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Abstract

A class of discrete-time nonlinear positive time-delay switched systems with sector-
type nonlinearities is studied. Sufficient conditions for the existence of common and
switched diagonal Lyapunov–Krasovskii functionals for this system class are derived;
these are expressed as feasibility conditions for systems of linear algebraic inequalities.
Corresponding spectral conditions for the existence of common L–K functionals are
also described. Furthermore, it is shown that the proposed approaches can be applied
to discrete-time models of digital filters and neural networks. Finally, a numerical
example is given to illustrate the effectiveness of theoretical results.

1 Introduction

Positive systems, for which nonnegative initial conditions give rise to nonnegative trajec-
tories [2, 1], are of significant practical importance due to their role in various applications
including: population dynamics; consensus problems; and congestion control in transmis-
sion control protocol networks [3]. While the fundamental properties of positive linear
time-invariant (LTI) systems are now well studied and understood [2], there is a practical
need to extend this theory to more complex, realistic models. In particular, issues such as
nonlinearities, time-delay and switches in system dynamics [1] give rise to novel problems,
many of which are not yet resolved. The issue of time-delay is of particular importance for
applications to networked control systems [4]. In the current paper, we are concerned with
the fundamental question of stability for a class of nonlinear, switched positive systems
subject to time-delay. The model class considered is in discrete time.

The stability theory of positive systems has several aspects that distinguish it from the
corresponding theory for general systems. Two of the most significant of these are arguably
the use of copositive Lyapunov functions [5] and diagonal Lyapunov functions [6, 7, 8] in
the stability analysis of positive systems. It is well known, and follows from classical
Perron-Frobenius theory [9], that the stability of a positive LTI system is equivalent to: i)
the existence of a linear copositive Lyapunov function; and ii) the existence of a diagonal
Lyapunov function. These simple facts have motivated researchers to investigate the

∗Faculty of Applied Mathematics and Control Processes, Saint Petersburg State University, Saint Pe-
tersburg, 199034, Russia, and Department of Control of Complex Systems, ITMO University, Saint Pe-
tersburg, 197101, Russia. email: alex43102006@yandex.ru

†Dept. of Mathematics and Statistics/Hamilton Institute, Maynooth University, Maynooth, Co. Kil-
dare, Ireland and Lero, the Irish Software Research Centre. email: oliver.mason@mu.ie

1

http://arxiv.org/abs/1709.10171v1


existence of corresponding types of Lyapunov functions and Lyapunov–Krasovskii (L–K)
functionals for systems subject to time-delay [7, 8], switching [10, 11, 12] and nonlinearities
[13, 14]. Our work here continues in this vein, focusing on the existence of common diagonal
and switched diagonal L–K functionals for a class of switched positive systems with time-
delay. Specifically, we shall first present conditions for the existence of common diagonal
L–K functionals for the system class that are less conservative than those given in [8]. We
shall also describe results on the existence of switched diagonal L–K functionals that give
conditions in terms of simple algebraic inequalities in contrast to the LMI conditions given
in [14] where undelayed systems subject to a related but narrower class of nonlinearities
were considered.

There are several reasons for considering the question of diagonal stability for this
system class. First of all, diagonal functionals are attractive because of their simple
structure in which individual states are decoupled. In many cases, the existence of a
diagonal Lyapunov function implies a more robust form of stability, ensuring that the
system is stable even when subject to parameter uncertainty [6]. From a practical point
of view, common and switched diagonal Lyapunov functions can be used to stabilize
switched linear systems [15]. Moreover, such functions have proven to be powerful tools
in the analysis of neural networks, asynchronous computation and in the so-called large
scale systems approach [6]. Finally, on a theoretical level, it is of course interesting to
understand the degree to which properties of basic LTI systems can be extended to more
complex system classes and results characterising the existence of diagonal L–K functionals
allow us to understand the, somewhat intricate, relationship between the various types
of Lyapunov function available. In this context, the interesting work of [11] on the links
between linear, max-type and diagonal Lyapunov functions for switched positive linear
systems is noteworthy; in fact, the work of this latter paper has inspired some of the
results to be presented here.

1.1 Contributions

The main contributions of this paper are described below.

(i) We describe less conservative conditions for the existence of common diagonal L–
K functionals for the considered classes of subsystems than those described in [8].
Equivalent spectral conditions are also described. An explicit numerical example to
highlight the reduction in conservatism is given.

(ii) We provide constructive, readily verifiable conditions for the existence of common
and switched L–K functionals. Furthermore, while sufficient conditions in terms of
LMIs have been given previously [14], our conditions are formulated in terms of
linear algebraic inequalities, and can be solved using linear programming. Links to
the spectral radii of matrices associated with the systems are also described.

(iii) We extend the result of [11], which applied to linear switched positive delay-free
systems, to a class of nonlinear switched positive systems with delay. In addition,
compared with [11], we derive conditions for the existence of not only common
diagonal L–K functionals, but also switched diagonal L–K functionals.

2 Notation and background

Throughout the paper Rn and R
n×n denote the vector spaces of n-tuples of real numbers

and of n×n matrices respectively. The notation ‖ · ‖ refers to the Euclidean vector norm.
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For vectors v ∈ R
n, v ≥ 0 (v ≤ 0) means vi ≥ 0 (vi ≤ 0) for 1 ≤ i ≤ n, and v ≫ 0 (v ≪ 0)

means vi > 0 (vi < 0) for 1 ≤ i ≤ n. We use the notation AT for the transpose of a matrix
A and P ≻ 0 (P ≺ 0) to denote that the matrix P is positive (negative) definite. Let
diag (c1, . . . , cn) indicate a diagonal matrix with the elements c1, . . . , cn along the main
diagonal. The identity matrix is denoted by I; the dimension will be clear in context. We
say that a matrix A ∈ R

n×n is nonnegative if all of its entries are nonnegative. The spectral
radius of A ∈ R

n×n is denoted by ρ(A). A matrix A is Schur if all of its eigenvalues have
modulus strictly less than 1 (ρ(A) < 1); A is Hurwitz if all of its eigenvalues have negative
real parts. A matrix A is Metzler if its off-diagonal entries are all nonnegative.

The following known facts about nonnegative and Metzler matrices are useful for our
later results, see [9, 6].

Proposition 2.1 Let A ∈ R
n×n be nonnegative. Then

(i) A is Schur if and only if there exists some v ≫ 0 with Av ≪ v;

(ii) if Aθ ≪ θ and AT d ≪ d, where θ ≫ 0, d ≫ 0, then defining P = diag (d1/θ1, . . . , dn/θn),
we obtain ATPA− P ≺ 0.

Proposition 2.2 Let A ∈ R
n×n be Metzler. Then

(i) A is Hurwitz if and only if there exists some v ≫ 0 with Av ≪ 0;

(ii) if Aθ ≪ 0 and ATd ≪ 0, where θ ≫ 0, d ≫ 0, then defining P = diag (d1/θ1, . . . , dn/θn),
we obtain ATP + PA ≺ 0.

Our main results in this paper are expressed in terms of systems of algebraic linear
inequalities, which are related to the existence of linear copositive Lyapunov functions or
the so-called S-property for matrix sets; for background on these and related topics, see
[16, 17, 18, 19]. We here recall some notation and terminology related to these questions.

Given a finite set of matrices, M , the row selection set R(M) of M consists of all
matrices formed from the elements of M in the following manner. The ith row of each
matrix in R(M) is the ith row of some matrix in M for each i, 1 ≤ i ≤ n. Given a set of
Metzler matrices M , there exists a v ≫ 0 with Av ≪ 0 for all A ∈ M if and only if every
matrix in R(M) is Hurwitz. The following result is a simple consequence of this fact and
has been proven in a distinct manner using Collatz-Wielandt sets in [18].

Theorem 2.3 Let M be a finite set of nonnegative matrices in R
n×n
+ . There exists a

vector v ≫ 0 such that Av ≪ v for all A ∈ M if and only if every matrix in R(M) is
Schur.

3 Statement of the problem

Consider the switched system

x(k + 1) = Aσ(k)f(x(k)) +Bσ(k)f(x(k − l)) (1)

and the corresponding family of subsystems

x(k + 1) = Asf(x(k)) +Bsf(x(k − l)), s = 1, . . . , N. (2)

3



Here x(k) ∈ R
n; A1, . . . , AN , B1, . . . , BN are constant matrices; the nonlinearity f : Rn →

R
n is continuous and diagonal, meaning: f(x) = (f1(x1), . . . , fn(xn))

T . Furthermore, we
assume that each fi satisfies the following conditions:

xifi(xi) > 0 for xi 6= 0, (3)

|fi(xi)| ≤ |xi|. (4)

Finally, l is a positive integer delay. The switching signal σ maps the nonnegative
integers into {1, . . . , N} and selects which constituent subsystem is active at each time k.

Systems of this class are closely related to continuous time systems of Persidskii type
[6] and are motivated by numerous applications, such as control systems, digital filters,
neural networks and iterative numerical methods; see, for example, [6, 20, 21, 22, 23].

In what follows we will assume that the matrices A1, . . . , AN , B1, . . . , BN are nonnega-
tive. Under this assumption, (1) defines a switched positive time-delay system in discrete
time, meaning that if initial conditions x(−l), . . . , x(0) are nonnegative, then x(k) ≥ 0
for all k ≥ 0. For notational convenience, we write x(k) for the augmented state vector

x(k) =
(
xT (k), xT (k − 1), . . . , xT (k − l)

)T
in R

(l+1)n.
We will derive conditions for the existence of a common diagonal L–K functional of

the form

V (x(k)) = xT (k)Px(k) + fT (x(k − 1))Q1f(x(k − 1))

+ . . . + fT (x(k − l))Qlf(x(k − l)) (5)

for the family (2). Here P,Q1, . . . , Ql are positive definite diagonal matrices. If the family
(2) admits such a functional whose differences, V (x(k+1))−V (x(k)) along trajectories of all
constituent subsystems are negative, then we say that the system (1) is diagonally stable.

Remark 3.1 If the system (1) is diagonally stable, then its zero solution is asymptotically
stable for any nonlinearities f1(x1), . . . , fn(xn) and for any switching law.

The problem of diagonal stability of (1) is equivalent to the feasibility of the associated
system of LMIs. This problem has been well investigated, see, for instance, [24, 25], and
various numerical schemes are available to determine LMI feasibility. However, it should
be noted that for systems with parametric uncertainty and for situations where under-
standing the relationship between the existence of certain types of Lyapunov function and
the dynamical properties of the underlying system, the determination of simple analytic
criteria is crucial.

In [8], sufficient conditions for the diagonal stability of the system (1) were derived;
these conditions were formulated in terms of the feasibility of auxiliary systems of linear
algebraic inequalities. Formally, the following theorem was proved in [8].

Theorem 3.2 Let there exist vectors d ≫ 0, θ ≫ 0 such that

(As +Br)
Td ≪ d, s, r = 1, . . . , N, (6)

(As +Bs)θ ≪ θ, s = 1, . . . , N. (7)

Then the system (1) is diagonally stable.
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Remark 3.3 Using Theorem 2.3, it is possible to state the conditions given in Theorem
3.2 in terms of the spectral radii of sets of matrices associated with the system. First
of all, denote by M1 the set of all matrices of the form (As + Br)

T for 1 ≤ s, r ≤ N ;
similarly, denote by M2 the set of all matrices As+Bs for 1 ≤ s ≤ N . Now letting R(M1)
and R(M2) be the sets of all row selections from M1, M2 respectively, the theorem can be
reformulated as follows.

Theorem 3.4 Let ρ1 = max{ρ(A) | A ∈ R(M1)} and ρ2 = max{ρ(A) | A ∈ R(M2)}. If
ρ1 < 1, ρ2 < 1 then the system (1) is diagonally stable.

Our first goal here is to relax the conditions for diagonal stability formulated in The-
orem 3.2. Furthermore, along with conditions of the existence of a common diagonal L–K
functional, conditions of the existence of a switched diagonal L–K functional for system
(1) will be obtained.

4 Construction of a common diagonal L–K functional

In [11], an approach was described that allows us to relax conditions for the existence of
a common quadratic diagonal Lyapunov function for a family of linear positive delay-free
systems. In the present section, we apply the core idea of this approach to derive new
conditions for diagonal stability of the nonlinear switched positive time-delay system (1).

Theorem 4.1 Let there exist numbers µ > 0, λ > 0 and vectors d ≫ 0, θ ≫ 0 satisfying
the inequalities

(As +Br)
Td ≤ µd, s, r = 1, . . . , N, (8)

(As +Bs)θ ≤ λθ, s = 1, . . . , N, (9)

λµ < 1. (10)

Then the system (1) is diagonally stable.

Proof We will show how to construct a common L–K functional for the family (2), given
by formula (5). Set P = diag (d1/θ1, . . . , dn/θn), di and θi are the components of the
vectors d and θ respectively. We will show how to choose a positive definite diagonal Q
and a real number ε > 0 such that defining Qm = Q+ (l −m+ 1)εI, m = 1, . . . , l, yields
a diagonal L–K functional of the form (5) for the family of systems (2).

Consider the difference ∆V = V (x(k+1)) − V (x(k)) of the functional (5) along trajec-
tories of the s-th subsystem from family (2) for some s in {1, . . . , N}. We obtain

∆V ≤ W1s(x
(k)) +W2s(x

(k)).

Here
W1s(x

(k)) = fT (x(k))
(
AT

s PAs − P +Q
)
f(x(k))

+2fT (x(k))AT
s PBsf(x(k − l))

+fT (x(k − l))
(
BT

s PBs −Q
)
f(x(k − l)),

W2s(x
(k)) = ε

(
l‖f(x(k))‖2 −

l∑

m=1

‖f(x(k −m))‖2
)
.
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The function W1s(x
(k)) is a quadratic form in f(x(k)) and f(x(k − l)) defined by the

matrix

Cs =

(
AT

s PAs − P +Q AT
s PBs

BT
s PAs BT

s PBs −Q

)
.

It is straightforward to verify that

Cs

(
θ
θ

)
=

(
AT

s P (As +Bs)θ − d+Qθ
BT

s P (As +Bs)θ −Qθ

)

≤
(

λAT
s d− d+Qθ
λBT

s d−Qθ

)
.

Define η = maxr=1,...,N

{
BT

r d
}
, where the maximum is taken componentwise. Next,

choose Q to be a diagonal positive definite matrix such that Qθ = λη + δe. Here δ is a
positive parameter, and e = (1, . . . , 1)T . Then the inequalities

Cs

(
θ
θ

)
≤
(

(λµ− 1)d + δe
−δe

)
≪ 0

are valid for sufficiently small values of δ.
As θ ≫ 0 and Cs is Metzler, it follows from Proposition 2.2 that Cs is a Hurwitz

matrix. Moreover, Cs is a symmetric matrix. Therefore, it is negative definite. Hence,
one can choose a value of the parameter ε and a number β > 0 such that the estimate

∆V ≤ −β
l∑

j=0

‖f(x(k − j))‖2

holds.

Remark 4.2 Using Theorem 2.3 and the notation defined in Remark 3.3, we can refor-
mulate the previous result and provide equivalent spectral conditions for diagonal stability.
The following fact is key.

Proposition 4.3 Let ρ1 = max{ρ(A) | A ∈ R(M1)} and ρ2 = max{ρ(A) | A ∈ R(M2)}.
There exist real numbers µ > 0, λ > 0 and vectors d ≫ 0, θ ≫ 0 in R

n satisfying (8)–(10)
if and only if ρ1ρ2 < 1.

Proof First assume that ρ1ρ2 < 1. It follows that there is some ǫ > 0 such that (ρ1+ǫ)(ρ2+
ǫ) < 1. From the definitions of ρ1, ρ2, all matrices in the sets 1

ρ1+ǫ
R(M1),

1
ρ2+ǫ

R(M2) are

Schur. Hence by Theorem 2.3 there exist vectors d ≫ 0 and θ ≫ 0 such that (As+Br)
Td ≪

(ρ1 + ǫ)d, (As +Bs)θ ≪ (ρ2 + ǫ)θ for 1 ≤ s, r ≤ N , and (ρ1 + ǫ)(ρ2 + ǫ) < 1.
Conversely, assume that there exist real numbers µ > 0, λ > 0 and vectors d ≫ 0,

θ ≫ 0 in R
n satisfying (8)–(10). It follows that for any ǫ > 0, (As + Br)

Td ≪ (µ + ǫ)d,
(As + Bs)θ ≪ (λ + ǫ)θ for 1 ≤ s, r ≤ N . Theorem 2.3 then implies that ρ1 < µ + ǫ,
ρ2 < λ+ ǫ. As ǫ > 0 is arbitrary, it follows that ρ1 ≤ µ, ρ2 ≤ λ and hence that ρ1ρ2 < 1.
This completes the proof.

The following reformulation of Theorem 4.1 is now immediate.

Theorem 4.4 Let ρ1 = max{ρ(A) | A ∈ R(M1)} and ρ2 = max{ρ(A) | A ∈ R(M2)}. If
ρ1ρ2 < 1 then the system (1) is diagonally stable.
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This alternative formulation makes clear how the conditions of Theorem 4.1 relax those
given in Theorem 3.2. Moreover, it gives a spectral (albeit non-constructive) method of
verifying the conditions of the theorem. It also shows how Theorem 4.1 is a direct extension
of Theorem 3 in [11] to the time-delayed, nonlinear system class considered here.

Remark 4.5 To verify the existence of numbers µ > 0, λ > 0 and vectors d ≫ 0, θ ≫ 0
satisfying inequalities (8)–(10), one can also adapt the procedure proposed in [11].

We note that Theorem 4.1 can be extended to systems with multiple delays.
Formally, consider the family of subsystems

x(k + 1) = Asf(x(k)) +B1sf(x(k − 1))

+ . . .+Blsf(x(k − l)), s = 1, . . . , N, (11)

where As, B1s . . . , Bls are nonnegative matrices for s = 1, . . . , N , and the remaining nota-
tion is the same as used for (2).

Theorem 4.6 Assume that there exist numbers µ > 0, λ > 0 and vectors d ≫ 0, θ ≫ 0
such that

(As +B1r1 + . . . +Blrl)
Td ≪ µd, s, r1, . . . , rl = 1, . . . , N,

(As +B1s + . . .+Bls)θ ≪ λθ, s = 1, . . . , N,

and inequality (10) holds. Then there exists a common diagonal L–K functional of the
form (5) for the family (11).

The proof of the theorem is essentially the same as that of Theorem 4.1 although the
notation is a little more involved.

5 Construction of a switched diagonal L–K functional

One approach to obtain less conservative stability conditions for switched systems than
those obtained with the aid of common Lyapunov functions is based on the construction
of switched Lyapunov functions [27, 14, 26, 28]. In particular, in [27] and [14] switched
quadratic Lyapunov functions were used for the stability analysis of discrete linear delay-
free switched systems and discrete nonlinear delay-free switched Φ-systems respectively.
We will adapt this approach to construct switched diagonal L–K functionals for the system
(1).

Specifically, we will construct a switched diagonal L–K functional of the form

Ṽ (k, x(k)) = xT (k)P (σ(k))x(k)

+fT (x(k − 1))Q1f(x(k − 1))

+fT (x(k − 2))Q2f(x(k − 2))

+ . . . + fT (x(k − l))Qlf(x(k − l)) (12)

for the time-delay system (1). Here P (1), . . . , P (N), Q1, . . . , Ql are positive definite diagonal
matrices.

In contrast to [27, 14], we will give conditions for the existence of such functionals that
are based on systems of linear algebraic inequalities.
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Theorem 5.1 Assume that there exist numbers µ > 0, λ > 0 and vectors d(1) ≫
0, . . . , d(N) ≫ 0, θ ≫ 0 such that

AT
s d

(r) +BT
md(j) ≤ µd(s), s, r,m, j = 1, . . . , N, (13)

and inequalities (9) and (10) hold. Then there exists a switched diagonal L–K functional
of the form (12) for system (1).

Proof We write P (s) = diag
(
d
(s)
1 /θ1, . . . , d

(s)
n /θn

)
, Qm = Q̃+(l−m+1)εI, m = 1, . . . , l,

s = 1, . . . , N , for the matrices appearing in (12). Here d
(s)
i and θi are components of the

vectors d(s) and θ respectively, Q̃ is a positive definite diagonal matrix, and ε > 0 is a
parameter; as in the proof of Theorem 4.1, we shall show how to determine the values of
Q̃, ε.

A relatively straightforward computation shows that the difference of the functional
(12) along trajectories of (1) satisfies the estimate

∆Ṽ ≤ fT (x(k))
(
AT

σ(k)P
(σ(k+1))Aσ(k)

−P (σ(k)) + Q̃
)
f(x(k))

+2fT (x(k))AT
σ(k)P

(σ(k+1))Bσ(k)f(x(k − l))

+fT (x(k − l))
(
BT

σ(k)P
(σ(k+1))Bσ(k) − Q̃

)
f(x(k − l))

+ε

(
l‖f(x(k))‖2 −

l∑

m=1

‖f(x(k −m))‖2
)
.

Consider the matrices

Csr =

(
AT

s P
(r)As − P (s) + Q̃ AT

s P
(r)Bs

BT
s P

(r)As BT
s P

(r)Bs − Q̃

)

for s, r = 1, . . . , N . We obtain

Csr

(
θ
θ

)
≤
(

λAT
s d

(r) − d(s) + Q̃θ

λBT
s d

(r) − Q̃θ

)
.

Choose Q̃ to be the diagonal positive definite matrix such that

Q̃θ = λ max
s,m=1,...,N

{
BT

s d
(m)
}
+ δe,

where the maximum is taken componentwise, and δ is a positive parameter. If the value
of δ is sufficiently small, then

Csr

(
θ
θ

)
≤
(

(λµ − 1)d(s) + δe
−δe

)
≪ 0

for s, r = 1, . . . , N .
The subsequent proof is similar to that of Theorem 4.1.
In the next result, we consider the case where l = 1. Using a virtually identical

argument, we establish conditions for the existence of a closely related class of diagonal
L–K functional.
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Proposition 5.2 Consider system (1) with l = 1. Assume that there exist numbers µ > 0,
λ > 0 and vectors d(1) ≫ 0, . . . , d(N) ≫ 0, θ ≫ 0 such that

AT
s d

(r) +BT
r d

(j) ≤ µd(s), s, r, j = 1, . . . , N, (14)

and that inequalities (9) and (10) hold. Then there exists a switched diagonal L–K func-
tional of the form

Ṽ (k, x(k)) = xT (k)P (σ(k))x(k)

+fT (x(k − 1))Q(σ(k))f(x(k − 1)) (15)

for system (1), where P (s) and Q(s) are positive definite diagonal matrices, s = 1, . . . , N .

Proof As in the proof of Theorem 5.1, we compute the difference ∆Ṽ along the trajectories
of the system. In this case the difference can be bounded by quadratic forms in f(x(k)),
f(x(k − 1)) described by the matrices:

Csr =

(
AT

s P
(r)As − P (s) +Q(r) AT

s P
(r)Bs

BT
s P

(r)As BT
s P

(r)Bs −Q(s)

)

for s, r = 1, . . . , N . Here, the matrices P (s) are defined in the same way as in Theorem
5.1 while the positive definite diagonal matrices Q(s) are given by

Q(s)θ = λ max
m=1,...,N

{
BT

s d
(m)
}
+ δe,

for s = 1, . . . , N .
In a similar way as in the proof of Theorem 5.1, we can see that if δ > 0 is sufficiently

small, then

Csr

(
θ
θ

)
≤
(

λAT
s d

(r) − d(s) +Q(r)θ

λBT
s d

(r) −Q(s)θ

)

≤
(

(λµ − 1)d(s) + δe
−δe

)
≪ 0

for s, r = 1, . . . , N .

Remark 5.3 Theorem 5.1 can be extended to systems with multiple delays.

6 Some applications of the proposed approaches

In this section, we briefly describe some potential applications of the results and approaches
outlined in the previous sections.

6.1 Models of digital filters

Let the family of subsystems

x(k + 1) = f (Asx(k) +Bsx(k − l)) , s = 1, . . . , N, (16)

be given. As for the system (1), we assume that x(k) ∈ R
n; A1, . . . , AN , B1, . . . , BN are

constant nonnegative matrices; the nonlinearity f : Rn → R
n is continuous and diagonal,

meaning: f(x) = (f1(x1), . . . , fn(xn))
T , where each fi satisfies conditions (3) and (4); l is

a positive integer delay.
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Systems of the form (16) are used as mathematical models of digital filters, see [6, 23].
The switched system associated with (16) is

x(k + 1) = f
(
Aσ(k)x(k) +Bσ(k)x(k − l)

)
. (17)

We will first describe how to construct a common diagonal L–K functional for family
(16). In this case, instead of (5), we will choose such a functional in the form

V (x(k)) = xT (k)Px(k) + xT (k − 1)Q1x(k − 1)

+xT (k − 2)Q2x(k − 2) + . . . + xT (k − l)Qlx(k − l), (18)

where P,Q1, . . . , Ql are positive definite diagonal matrices.

Theorem 6.1 If there exist real numbers µ > 0, λ > 0 and vectors d ≫ 0, θ ≫ 0 such
that the inequalities (8)–(10) are valid, then there exists a common L–K functional of the
form (18) for the family (16).

Proof Consider the difference ∆V = V (x(k+1)) − V (x(k)) of the functional (18) along
trajectories of the s-th subsystem from the family (16) for some s in {1, . . . , N}. We
obtain

∆V = fT (Asx(k) +Bsx(k − l))Pf (Asx(k) +Bsx(k − l))

+xT (k)(Q1 − P )x(k) + xT (k − 1)(Q2 −Q1)x(k − 1)

+ . . .+ xT (k − l + 1)(Ql −Ql−1)x(k − l + 1)

−xT (k − l)Qlx(k − l).

From (4), it follows that

∆V ≤ (Asx(k) +Bsx(k − l))T P (Asx(k) +Bsx(k − l))

+xT (k)(Q1 − P )x(k) + xT (k − 1)(Q2 −Q1)x(k − 1)

+ . . .+ xT (k − l + 1)(Ql −Ql−1)x(k − l + 1)

−xT (k − l)Qlx(k − l).

Taking into account this estimate, the rest of the proof follows from arguments identical
to those used in the proof of Theorem 4.1.

Next, we shall present conditions of the existence of a switched diagonal L–K functional
of the form

Ṽ (k, x(k)) = xT (k)P (σ(k))x(k) + xT (k − 1)Q1x(k − 1)

+xT (k − 2)Q2x(k − 2) + . . .+ xT (k − l)Qlx(k − l) (19)

for the system (17). Here P (1), . . . , P (N), Q1, . . . , Ql are positive definite diagonal matrices.
It is not too difficult to adapt the arguments of Theorems 7 and 8 to obtain the

following result.

Theorem 6.2 Assume that there exist numbers µ > 0, λ > 0 and vectors d(1) ≫
0, . . . , d(N) ≫ 0, θ ≫ 0 such that the inequalities (9), (10) and (13) are satisfied. Then
there exists a switched diagonal L–K functional of the form (19) for system (17).
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6.2 Discrete-time neural networks

Next, consider the switched system

x(k + 1) = Aσ(k)f(x(k)) +Bσ(k)f(x(k − l)) + u(k) (20)

and the associated family of subsystems

x(k + 1) = Asf(x(k)) +Bsf(x(k − l)) + u(k), (21)

s = 1, . . . , N.

Here u(k) is a bounded input, and the rest of the notation is the same as for the original
system given in (1). Systems of the form (20) arise in models of neural networks, see
[6, 29] for background on their use in this context.

In general, the family (21) will not admit a common equilibrium position. However,
the approaches outlined in this paper permit us to derive conditions under which solutions
of (20) will be ultimately bounded.

Let x
(
k, x(k0), k0

)
denote the solution of (20) with initial conditions k0 ≥ 0, x(k0) ∈

R
(l+1)n.

Definition 6.3 The system (20) is said to be uniformly ultimately bounded with the ulti-
mate bound R if, for any D > 0, there exists a positive integer k̃ such that

∥∥x
(
k, x(k0), k0

)∥∥ ≤
R for all k0 ≥ 0,

∥∥x(k0)
∥∥ ≤ D, k ≥ k̃ + k0 and for arbitrary switching law σ(k).

Theorem 6.4 Let fi(xi) → −∞ as xi → −∞, and fi(xi) → +∞ as xi → +∞, i =
1, . . . , n. Assume that there exist numbers µ > 0, λ > 0 and vectors d ≫ 0, θ ≫ 0 such
that inequalities (8)–(10) are valid. Then there exists a common L–K functional of the
form (5) for the family (21) guaranteeing uniform ultimate boundedness of system (20).

Proof Define matrices P,Q1, . . . , Ql in the same way as in the proof of Theorem 4. Con-
sider the difference of the functional (5) along trajectories of the s-th subsystem from the
family (21) for some s in {1, . . . , N}. For sufficiently small values of the parameters ε and
δ, we obtain

∆V ≤ −β1

l∑

j=0

‖f(x(k − j))‖2 + β2, (22)

where β1 and β2 are positive constants.
Using the estimate (22), the remainder of the proof is very similar to the proof of

Theorem 5.2 in [30].

Theorem 6.5 Let fi(xi) → −∞ as xi → −∞, and fi(xi) → +∞ as xi → +∞, i =
1, . . . , n. Assume that there exist numbers µ > 0, λ > 0 and vectors d(1) ≫ 0, . . . , d(N) ≫
0, θ ≫ 0 such that inequalities (9), (10) and (13) are valid. Then there exists a switched
diagonal L–K functional of the form (12) guaranteeing uniform ultimate boundedness of
system (20).

The proof of the theorem is similar to that of Theorem 5.1.
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7 Numerical example

In this section, we present a simple numerical example in order to illustrate how our results
relate to each other and to earlier work.

Consider a family (2) consisting of two subsystems of dimension 2 (N = 2, n = 2) with
the system matrices

A1 =
1

4

(
0 0
1 1

)
, B1 =

1

4

(
a 1
2 0

)
,

A2 =
1

4

(
0 1
0 2

)
, B2 =

1

4

(
1 1
0 0

)
,

where a is a positive parameter. In addition, assume that l = 1.
In this case, the system of inequalities (6) admits a positive solution if and only if

a < 1, whereas (7) admits a positive solution if and only if a < 3. Thus, we can apply
Theorem 2 only for a < 1.

Next, let a = 2. For this value of the parameter a, (9) admits a positive solution if
and only if λ ≥ (1 +

√
6)/4, whereas system (8) admits a positive solution if and only if

µ ≥ (2 +
√
6)/4. Verifying condition (10), we obtain

2 +
√
6

4
· 1 +

√
6

4
< 1.

Thus, Theorem 4 guarantees the existence of a common L–K functional of the form (5).
Finally, choose a = 9/4. Then system (9) admits a positive solution if and only if λ ≥

(13+
√
217)/32, and system (8) admits a positive solution if and only if µ ≥ (17+

√
433)/32.

Since
13 +

√
217

32
· 17 +

√
433

32
> 1,

condition (10) is not fulfilled. Hence, for this value of parameter a,we can not apply
Theorem 4.

On the other hand, if we consider system (14) for a = 9/4, µ = 1.152, then the system
admits the solution d(1) = (1.179, 0.5)T , d(2) = (1.3, 1)T . We obtain

13 +
√
217

32
· 1.152 < 1.

Hence, all the conditions of Proposition 4 are fulfilled, and we can guarantee the existence
of a switched diagonal L–K functional of the form (15) for the associated switched system.

8 Conclusion

In this short paper, we have described sufficient conditions for the existence of common and
switched diagonal Lyapunov functionals for switched positive nonlinear systems subject to
time-delay. In particular, the result of Theorem 4.1 relaxes the condition required in [8] for
the existence of a common diagonal Lyapunov functional, thereby giving a less conservative
stability criterion. It also provides an extension of Theorem 3 of [11] to nonlinear time-
delayed systems. The result of Theorem 5.1 describes conditions for a switched diagonal
Lyapunov functional to exist for the same class of nonlinear switched systems, and gives
an alternative type of condition to the LMIs described in [14].
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