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A B S T R A C T

Recent studies have provided evidence in favour of adopting early warning systems as a means of identifying at-
risk students. Our study examines eight prediction methods, and investigates the optimal time in a course to
apply such a system. We present findings from a statistics university course which has weekly continuous as-
sessment and a large proportion of resources on the Learning Management System Blackboard. We identify
weeks 5–6 (half way through the semester) as an optimal time to implement an early warning system, as it allows
time for the students to make changes to their study patterns while retaining reasonable prediction accuracy.
Using detailed variables, clustering and our final prediction method of BART (Bayesian Additive Regressive
Trees) we can predict students' final mark by week 6 based on mean absolute error to 6.5 percentage points. We
provide our R code for implementation of the prediction methods used in a GitHub repository1.

Abbreviations: Bayesian Additive Regressive Trees (BART); Random Forests (RF); Principal Components
Regression (PCR); Multivariate Adaptive Regression Splines (Splines); K-Nearest Neighbours (KNN); Neural
Networks (NN) and; Support Vector Machine (SVM)

1. Introduction

Early warning systems to identify at-risk students (of dropping out
or failing) are in practical use in large classes and online courses
(Corrigan, Smeaton, Glynn, & Smyth, 2015; Pistilli & Arnold, 2012;
Wolff, Zdrahal, Herrmannova, Kuzilek, & Hlosta, 2014). We provide
findings from a large first year statistics course in which most of the
learning materials are available online and therefore student engage-
ment with them can be measured via the Learning Management System
(LMS) Blackboard. We acknowledge the impact course design, in par-
ticular weekly continuous assessment, has on developing early warning
systems. We contrast results from eight prediction methods (Random
Forest; BART; XGBoost; Principal Components Regression; Support
Vector Machine; Neural Network; Multivariate Adaptive Regression
Splines; and K-Nearest Neighbours) and the impact of cluster mem-
bership (based on student engagement) on reducing prediction error.
We reasonably predict a student's final grade as early as week 5 of a 12-
week teaching semester. This study was completed using R software
and we have provided our R code on GitHub at https://github.com/

ehoward1/Early-Warning-System, and in Appendix A.
This study forms part of a larger goal to use the predictions we

create to allow for more precisely targeted interventions for poorly
performing students. Determining the timing at which these interven-
tions should occur is one of the key goals of this study. We would like to
intervene as early as possible, but with little information from the LMS
and necessarily limited continuous assessment at the start of the se-
mester, the predictions are inaccurate. This accuracy increases as we
move through the semester but at the price of intervening later and so
lessening the impact of any interventions. We monitor the performance
of the predictive models on a week by week cumulative basis. For each
week, we aim to predict the final percentage mark of the student based
on all current information. We do not dichotomise students' perfor-
mance to pass/fail unlike many other studies (Azcona & Casey, 2015;
Marbouti, Heidi, & Madhavan, 2016) which would lessen the accuracy.
At week 6 (of a 12-week semester) we obtain a mean absolute error
(MAE) of approximately 6.5 percentage points.

The structure of our paper is as follows: in Section 2 we discuss the
rationale and prediction methods behind current early warning
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systems. In Section 3 we outline our approach to developing an accu-
rate prediction method for an early warning system. We extend current
research on the development of early warning systems through: using
‘new’ prediction methods including BART; identifying an ‘optimal
time’; and including cluster membership. In Section 4, we discuss the
data analytics decisions made and present the results for our course
Practical Statistics. Finally we progress to the discussion and conclusion
of these results in Section 5.

2. Previous work on early warning systems

2.1. Prediction modelling for early warning systems

In this section, we examine the stages in creating a prediction model
for an early warning system (detailed data collection; variable selec-
tion; prediction modelling; and clustering). Advancements in learning
interfaces allow for fine-grained collection of data. Azcona and Casey
(2015) highlight that “fine-grained (microscopic) analytics data should
yield better results than coarse-grained (macroscopic)” (p. 223). An
example of a coarse-grained variable is total count of resources accessed
online. In comparison fine-grained data analytics refers to extracting
each log entry of a student, and all the information it contains for ex-
ample: the number of slides visited; number of successful compilations;
and time spent on platform (Azcona & Casey, 2015). Their argument is
that through using more detailed variables, more powerful prediction
models can be created. However this trades off against simplicity;
simple models with a small number of variables are easier to interpret
and understand.

Variables based on students' demographic/historic data, continuous
assessment results and LMS usage have been collected for early warning
systems (Pistilli & Arnold, 2012; You, 2016). LMS data can include
length of time on a LMS system, number of visits to a module page,
contributions to a module discussion thread et cetera. Depending on the
prediction models selected, the dataset is reduced to a small number of
‘important’ variables.

There are numerous types of prediction models used for learning
analytics. Gašević, Dawson, Rogers, and Gašević (2016) note that re-
searchers have produced prediction models by using classification al-
gorithms such as EM, C4.5, Naive Bayes Classifier, and Support Vector
Machines. Logistic regression and multiple regression modelling are
often used as prediction models (Macfadyen & Dawson, 2010;
Waddington, Nam, Lonn, & Teasley, 2016), with logistic regression
being considered the most popular prediction method for educational
settings (Marbouti et al., 2016). Hierarchical mixed models
(Joksimović, Gašević, Loughin, Kovanović, & Hatala, 2015; You, 2016),
K-nearest neighbour (Marbouti et al., 2016), neural network models
(Calvo-Flores, Galindo, Jiménez, & Pérez, 2006), and decision tree
methods (Azcona & Casey, 2015) are also methods employed. A
common use of prediction models in learning analytics is to identify
whether a student will pass or fail the course based on the binary re-
sponse variable ‘pass/fail’. The use of a binary response variable di-
chotomises students' performance percentage marks. Studies using
binary response variable include Azcona and Casey (2015); Marbouti
et al. (2016) and Calvo-Flores et al. (2006). However, there are studies
that use a continuous response variable (Huang & Fang, 2013; You,
2016) for example students' final module grades.

A key point to note is that predictive models are usually applied to a
single course rather than used for several courses. Wolff, Zdrahal,
Nikolov, and Pantucek (2013) propose that this may be because each
course is structured differently, and therefore dictates what learners are
doing. Gašević et al. (2016) investigate generalised predictive models
that can be applied to multiple courses, however they note that the
inherent differences in disciplines cause specific variables to be strong
for some courses, and weak for other courses. Hence, the nature of the
course should be considered before selecting variables for an early
warning system. Gašević et al. (2016) believe “the understanding of

practical needs in specific instructional and learning contexts is the
primary driver for the development and deployment of learning ana-
lytics methods” (p. 83).

Clustering also plays a significant role in learning analytics through
its ability to identify students' engagement levels or learning strategies
statistically. When investigating a blended course Lust, Vandewaetere,
Ceulemans, Elen, and Clarebout (2011) identify three patterns of tool-
use using k-means clustering: the no-users; the intensive users; and the
incoherent users. White and Carroll (2017) use Latent Class Analysis to
identify four clusters of engagement in a large blended business course.
In their discussion they identify what resources each cluster engaged
with, and when during the semester these resources were engaged with.

2.2. Early warning systems in practice

One of the best known examples of an early warning system is in
Purdue University (Ferguson, 2012; Pistilli & Arnold, 2012; Sclater,
Peasgood, & Mullan, 2016) who introduced ‘Course Signals' (CS) or a
‘traffic light system’ whereby students can see whether they are likely to
succeed in their course based on a traffic light colour on their learner
interface. For example a green colour indicates a high likelihood of
succeeding. This prediction of success is based on prediction models
using all available student background information and LMS interac-
tions. If a student is identified as at-risk, the lecturer has the option of
providing corrective measures including: posting of a traffic signal in-
dicator on the student's CMS home page; sending e-mail messages or
reminders; sending text messages; referring the student to an academic
advisor or academic resource centre; or organising a face-to-face
meeting. Pistilli and Arnold (2010) found that the results of their in-
terventions (based on a control group versus an experimental group)
were: students seeking help earlier; lower D's and F's recorded; more B's
and C's; and students felt more than a ‘number’, that is less isolated.
Other benefits of Course Signals discussed by Sclater et al. (2016) are
students using the subject help desks more, and greater attendance at
additional tutorials.

One prime reason for the implementation of an early warning
system is to detect students at-risk of dropping out of courses. Pistilli
and Arnold (2010) state that most early warning systems rely on mid-
term grades reported by lecturers. By the time midterms have been
corrected it is often far into the semester, and students may have al-
ready dropped out. It is crucial that early warning systems operate in
the early stages of the semester. However, a balance has to be achieved
with the accuracy of the model. As the methods, models, variables and
response variable used in identifying at-risk students vary from study to
study, it remains difficult to contrast the studies and identify which
study has obtained the most accurate results. Results are impacted by
the truncating of students' performances to the binary pass/fail vari-
able. Dichotomizing is usually performed for simplicity however this
can lead to: lower accuracy through loss of valuable information; a
decrease in the predictive power; and in general there is a risk of getting
results that may not make sense (Fedorov, Mannino, & Zhang, 2009;
Royston, Altman, & Sauerbrei, 2006). Many studies have reported re-
sults of identifying at-risk students at the end of the course/semester
however for early warning systems this is impractical. Ideally we wish
to support all students from the beginning of the semester. For a pre-
diction model, the beginning of the semester is too early to identify at-
risk students. For early warning systems, a balance needs to be obtained
between the increasing accuracy of the system and the diminishing
impact of intervening as we move through the semester. In this paper
we refer to the balance between the two as the ‘optimal time’.

2.3. Research questions

Our study aims to explore developing a prediction model for an
early warning system taking into account the benefits of cluster ana-
lysis. Furthermore our study aims to identify an ‘optimal time’ in the
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semester when an early warning system could be implemented. Hence
our research questions, in context of Practical Statistics, are:

• Which prediction methods work best for predicting students' final
grades?

• How do we identify a stage in the semester that can adequately
balance the required timing of intervention with the quality of the
prediction?

• What effect do cluster memberships based on student engagement
have on prediction error?

3. Material and methods

In this section we discuss the course background of Practical
Statistics, as well as the data collection process and analysis used in this
study.

3.1. Course background information

This study took place in University College Dublin (UCD). Many of
the large first year courses in UCD start in week 1 with material which
links to the country's main State Examination and builds from there.
Owing to the large class sizes with mixed-ability and the progression of
material beyond prior knowledge, it may be several weeks before we
can identify students who are struggling with the course. Practical
Statistics, a large online undergraduate course aimed at first years, was
selected as an example of a STEM course with weekly continuous as-
sessment. It is designed as an introductory course in statistics for a class
of mixed ability students. The lecturer allocates 40% of the final mark
to continuous assessment and distributes the continuous assessment
throughout the course semester to encourage students to continuously
engage with the course. Practical Statistics' lectures are completely on-
line but the students have 24 h of software labs. The continuous as-
sessment is achieved through: lecture questions based on the course
material (weeks 1–12; 0.5% per week; included in model from week 3);
watching all of the online videos (2%); Minitab lab questions (weeks
3–5; 1% per week; included in model at week 5); R lab questions (weeks
7–11 excluding week 8; 1% per week; included in model at week 11);
Minitab lab examination (week 6; 10%; included in model at week 6);
and R lab examination (week 12; 15%; included in model at week 12).
Answers to lecture questions and lab sheets are submitted to the LMS
and automatically marked by the system, with the marks being returned
instantaneously. Students have until midnight of the following Sunday
to submit answers. In Practical Statistics, students have three attempts at
their weekly lecture questions. Upon submitting their answers, students
immediately receive “try again” feedback as defined by Shute (2008)
i.e. whether specific answers are right/wrong, the percentage correct
for that assessment and students have the ability to try the assessment
again. For the Minitab lab examination, students receive their overall
mark for the assessment. For the R lab examination (worth 15%), stu-
dents receive no feedback as the examination takes place in the final
teaching week of the semester. On the LMS, students are able to review
their continuous assessment for each assessment and overall at any
stage of the semester. We believe continuous assessment combined with
summative feedback encourages student engagement in online courses.

3.2. Participants

In the first semester of 2015/16 there were a total of 144 students
registered for Practical Statistics. Students' data was removed from the
study if: students opted out of the research study; students did not take
the end of semester examination; or students had personal circum-
stances which affected how they were officially graded for the course.
Students with extenuating circumstances were excluded as these cir-
cumstances could impact students' continuous assessment and LMS use.

This could impact predictions. In accordance with our ethical permis-
sions from UCD, we removed these students rather than investigating
individual student's circumstances. Subsequently our analysis sample
included 136 participants from Practical Statistics.

3.3. Data collection and measurements

Data were recorded for students in regards to three categories:
students' background information; continuous assessment; and LMS
usage on a fine-grained scale. Background information of students
(gender, course type (elective, option or core), registration of students
(repeating course, etc.), students' year of study, students' programme
and Irish/non-Irish) were included as variables to account for differ-
ences in educational background and prior experience of students.
Online resources (for example videos, lectures slides, pdfs) were
grouped into folders based on the material content. In total, there were
15 folders (week 1 course material, ..., week 12 course material, lecture
questions solutions, course information, and past examination solu-
tions). We refer to the number of times the resources in a folder were
accessed and the folder itself was accessed as the ‘activity level’ of the
folder. For each folder, we included the activity level for the folder for a
given week as a variable, for example, in week one of the semester
student ‘8979’ had an activity level of 12 for the ‘week 1 course ma-
terial folder’ (see Table 1). In week 2 of the semester, student ‘8979’ had
an activity level of 9 for ‘week 1 course material folder’. These counts
are not cumulative. In summary, there are 15 folders which could be
accessed over 14 weeks (12 teaching weeks, 1 revision week and 1
exam week). Generally, only some of the folders would be accessed in a
given week, for example the first time week 5 folder was accessed was
in week 4 of the teaching semester. For a given folder, the activity level
ranged from 0 to 55 for a given week. On average, the main resource
folder for the week (for example folder 4 for week 4) had an activity
level of 11 per student. The dataset was designed to be flexible whereby
statistical analysis could be performed to incorporate data up to any
stage/point in a semester. We performed statistical analysis for the end
of each week in the semester (12 teaching weeks) as well as initially
(when only background information was available), the end of revision
week, and for the end of semester when the written examination was
completed. In total this forms fifteen stages.

3.3.1. Prediction methods
A fundamental problem which occurs in prediction analysis is

‘overfitting’ whereby a prediction model fits training data very well but
predicts poorly on new test data (Baumer, Kaplan, & Horton, 2017).
This often occurs when the entire dataset is used in training the pre-
diction model. K-fold cross-validation is a popular method for handling
this issue and has been used in multiple prediction model studies
(Azcona & Casey, 2015; Wolff et al., 2013). In K-fold cross validation,
the dataset is divided into k equal-sized subsets or folds. K-1 folds are
used to train the model and subsequently prediction analysis occurs on
the kth fold. This is repeated k times such that all cases have a predicted

Table 1
Example dataset to be used to predict students' final module mark.

Student code Gender ... Major Lecture Q
results
Percentage

Week 1
folder
Count
for week
1 only

Week 1
folder
Count
for week
2 only

...

8979 F ... Science 70.6 12 9 ...
9079 M ... Science 95.1 8 15 ...
4567 M ... Arts 56.8 3 2 ...
4547 M ... Arts 64.7 7 12 ...
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value associated with them. Our prediction models (Random Forest;
BART; XGBoost; Principal Components Regression; Support Vector
Machine; Neural Network; Multivariate Adaptive Regression Splines;
and K-Nearest Neighbours) were run using 10-fold cross-validation for
the same folds. The final percentage grade was used as the response
variable.

• Random Forest (RF) is an ensemble learning method. Breiman
(2001) states “random forests are a combination of tree predictors
such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all trees
in the forest” (p. 1). For RF regression prediction, the mean pre-
diction of the individual trees is returned.

• Kapelner and Bleich (2016) explain that BART is a Bayesian ap-
proach to nonparametric function estimation using sums of regres-
sion trees which allows for flexibility between non-linear interac-
tions. BART differs from other tree ensemble methods (for example
RF) owing to the underlying probability model and use of priors. A
benefit of this is that we can create confidence intervals for our
predicted values.

• XGBoost is a popular scalable machine learning system for tree
boosting (Chen & Guestrin, 2016). It can handle large datasets as
well as sparse matrices. As XGBoost cannot be applied to categorical
data, any categorical variables were recoded as binary variables. For
XGBoost modelling n iterations were run where n is the number of
variables. XGBoost was applied to 15 stages in the semester (In-
itially, week 1, ...). Initially XGBoost was used on 18 variables
(where categorical variables were transformed to multiple binary
variables). The number of variables and iterations increased on a
week by week basis as additional Blackboard data became available.

• Principal Components Regression (PCR) is a technique that reduces
a high dimensional dataset to a lower dimension dataset and then
performing regression. It does this by finding linear transformations
of the data whereby the maximal amount of variance is retained
(Ilin & Raiko, 2010).

• “Kernel-based learning methods (including Support Vector
Machines (SVM)) use an implicit mapping of the input data into a
high dimensional feature space defined by a kernel function”
(Karatzoglou, Smola, Hornik, & Zeileis, 2004). The training of the
model is then performed in the feature space.

• Feedforward Neural Network (NN) is a system of nodes which is an
imitation of the human brain. A feedforward neural network con-
sists of nodes in layers providing information forward through the
layers using the equation yi=wxi+ b. Training neural networks is
considered to be difficult (Larochelle, Bengio, Louradour, &
Lamblin, 2009).

• Multivariate Adaptive Regression Splines (Splines) is a non-para-
metric stepwise regression procedure (Friedman, 1991) When in-
cluding variables, the range of the variable is partitioned into sub-
sets and a constant is applied to each subset for regression. In the
backward pass, the model is pruned to limit overfitting.

• K-Nearest Neighbours (KNN) is a nonparametric method whereby
the ‘k’ nearest neighbours or ‘k’ most similar cases impact the pre-
diction/classification of the case of interest (Hechenbichler &
Schliep, 2004). In the case of regression, the ‘k’ nearest neighbours
response values are averaged with importance weightings being
considered.

We used mean absolute error (MAE) between the predicted grade
and actual grade as a comparison basis to observe the improvement in
the accuracy of the prediction model on a week-to-week basis. This
allowed us to identify an ‘optimal time’ for an early warning system to
be employed. To improve the accuracy of the initial models, our pre-
diction models were applied to different feature sets which included a
combination of: continuous assessment data; background information;
as well as varying the levels of LMS data. To further reduce the

prediction error we considered: Sunday count variables2; cumulative
count variables; and resultant cluster analysis. The feature sets dis-
cussed in Section 4 are:

• Initial Model - Variables include background information, con-
tinuous assessment, and LMS activity level per folder.

• No LMS Variables - Variables include background information and
continuous assessment.

• Cumulative Variables - Variables include background information,
continuous assessment, and cumulative activity level for each in-
dividual folder (for Sundays and for weekdays).

• Cluster Variables - Variables include background information, con-
tinuous assessment, cumulative counter of views for each individual
folder (for Sundays and for weekdays), and cluster membership
variables.

3.3.2. Clustering methods
Cluster analysis is not an essential part of predicting students' final

examination marks, however, it can provide meaningful variables
which reduce the prediction error. Studies have shown that students
can be grouped according to their engagement patterns or module re-
source use (Lust et al., 2011; White & Carroll, 2017). Since these groups
are generally distinct, with a strong relationship with modules marks,
variables(s) which classify students according to these groups are po-
tentially good predictors. There are two formats for cluster membership
variables. In the first, there is a single nominal variable where students
are assigned a number which specifies the cluster that they are asso-
ciated with. In the second format, there is a variable for each cluster
and a student has a probability value of membership to each cluster.

The dataset used for clustering contained fine-grained LMS data (the
activity level for each individual folder per week and per Sunday). We
use the model-based clustering package mclust (Scrucca, Fop, Murphy,
& Raftery, 2016) to create an additional clustering of our variables. We
use this package because of its repeated superior performance com-
pared to other clustering algorithms (Scrucca et al., 2016), and its
ability to model a wide variety of cluster sizes and shapes. Owing to its
model-based nature, an advantage of using mclust is its ability to cal-
culate probability memberships for each individual to each cluster.
Only a limited number of cluster methods has this advantage. Clus-
tering was performed for each stage in the semester. The estimated
Bayesian Information Criterion (BIC) was compared for the different
combinations, and the combination which maximised the BIC was se-
lected. The resultant cluster membership was considered as a variable
for prediction modelling.

4. Results

We now describe the development of prediction methods for an
early warning system. Continuous assessment played an important role
in our modelling. When developing an early warning system, we need
to account for any delays in the correction of continuous assessment or
collection of data for example if a midterm in week 5 takes 2 weeks to
correct, we should include it in week 7. Practical Statistics benefits from
the instantaneous nature of online LMS assignments. Through the de-
velopment of our early warning system, we are able to identify an
optimal time (week 5–6) in the Practical Statistics' semester to apply an
early warning system.

4.1. Student engagement and continuous assessment

Holmes (2015) and Cole and Spence (2012) have suggested that
continuous assessment encourages student engagement. As previously
mentioned, Practical Statistics was designed to ensure consistent student

2 This is discussed further in Section 4.3.
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engagement through having continuous assessment on a weekly basis
throughout the course. Fig. 1 shows that online materials were accessed
throughout the semester, however the level of activity, not surprisingly,
peaked prior to assessments. The deadline for weekly online lecture
questions for credit was on Sunday nights, and this corresponds with
the weekly peak in online resource activity. These peaks might suggest
two types of students: students who study immediately prior to as-
sessments; and students who study in advance of assessment. Similarly,
as expected, the time when the greatest number of resources was ac-
cessed corresponds to the day of the R lab examination (the Monday of
week 12). A similar peak occurs on the Monday of the Minitab lab
examination in week 6. This connection between online views and
continuous assessment suggests that a key driver of students' interaction
with online resources is continuous assessment.

4.2. Clustering analysis

mclust was applied to several variations of the dataset. Considering
the high number of view counts on Sunday, this included investigating
the potential of Sunday online activity as separate to weekday3 online
activity. After investigating resultant clusters, mclust was only applied
to fine-grained LMS data (the activity level for each individual folder
per week and per Sunday). Continuous assessment variables and
background information of students, were not included as cluster
variables. The resultant clusters identified differences in students' fre-
quency levels of using online resources. In comparison to Lust et al.
(2011) who divide online resources into tool types, this method is
cruder as the clustering is unlikely to pick up subtle differences in
students' learning strategies.

For example, for week 5 (identified optimal time) the variables used
were fine-grained LMS data (the activity level for each folder per week
and per Sunday) for weeks 1–5. mclust identified 3 clusters (n1=61
(44.9%), n2=69 (50.7%) and n3=6 (4.4%)). The distinct clusters are

best represented in 2D format by boxplots (see Fig. 2) showing the
standardised means and spread of the selected variables for each cluster.
Three variables (Total Weekday Views (up to week 5), Total Sunday
Views (up to week 5), and Final Grade) were selected to show the distinct
clusters (see Fig. 2). Cluster 3 students are students who display below
average engagement with resources and have the widest final grade
range. Lust et al. (2011) categorize these as no-users or low frequency
users. Cluster 2 represents the students who have below average resource
use on Sunday, and average resource use during the week. In comparison,
Cluster 1 represents students who engage (above) average with resources
overall; both on Sunday and during the week. Despite this higher average
engagement than the other clusters, they have the median final ex-
amination grade. Subsequently, as the cluster analysis displayed distinct
clusters with various engagement patterns, students' cluster group
membership was used as variables in the prediction analysis.
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Fig. 1. Activity level of online resources per day over the course of Practical Statistics' semester.

Final Result

Total Sunday Views

Total Weekday Views
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Standardised Means of Clusters

Cluster Number
3 − n=6

2 − n=69

1 − n=61

Fig. 2. Identifying engagement patterns of Practical Statistics through boxplots of se-
lected standardised variables for week 5. for example cluster 3 contains six students who
have below average resource usage.

3 In this study weekday view counts includes Saturday view counts.
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4.3. Prediction modelling

Initial prediction modelling was performed on the dataset for each
week (all variables available up to that date were included - see Initial
Model Section 3.3.1) to determine an optimal time for corrective
measures. The initial stage (before teaching semester began) and final
stage of the semester acted as a baseline for comparison for the power
of the prediction model (see Fig. 3).

In Fig. 3, PCR achieves the lowest MAE value (approximately 6
points at week 12). PCR reduces the number of variables before per-
forming regression. Out of the methods investigated, Neural Networks
is clearly the inferior method. An interesting feature of Fig. 3 is the
substantial decrease in error from week 2 to week 3. This decrease in
error coincides with the inclusion of continuous assessment in the
prediction model (the deadline for week 1 lecture questions was in
week 3). This emphasises the role continuous assessment plays as a
predictor in online STEM courses. To confirm the importance of con-
tinuous assessment, we investigated the variable importance of the
models. Every model selected continuous assessment variables as the
main variables in the model. Fig. 3 shows us the MAE for each pre-
diction model over the entire semester for Practical Statistics, however,
between weeks 6 and 11 there is relatively little change in the pre-
dictive power of the models. From the lack of decrease in predictive
error between weeks 6 and 11, we believe that there is little benefit in
waiting beyond week 6 to implement an early warning system for
Practical Statistics. For early warning systems, a balance is required
between the accuracy of the prediction models and the stage in the
semester in which they are implemented. The stage in the semester
needs to reflect where corrective measures could most effectively be
given to students. We believe that any small prediction decreases in
waiting beyond week 6 would not overcome the additional effort of

collecting data after week 6 for prediction modelling and the delay in
implementing the early warning system. While there is a decrease in
prediction error from week 11 to week 12, after this time is too late in
the semester to effectively implement an early warning system in
Practical Statistics. Subsequently, the stages up to week 6 were identified
as important for further data analysis. For Practical Statistics, week 5 is
potentially the optimal time for implementing an early warning system.
We have included our R code for this in the Appendix A with more
detailed R code and fictitious datasets available on GitHub at https://
github.com/ehoward1/Early-Warning-System.

To reduce our prediction error, we considered alternative feature
sets. Investigating alternative variables or alternative formats of vari-
ables can be a straightforward way to improve prediction accuracy. We
considered alternative feature sets including removal of the LMS data
(which provided slightly less accurate predictions), including cumula-
tive activity level for each folder (Cumulative Variables dataset), and
including cluster membership variables. These datasets did not involve
collection of additional data and are a sample of all the datasets ex-
amined. Progressing, we will look at the Cluster Variable dataset in
further detail as cluster membership is not a common variable in pre-
diction modelling for early warning systems, and as the prediction
models had lower error rates on the Cluster Variable dataset than on the
initial dataset. The Cluster Variables dataset for each student consists
of: background information; continuous assessment; and cumulative
counter for the activity level of each individual folder (for Sundays and
for weekdays) as well as cluster membership variables. While including
the cluster variable (in most cases) does not alter the MAE significantly,
clustering can provide us with information about student engagement
in general which may be of value (see Section 4.2 Clustering Analysis).
Fig. 4 gives the average MAE per student for the Cluster Variables da-
taset up to the optimal time of week 6. The second substantial decrease
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Fig. 3. Average MAE per student on a week-by-week basis from multiple out of sample prediction methods.
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in MAE between weeks 4 and 5 corresponds to the second inclusion of
continuous assessment (Minitab lab results). Using our BART predictive
model we can identify the final mark the student will obtain to ap-
proximately a MAE of 6.5 at week 6.

We will proceed by discussing in further detail the BART prediction
model at week 5 using the Cluster Variable dataset. This dataset consists
of 29 explanatory variables. We can visually determine the performance

of our predictive model by plotting the predicted final grade against the
true final grade for each student. Fig. 5 shows the predicted grade
plotted against the actual grade of each student, both initially and at the
end of week 5. An identity line, showing when the predicted grade
equals the actual grade (i.e. a perfect prediction), has been included in
Fig. 5. The initial plot acts as a baseline, displaying how the initial
prediction of final grade has very low correlation with the actual grade
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Fig. 4. Improving the Prediction Model by changing the feature dataset to include cumulative variables for LMS interactions and cluster membership variables.
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of students i.e. a poor predictive performance. The initial model relies
on a limited number of background/demographic variables. As several
students have the same background information, this has resulted in
multiple students receiving the same predicted grade. This has resulted
in ‘bands' of predicted grades. In comparison, the second plot's data is
quite linear (R2= 0.74) and tighter to the identity line, with some
outliers. It suggests that by week 5 we can make reasonable grade
predictions as the grade predictions are strongly correlated to the actual
grade. This supports the belief that week 5 is an optimal time to im-
plement an early warning system, and that the selected BART model
(Method - Cluster Variables) performs competently.

5. Discussion and conclusion

5.1. Continuous assessment

The variables used in this study were divided into three categories:
students' background information; students' engagement with LMS; and
continuous assessment results. Continuous assessment proved un-
surprisingly the most important category. Continuous assessment vari-
ables were repeatedly chosen as the most important variables by all of
the prediction models. Continuous assessment encourages students to
engage with a course (Holmes, 2015) and partially accounts for the
different levels of LMS interaction throughout the semester. This is
observable from the spikes in LMS resource use prior to continuous
assessment tests and deadlines (Fig. 1). We suggest the inclusion of
consistent continuous assessment in online courses encourages students'
engagement over the entire semester (as stated by Cole & Spence,
2012), and limits the number of students studying only in the weeks
prior to the final examination. The addition of continuous assessment
also contributes to minimising prediction error when building early
warning systems however this should not be the main reason for its
inclusion. We hypothesize that a low percentage for continuous as-
sessment would also achieve the same effect provided that the con-
tinuous assessment is throughout the semester.

This study investigates how to approach developing an accurate
prediction model for an early warning systems. The dataset which only
had continuous assessment and background information variables,
performed comparatively well to the other feature sets, and enjoyed the
benefit of being the simplest model. However, by using this model we
fail to identify areas of the curriculum where students struggled. A key
element in learning analytics is using the resultant analysis for the
benefit of the student and teacher. By including the extra LMS variables,
we are able to investigate for individual students aspects of the curri-
culum that they failed to engage with or had overly high engagement
with (potentially a sign of a harder concept or an area with which the
student struggled). This advantage for the inclusion of LMS variables is
considerable, and should be weighed against the simplicity of the ‘No
LMS Variables' data set.

5.2. Advancements in developing early warning systems

This study summarises the methods employed in developing pre-
diction models for early warning systems, and builds upon the current
work. Unlike some of the other studies, we do not dichotomise students'
final grades to pass/fail. Instead, we predict students' final percentage
mark similar to Huang and Fang (2013) and You (2016). We discuss
how one may reduce the prediction error through: use of fine-grained
variables; manipulation of variables; and the inclusion of cluster
membership in prediction modelling. The detail provided by fine-
grained variables gives more information on students' engagement
patterns. Subsequently, we hypothesize that analysis of fine-grained
variables will allow for more personalised corrective measures. We
have used predictive methods (BART and XGBoost) which are un-
common in the data analytics literature as well as common predictive
methods (Neural Networks, K-Nearest Neighbours and Random Forest).

We found that decision tree methods perform particularly well (BART
and Random Forest). Decision tree methods are suitable when using a
large number of variables. Hence BART, a decision tree method, is
appropriate when using fine-grained variables. BART may be preferable
over other decision tree methods, for example Random Forests, owing
to its Bayesian nature which allows for the inclusion of error variance
which is independent of tree structure and leaf parameters (Kapelner &
Bleich, 2016). In our study BART outperformed the other prediction
models tested at the optimal time of weeks 5–6.

Clustering is not a necessary step in developing prediction models.
However, we have shown that clustering can be used to identify distinct
student patterns of engagement which can be used to further reduce the
prediction error. Also, clustering may help to identify how students
approach learning and subsequently be used to provide corrective
measures. The method outlined in this study is appropriate for both
online courses and large classes with a significant amount of online
material. Through combining these methods, we obtain an average
prediction error (based on out of sample 10-fold cross validation and
MAE) of 6.5 percentage points by week 6.

A key part of this study was identifying an ‘optimal time’ to im-
plement an early warning system. Implementing an early warning
system too early would result in inaccurate identification of (at-risk)
students. In contrast, implementing it too late would diminish the effect
of supporting and helping students. Data analysis of prediction models
identify week 5/6 as the critical time in the semester for Practical
Statistics whereby prediction models have reasonably accurate forecasts
balanced with sufficient time to intervene and support at-risk students.
Identifying at-risk students is only one stage in an early warning system,
another stage is understanding what effective supports should be pro-
vided to students. Consequently, our current research involves identi-
fying at-risk students during the ‘optimal time’ in Practical Statistics and
examining which feedback/intervention measures are effective for
large STEM courses.

5.3. Limitations

The method outlined in this study discusses how to develop an ac-
curate predication model for an early warning system for a course, and
how to recognise an optimal time to provide students with corrective
measures during a course. Practical Statistics is an example of a STEM
course which has continuous assessment distributed weekly throughout
the semester. The method discussed in this study may not be an optimal
method for other online courses, particularly if the course is from a
significantly different academic field. Each course is unique and will
have its own unique feature set. STEM based courses, particularly early
undergraduate courses, tend to have continuous assessment which ties
to the final examination. We believe BART is applicable for these STEM
courses.

For the purpose of reproducibility, the R code for comparison of the
prediction models has been included in Appendix A. Further code for
this study is available on GitHub at https://github.com/ehoward1/
EarlyWarning-System with fictitious datasets (owing to ethical con-
straints).
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Appendix A. R code

Function to run and compare 10-cross fold validation for all pre-
diction methods used in the paper. Fictitious datasets for this function
and further R code for this paper are available on GitHub at https://
github.com/ehoward1/Early-Warning-System.

require(xgboost)
require(randomForest)
require(bartMachine)
require(pls)
require(caret)
require(magrittr)
require(earth)
require(nnet)
require(car)
require(kknn)
require(kernlab)
prediction_function < - function(dataset, data-
set_boost){ # dataset boost is for xgboost
set.seed(123)
folds = createFolds(1:nrow(dataset), k = 10, list =
FALSE)
dataset_boost = apply(dataset_boost, 2, as.nu-
meric)
# XGBoost runs for numeric data, not integers
# Vectors to store error for each prediction methods
pred_bm = vector("numeric")
pred_rf = vector("numeric")
pred_pcr = vector("numeric")
pred_xg = vector("numeric")
pred_kknn = vector("numeric")
pred_svm = vector("numeric")
pred_nnet = vector("numeric")
pred_earth = vector("numeric")
grades = vector("numeric")
# Loop through the folds for each prediction method
for(i in 1:10){
# Setting up the data
train = dataset[folds!=i,] % > % data.frame % > %
na.omit
train_b = dataset_boost[folds!=i,] % > % data.-
frame % > % na.omit
test = dataset[folds==i,] % > % data.frame
test_b = dataset_boost[folds==i,] % > % data.frame
# BART
bm = bartMachine(train[,-1], train[,1], seed =
123, alpha = 0.95, num_burn_in = 400,
num_tree = 100, num_rand_samps_in_library =
20000, k = 2, q = 0.9, nu = 3)
pred_bm = c(pred_bm, predict(bm, test[,-1]))
# Random Forest (RF)
rf = randomForest(train[,-1], train[,1], ntree =
100)
pred_rf = c(pred_rf, predict(rf, test[,-1]))
# Principle Components Regression (PCR)
pcr = pcr(FINAL~., data = train)
var_exp = compnames(pcr, explvar = TRUE)
var_e = unlist(strsplit(var_exp, "[ (]")) % > %
as.numeric() % > % setdiff(c(1:150, NA))
var_total = 0

# Calculating number of variables to include based on
variation explained
for(j in 1:length(var_e))
{

var_total = var_total + var_e[j]
if(var_e[j] < 1 || var_total > 90)
{
n_comp = j
break
}
}
pred_pcr = c(pred_pcr, predict(pcr, test[,-1], ncomp
= n_comp))
# Xgboost
iter = train_b % > % ncol % > % sqrt % > % ceiling
xg = xgboost(data = as.matrix(train_b[,-1]), label =
train_b[,1], eta = 0.5,
nround = iter, max.depth = 4, objective = "reg:-
linear")
pred_xg = c(pred_xg, predict(xg, as.matrix(test_b
[,-1])))
# K-Nearest Neighbours (KNN)
kknn = train.kknn(FINAL ~., kmax = 15, distance = 1,
data = train)
pred_kknn = c(pred_kknn, predict(kknn, test[,-1]))
# Neural Network (NN)
my.grid = expand.grid(.decay = c(0.05, 0.5, 0.75),
.size = c(4, 9))
nnet = train(FINAL~., data = train, linout = 1,
method = "nnet", maxit = 500, tuneGrid = my.grid, trace
= FALSE)
pred_nnet = c(pred_nnet, predict(nnet, test[,-1]))
# Support Vector Machine (SVM)
svm = ksvm(FINAL ~., data = train, C = 5)
pred_svm = c(pred_svm, predict(svm, test[,-1]))
# Multivariate Adaptive Regression Splines (Splines)
earth = train(FINAL~., data = train, method = "earth",
tuneGrid = data.frame(degree = c(1,2), nprune = 5))
pred_earth = c(pred_earth, predict(earth, test
[,-1]))
grades = c(grades, test$FINAL)
}
# Calculating the error for each method
error_rf = sum(abs(pred_rf - grades))/nrow(dataset)
error_pcr = sum(abs(pred_pcr - grades))/nrow(da-
taset)
error_xg = sum(abs(pred_xg - grades))/nrow(data-
set_boost)
error_bm = sum(abs(pred_bm - grades))/nrow(dataset)
error_earth = sum(abs(pred_earth - grades))/nrow
(dataset)
error_kknn = sum(abs(pred_kknn - grades))/nrow(da-
taset)
error_nnet = sum(abs(pred_nnet - grades))/nrow(da-
taset)
error_svm = sum(abs(pred_svm - grades))/nrow(da-
taset)
# Returning Values
my_list = list("MAE_bm" = error_bm, "MAE_rf" = er-
ror_rf, "MAE_pcr" = error_pcr,
"MAE_xg" = error_xg, "MAE_kknn" = error_kknn,
"MAE_nnet" = error_nnet,
"MAE_svm" = error_svm, "MAE_earth" = error_earth)
return(my_list)
}
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