possible with limit-depth, because every se-
quence would qualify as limit-deep.

The following lemma follows from Solovay’s work on 
K ′ [10] (see 10.2.6 in [2]); or the fact that K ′(x) =
lim supn K (x|n). We include a proof using the KC theorem 
for completeness.

Lemma 6. For every m ∈ N and for almost every string x, 
K (x) − K ′(x) ≥ m.

Proof. Let m ∈ N. Consider the following r.e. in ∅′ KC-
set L, whose resulting prefix-free machine requires c extra 
bits to be simulated by U∅′

(c can be used in L’s con-
struction, by a standard application of the recursion the-
orem). L = {〈x, K (x) − m − c〉 : x > N}, where N is least 
such that 

∑
x>N 2−K (x) ≤ 2−(m+c) . The weight of L is less 

than 1, and by choice of c, we have for every x > N , 
K ′(x) ≤ K (x) − (m + c) + c. �

Because the number N in the previous proof is ∅′ com-
putable, the difference between K and K ′ is greater than 
some ∅′-recursive order. This explains why one needs to 
consider recursive orders to have a meaningful notion of 
limit-depth.

The following equivalent definition of limit-depth is 
useful to simplify some proofs.

Definition 7. Let g(n) ≤ n be an order. A set S is
g-limit-deepK if for almost every n ∈ N, and for every 
p ∈ U−1(A � n), K ′(p) ≤ |p| − g(n).
Lemma 8. Definitions 5 and 7 are equivalent.

Proof. Suppose S is h-limit-deepK as per Definition 7, and 
let n be large enough. Let p ∈ U−1(S � n) be a shortest pro-
gram for S � n, i.e. |p| = K (S � n). Given a U∅′

-program for 
p, U∅′

can recover S � n, thus

K ′(S � n) ≤+ K ′(p) ≤ |p| − h(n) = K (S � n) − h(n)

i.e. S is (h − O (1))-limit-deepK as per Definition 5.
Suppose S is h-limit-deepK as per Definition 5, and 

n be large enough. Let p ∈ U−1(S � n). By Lemma 4 we 
have K ′(p) ≤+ |p| + log m(S � n) + K ′(S � n). Since logm(S �
n) ≤+ −K (S � n), we have

K ′(p) ≤+ |p| − K (S � n)) + K ′(S � n) ≤ |p| − h(n). �
Bennett proved that MLR sets are not Bennett deep. The 

corresponding version for limit-depth is 2-randomness.

Theorem 9. Let A be MLR relative to ∅′ . Then A is not limit-
deep.

Proof. Let A be as above. Since A is 2-random, one can 
find a sequence of natural numbers {ki}i such that for ev-
ery i and every n ≥ ki , K ′(A � ki) − ki ≤ K ′(A � n) − n. Let h
be a recursive order function. Let N = {n : h(n −1) < h(n)}. 
N is an infinite set such that for every n ∈ N , K (n) <
h(n)/2 (a short program for n says “find the smallest in-
teger whose image under h is h(n)”, such a program can 
be encoded prefix free in O (log h(n)) bits). Consider the 
prefix free machine M which on input q searches for the 
unique (if it exists) decomposition q = q1q2q3 such that 
U (q1) ↓= r1, |q3| = r1, and U∅′

(q2)[r1] ↓. If such a decom-
position is found then M outputs U∅′

(q2)[r1]q3. Because U
is prefix free, so is M . Let i ∈N and k = ki , p be a minimal 
U∅′

-program for A � k, let r be the least natural number 
such that U∅′

(p)[r] is stable, let n ∈ N be the smallest 
with n ≥ r, and let n∗ be a minimal U -program for n. Thus 
M(n∗ p A[k, k + n − 1]) = A � k + n. Letting m = k + n we 
have

K (A � m) ≤+ K M(A � m) ≤ |n∗| + |p| + n

= K (n) + K ′(A � k) + m − k

≤ K (n) + K ′(A � m) ≤ h(n)/2 + K ′(A � m).

Since h is arbitrary, A is not limit-deep. �
Bennett’s slow growth law (SGL) [1] states that non 

Bennett deep sequences cannot compute deep ones quickly 
(i.e. by a truth table reduction). The following result shows 
that for limit-depth, a similar result holds for wtt reduc-
tions.

Lemma 10. Let h be a recursive order, and A ≤wtt B be two sets. 
If A is h-limit-deepK then B is h′-limit-deepK for some recursive 
order h′ . Furthermore given indices for the weak truth-table re-
duction and for h, one can effectively compute an index for h′.
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Proof. Let A, B be as above, let ϕ denote the wtt reduc-
tion, and let f be a recursive order such that for every 
n, ϕ(B � n) = A � f (n). Fix n ∈ N and let p ∈ U−1(B � n). 
Since (ϕ ◦ U )(p) = A � f (n), there is a program q of con-
stant size (independent of n) such that U (qp) = A � f (n), 
i.e. qp ∈ U−1(A � f (n)). Since A is h-limit-deepK , we have

K ′(p) ≤+ K ′(qp) ≤ |qp| − h( f (n)) =+ |p| − (h ◦ f )(n)

i.e. B is (h ◦ f )-limit-deepK . �
Corollary 11. No recursive set is limit-deep.

Proof. Let A be recursive and R be 2-random. We have 
A ≤wtt R , thus A is not limit-deep. �

Note that Theorem 10 does not hold for ≤T , since there 
are sets in the Turing-degree of � which are not order-
complex, e.g. use � to compute a dominating function h
and construct a sequence with long runs of 0s (length of 
n-th run is at least h(n)) i.e. A is not order complex, and 
each runs of zeroes are separated by a 1 (resp. 11) depend-
ing on whether the next bit of � to code is a 0 (resp. a 1). 
However the slow-growth law holds for ≤T on degrees.

Theorem 12. Let A ≤T B be two sets, where A is limit-deep. 
Then there exists a limit-deep set C ≡T B.

Proof. Let A, B be as above, and let h be a recursive order 
witnessing A being limit-deep (wlog we can assume h is 
o(n)). Define E = {n : log h(n) > log h(n − 1)} = {n0 < n1 <

n2 < . . .} and g(n) = |E ∩[0, n]|. g is a recursive order with 
g(n) ≤ log h(n) for every n. Consider the recursive order 
l(n) = h(n − g(n)) − 2 log h(n). The idea is to define C to be 
A, except a few number of far separated bits (measured by 
g) used to code B . More precisely let

C(n) =
{

B(i) if n = ni

A(n − g(n)) otherwise

Thus C � n codes g(n) bits of B and n − g(n) bits of A, 
thus K ′(C � n) ≤+ K ′(A � n − g(n)) +2g(n), and K (C � n) ≥+
K (A � n − g(n)). We have

K (C � n) − K ′(C � n) ≥ h(n − g(n)) − 2g(n) = l(n)

Clearly A ≡T B , which ends the proof. �
No MLR sequence is Bennett deep. This contrasts with 

limit-depth, where some MLR sequences can be limit-deep.

Theorem 13. � is limit-deep.

Proof. Since � is recursive in ∅′ , for every n we have 
K ′(� � n) ≤+ K ′(n) ≤ 2 log n. Since � is MLR, for every n
we have K (� � n) ≥ n − O (1), thus � is h-limit-deepK for 
h(n) = n/2. �
Corollary 14. The halting problem is limit-deep.
Proof. Follows from Lemma 10 and ∅′ ≤wtt �. �
The halting problem is both Bennett deep and limit-

deep. On � the two notions differ. The following result 
shows the two notions are incomparable.

Theorem 15. Bennett depth and limit-depth are incomparable 
notions.

Proof. By Theorem 13, � is limit-deep but not Bennett 
deep. For the converse it is know that there exists Schnorr 
random ultracompressible sequences [5], i.e. sets A such 
that for every recursive order g , K (A � n) ≤ K (n) + g(n) for 
all but finitely many n, but for every recursive time bound 
t , K t(A � n) ≥ n − g(n) + O (1), for all but finitely many n. 
Thus A is Bennett deep. Fix a recursive order g . We have 
K (A � n) − K ′(A � n) ≤ K (n) − K ′(n) + g(n)/2. Since the dif-
ference K (n) − K ′(n) can be made less than every recursive 
order infinitely often (see proof of Theorem 9), there are 
infinitely many n with K (A � n) − K ′(A � n) ≤ g(n)/2, i.e. 
A is not g-limit-deep. Since g is arbitrary, A is not limit-
deep. �

Since order-complex sets have DNR wtt-degrees, it fol-
lows that limit-deep sets have DNR wtt-degrees.

Theorem 16. Every limit-deep set has DNR wtt-degree.

Proof. Notice that every limit-deep sequence is order-
complex and apply Theorem 3. �

It was shown in [7] that every Bennett deep set is 
high. A natural analogue for limit-depth would be gen-
eralised high 1 sets (denoted GH1) i.e., sets A such that 
A′ ≡T (A ⊕ ∅′)′ . Although we do not know the answer for 
GH1 sets, we show that the analogy with Bennett deep 
sets fails to hold in the setting of limit-depth, if one con-
siders limit-cuppable sets.

Definition 17. A set A is limit-cuppable if A ⊕ ∅′ ≥T ∅′′ .

Theorem 18. There exists a limit-cuppable set whose wtt de-
gree does not contain any limit-deep set.

Proof. We use the following jump theorem: If C > 0 and 
D ≥T ∅′ ⊕ C then there exists a 1-generic set A such that 
A′ ≡T A ⊕ C ≡T D (see e.g. [2]). Letting D = ∅′′ , C = ∅′ , A
is a 1-generic limit-cuppable set. Because generic sets con-
tain arbitrary long sequences of 0s, A is not order-complex, 
thus its wtt-degree does not contain a DNR function by 
Theorem 3, thus it does not contain a limit-deep set by 
Theorem 16. �
4. Final remark

We conclude this paper with a series of questions. As 
noted in Theorem 18, it would be interesting to see if an 
analogue of “high implies Bennett deep” holds for limit-
depth. Also it is known [3,7] that low (r.e.) Bennett deep 
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sets exist. What about limit depth; are all low (r.e.) sets 
not limit-deep? Can Theorem 9 be improved to weak 2 
random sets?

We thank the referees for useful comments and some 
further open questions.
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