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Abstract—We perform an asymptotic study of the performance
of filter bank multicarrier in the context of massive multi-input
multi-output. We show that the effects of channel distortions,
i.e., intersymbol interference and intercarrier interference, do not
vanish as the base station (BS) array size increases. As a result,
the signal-to-interference-plus-noise ratio (SINR) cannot grow un-
boundedly by increasing the number of BS antennas, and is upper
bounded by a certain deterministic value. We show that this phe-
nomenon is a result of the correlation between the multiantenna
combining tap values and the channel impulse responses between
the mobile terminals and the BS antennas. To resolve this problem,
we introduce an efficient equalization method that removes this
correlation, enabling us to achieve arbitrarily large SINR values
by increasing the number of BS antennas. We perform a thorough
analysis of the proposed system and find analytical expressions for
both equalizer coefficients and the respective SINR.

Index Terms—Massive MIMO, FBMC/OQAM, OFDM, SINR,
channel equalization, asymptotic analysis.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) is one
of the primary technologies currently considered for the

next generation of wireless networks, [2]. In a massive MIMO
system, the base station (BS) is equipped with a large number
of antenna elements, in the order of hundreds or more, and
is simultaneously serving tens of mobile terminals (MTs). By
coherent processing of the signals over the BS antennas, the
effects of uncorrelated noise and multiuser interference can be
made arbitrarily small as the BS array size increases, [3], [4].
Hence, unprecedented network capacities can be achieved.

Filter bank multicarrier (FBMC) is a waveform that has
gained an increased attention in the recent years due to its im-
proved spectral properties compared to orthogonal frequency di-
vision multiplexing (OFDM), [5]–[7]. The application of FBMC
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to massive MIMO channels has been recently studied in [8],
where its so-called self-equalization property leading to a chan-
nel flattening effect was reported through simulations. Accord-
ing to this property, the effects of channel distortions (i.e., inter-
symbol interference and intercarrier interference) will diminish
by increasing the number of BS antennas. The authors in [9]
obtain the asymptotic mean squared error (MSE) performance
of FBMC in massive MIMO channels. Their analysis shows that
the MSE becomes uniform across different subcarriers as a result
of the channel hardening effect. In [10], multi-tap equalization
per subcarrier is proposed for FBMC-based massive MIMO sys-
tems to improve the equalization accuracy as compared to the
single-tap equalization at the expense of a higher computational
complexity. The authors in [11] show that the pilot contami-
nation problem in multi-cellular massive MIMO networks, [3],
can be resolved in a straightforward manner with FBMC signal-
ing due to its special structure. These studies prove that FBMC
is an appropriate match for massive MIMO and vice versa as
they can both bring pivotal properties into the picture of the next
generations of wireless systems. Specifically, this combination
is of a great importance as not only the same spectrum is being
simultaneously utilized by all the users but it is also used in a
more efficient manner compared to OFDM.

Since the literature on FBMC-based massive MIMO is not
mature yet, these systems need to go through meticulous anal-
ysis and investigation. In particular, in this paper, we perform
an in-depth analysis on the performance of FBMC in massive
MIMO channels. The focus of this paper is on the uplink trans-
mission, while the theories and proposed techniques are trivially
applicable to the downlink as well. We consider single-tap equal-
ization per subcarrier, and investigate the performance of three
most prominent linear combiners, namely, maximum-ratio com-
bining (MRC), zero-forcing (ZF), and minimum mean-square
error (MMSE). We show that the self-equalization property
shown through simulations and claimed in [8] and [10] is not
very accurate. More specifically, by increasing the number of
BS antennas, the channel distortions average out only up to a
certain extent, but not completely. Thus, the SINR saturates at a
certain deterministic level. This determines an upper bound for
the SINR performance of the system.

Our main contributions in this paper are the following; (i)
We derive an analytical expression for the SINR saturation level
using MRC, ZF, and MMSE combiners. (ii) We propose an
effective equalization method to resolve the saturation problem.
With the proposed equalizer in place, SINR grows without a
bound by increasing the BS array size, and arbitrarily large
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SINR values are achievable. (iii) An efficient implementation of
the proposed equalization method through using some concepts
from multi-rate signal processing is also presented. (iv) Finally,
we perform a thorough analysis of the proposed system, and
find the analytical expressions for the SINR in the cases of
MRC and ZF detectors. All the above analyses are evaluated
and confirmed through numerical simulations.

It is worth mentioning that although the theories developed in
this paper are applicable to all types of FBMC systems, the for-
mulations are based on the most common type in the literature
that was developed by Saltzberg, [12], and is known by different
names including OFDM with offset quadrature amplitude mod-
ulation (OFDM/OQAM), FBMC/OQAM, and staggered multi-
tone (SMT), [5]. Throughout this paper, we refer to it as FBMC
for simplicity.

The rest of the paper is organized as follows. To pave the
way for the derivations presented in the paper, we review the
FBMC principles in Section II. In Section III, we present the
asymptotic equivalent channel model between the mobile ter-
minals and the BS in an FBMC massive MIMO setup. This
analysis will lead to an upper bound for the SINR performance
of the system. Our proposed equalization method is introduced
in Section IV. In Section V, we study the FBMC in massive
MIMO from a frequency-domain perspective, leading to some
insightful remarks regarding these systems. In Section VI, we
find the SINR performance of the FBMC system incorporating
the proposed equalization method. The mathematical analysis
of the paper as well as the efficacy of the proposed filter design
technique are numerically evaluated in Section VII. Finally, we
conclude the paper in Section VIII.

Notations: Matrices, vectors and scalar quantities are denoted
by boldface uppercase, boldface lowercase and normal letters,
respectively. Am,n represents the element in the mth row and
the nth column of A and A−1 signifies the inverse of A. IM

is the identity matrix of size M × M , and D = diag{a} is a
diagonal matrix whose diagonal elements are formed by the
elements of the vector a. The superscripts (·)T , (·)H and (·)∗ in-
dicate transpose, conjugate transpose, and conjugate operations,
respectively. The linear convolution is denoted by �. The real
and imaginary parts of a complex number are denoted by �{·}
and �{·}, respectively. E{·} denotes the expected value of a
random variable, and tr{·} is the matrix trace operator. The no-
tation CN (0, σ2) represents the circularly-symmetric complex
normal distribution with zero mean and variance σ2 . Finally, δij

represents the Kronecker delta function.

II. FBMC PRINCIPLES

We present the theory of FBMC in discrete time. Let dm,n

denote the real-valued data symbol transmitted over the mth
subcarrier and the nth symbol time index. The total number of
subcarriers is assumed to be M . In order to avoid interference
between the symbols and, thus, maintain the orthogonality, the
data symbol dm,n is phase adjusted using the phase term ejθm , n ,
where θm,n = π

2 (m + n). Accordingly, each symbol has a ± π
2

phase difference with its adjacent neighbors in both time and
frequency. The symbols are then pulse-shaped using a prototype
filter f [l], which has been designed such that q[l] = f [l] � f ∗[−l]

is a Nyquist pulse with zero crossings at M sample intervals.
The length of the prototype filter, f [l], is usually expressed as
Lf = κM , where κ is called the overlapping factor.1 To express
the above procedure in a mathematical form, the discrete-time
FBMC waveform can be written as, [13],

x[l] =
+∞∑

n=−∞

M −1∑

m=0

dm,nam,n [l], (1)

where

am,n [l] = fm [l − nM/2]ejθm , n . (2)

Here, fm [l] � f [l]ej 2 π m l
M is the prototype filter modulated to

the center frequency of the mth subcarrier, and the functions
am,n [l], for m ∈ {0, . . . , M − 1} and n ∈ {−∞, . . . ,+∞},
can be thought as a set of basis functions that are used to modu-
late the data symbols. Note that the spacing between successive
symbols in the time domain is M/2 samples. In the frequency
domain, the spacing between successive subcarriers is 1/M in
normalized frequency scale. It can be shown that the basis func-
tions am,n [l] are orthogonal in the real domain, [13], i.e.,

〈am,n [l], am ′,n ′ [l]〉� = �
{ +∞∑

l=−∞
am,n [l]a∗

m ′,n ′ [l]
}

= δmm ′δnn ′ . (3)

As a result, the data symbols can be extracted from the synthe-
sized signal, x[l], according to

dm,n = 〈x[l], am,n [l]〉�. (4)

Fig. 1 shows the block diagram of the FBMC transceiver. Note
that considering the transmitter prototype filter f [l], and the re-
ceiver prototype filter f ∗[−l], the overall effective pulse shape
q[l] = f [l] � f ∗[−l] is a Nyquist pulse by design. Also, in prac-
tice, in order to efficiently implement the synthesis (transmitter
side) and analysis (receiver side) filter banks, one can incorpo-
rate the polyphase implementation to reduce the computational
complexity, [5].

The presence of a frequency-selective channel leads to some
distortion in the received signal. Thus, one may adopt some sort
of equalization to retrieve the transmitted symbols at the receiver
side. In this paper, we limit our study to a case where the channel
impulse response remains time-invariant over the interval of
interest. Accordingly, the received signal at the receiver can be
expressed as

y[l] = h[l] � x[l] + ν[l], (5)

where h[l] represents the channel impulse response, and ν[l]
is the additive white Gaussian noise (AWGN). We denote the
length of the channel impulse response by Lh .

At the receiver, after matched filtering and phase compensa-
tion, and before taking the real part (see Fig. 1), the demodulated
signal ym,n can be expressed as

ym,n =
+∞∑

n ′=−∞

M −1∑

m ′=0

Hmm ′,nn ′dm ′,n ′ + νm,n , (6)

1The overlapping factor indicates the number of adjacent FBMC symbols
overlapping in the time domain.
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Fig. 1. Block diagram of the FBMC transceiver in discrete time.

Fig. 2. The equivalent channel between the transmitted data symbol at time-frequency point (m′, n′) and the demodulated symbol at time-frequency point
(m, n).

where νm,n is the noise contribution, and the interference coef-
ficient Hmm ′,nn ′ can be calculated according to

Hmm ′,nn ′ = hmm ′ [n − n′]ej (θm ′ , n ′−θm , n ) , (7a)

hmm ′ [n] =
(
fm ′ [l] � h[l] � f ∗

m [−l]
)

↓M
2

. (7b)

The symbol ↓ M
2 denotes M

2 -fold decimation. In (7), hmm ′ [n] is
the equivalent channel impulse response between the transmit-
ted symbols at subcarrier m′ and the received ones at subcarrier
m. This includes the effects of the transmitter filtering, the mul-
tipath channel, and the receiver filtering; see Fig. 2. According
to (6), the demodulated symbol ym,n suffers from interference
originating from other time-frequency symbols. In practice, the
prototype filter f [l] is designed to be well localized in time
and frequency. As a result, the interference is limited to a small
neighborhood of time-frequency points around the desired point
(m,n).

In order to devise a simple equalizer to combat the frequency-
selective effect of the channel, it is usually assumed that the
symbol period M/2 is much larger than the channel length
Lh , or equivalently, the channel frequency response is approxi-
mately flat over each subcarrier band. With this assumption, the
demodulated signal ym,n can be expressed as, [14],

ym,n ≈ Hm

(
dm,n + um,n

)
+ νm,n , (8)

where Hm �
∑Lh −1

l=0 h[l]e−j 2 π m l
M is the channel frequency re-

sponse at the center of the mth subcarrier. The term um,n is
called the intrinsic interference and is purely imaginary. This
term represents the contribution of the intersymbol interference
(ISI) and intercarrier interference (ICI) from the adjacent time-
frequency symbols around the desired point (m,n). Based on
(8), the effect of channel distortions can be compensated using a
single-tap equalizer per subcarrier. After equalization, what re-
mains is the real-valued data symbol dm,n , the imaginary term

um,n , and the noise contribution. By taking the real part from
the equalized symbol, one can remove the intrinsic interference
and obtain an estimate of dm,n .

It should be noted that the performance of the above single-tap
equalization primarily depends on the validity of the assumption
that the symbol duration is much larger than the channel length,
or equivalently, the frequency response of the channel is approx-
imately flat over the pass-band of each subcarrier. On the other
hand, in highly frequency-selective channels, where the above
assumption is not accurate any more, more advanced multi-
tap equalization methods (see [6], [15]) should be deployed to
counteract the multipath channel distortions.

III. MASSIVE MIMO FBMC: ASYMPTOTIC ANALYSIS

In this section, we first extend the formulation of the previous
section to massive MIMO channels. Then, we show that linear
combining of the signals received at the BS antennas using the
channel frequency coefficients leads to a residual interference
that does not fade away even with an infinite number of BS
antennas. Hence, we conclude, the SINR is upper bounded by
a certain deterministic value, and arbitrarily large SINR per-
formances cannot be achieved as the number of BS antennas
grows.

We consider a single-cell massive MIMO setup [3], with
K single-antenna MTs that are simultaneously communicating
with a BS equipped with an array of N antenna elements. As
mentioned earlier, in this paper, we consider the uplink transmis-
sion while the results and our proposed technique are trivially
applicable to the downlink transmission as well.

Let xk [l] represent the transmit signal of the terminal k. The
received signal at the ith BS antenna can be expressed as

yi [l] =
K−1∑

k=0

xk [l] � hi,k [l] + νi [l], (9)

Authorized licensed use limited to: Maynooth University Library. Downloaded on August 31,2020 at 10:36:42 UTC from IEEE Xplore.  Restrictions apply. 



3990 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 15, AUGUST 1, 2018

where hi,k [l] is the channel impulse response between the kth
terminal and the ith BS antenna, and νi [l] is the additive noise
at the input of the ith BS antenna. We assume that the samples
of the noise signal νi [l] are a set of independent and identically
distributed (i.i.d.) CN (0, σ2

ν ) random variables.
For a given terminal k, we model the corresponding chan-

nel responses using the channel power delay profile (PDP)
pk [l], l = 0, . . . , Lh − 1. In particular, we assume that the chan-
nel tap hi,k [l], l ∈ {0, . . . , Lh − 1}, follows a CN (0, pk [l]) dis-
tribution, and different taps are assumed to be independent. The
above assumption implies that the BS antenna array is suffi-
ciently compact so that the channel responses corresponding to
a particular user and different BS antennas are subject to the
same channel PDP. We also assume that the channels corre-
sponding to different terminals and different BS antennas are
independent. Moreover, for each terminal, the average transmit-
ted power is assumed to be equal to one, i.e., E{|xk [l]|2} = 1.
To simplify the analysis throughout the paper, we assume that
the BS has a perfect knowledge of the channel state information
(CSI).

Following (9), we can extend (6) to the MIMO case according
to

ym,n =
+∞∑

n ′=−∞

M −1∑

m ′=0

Hmm ′,nn ′dm ′,n ′ + νm,n , (10)

where ym,n is an N × 1 vector containing the demodulated
symbols corresponding to different BS antennas, dm,n is a
K × 1 vector containing the real-valued data symbols of all
the K terminals transmitted at the mth subcarrier and the nth
time instant, νm,n is the noise contribution across different BS
antennas, and Hmm ′,nn ′ is an N × K channel matrix. The ele-
ment (i, k) of Hmm ′,nn ′ can be calculated according to

Hi,k
mm ′,nn ′ = hi,k

mm ′ [n − n′]ej (θm ′ , n ′−θm , n ) , (11a)

hi,k
mm ′ [n] =

(
fm ′ [l] � hi,k [l] � f ∗

m [−l]
)

↓M
2

. (11b)

We assume that the BS uses a single-tap equalizer per antenna
per subcarrier. Accordingly, combining the elements of ym,n

using an N × K matrix Wm , and taking the real part from the
resulting signal, the estimate of the transmitted data symbols for
all the terminals can be obtained as

d̂m,n = �{WH
mym,n

}

= �
{

+∞∑

n ′=−∞

M −1∑

m ′=0

WH
mHmm ′,nn ′dm ′,n ′ + WH

mνm,n

}

= �
{

+∞∑

n ′=−∞

M −1∑

m ′=0

Gmm ′,nn ′dm ′,n ′ + ν ′
m,n

}
, (12)

where Gmm ′,nn ′ � WH
mHmm ′,nn ′ , and ν ′

m,n � WH
mνm,n .

Here, we examine MRC, ZF, and MMSE linear combiners.
These combiners can be formed as

Wm =

⎧
⎪⎨

⎪⎩

HmD−1
m , for MRC,

Hm

(
HH

mHm

)−1
, for ZF,

Hm

(
HH

mHm + σ2
ν IK

)−1
, for MMSE,

(13)

where Hm is the channel coefficient matrix at the center of the
mth subcarrier, i.e., Hi,k

m �
∑Lh −1

l=0 hi,k [l]e−j 2 π m l
M . In MRC,

Dm is a K × K diagonal matrix with the kth diagonal element
given by Dk,k

m =
∑N −1

i=0 |Hi,k
m |2 . The role of Dm is to normal-

ize the amplitude of the MRC output. Without this term, the
amplitude grows linearly without a bound as the number of BS
antennas increases.

We note that for large number of BS antennas N and using
the law of large numbers, Dm tends to NIK . Similarly, when N
grows large and due to the law of large numbers, HH

mHm tends
to NIK , [16]. Hence, all of the above combiners tend to 1

N Hm ,
i.e., matched filter, as the number of BS antennas increases, [16].
Therefore, in the following, to find the various interference terms
in the asymptotic regime, i.e., as the number of BS antennas
N approaches infinity, we consider matched filter (MF) multi-
antenna combining according to Wm = 1

N Hm .
Before we continue, we recall the following result from

probability theory, paving the way for our upcoming deriva-
tions. Let a = [a1 , . . . , an ]T and b = [b1 , . . . , bn ]T be two ran-
dom vectors each containing i.i.d. elements. Moreover, assume
that the ith elements of a and b are correlated according to
E
{
a∗

i bi

}
= Cab , i = 1, . . . , n. Consequently, according to the

law of large numbers, the sample mean 1
n aHb = 1

n

∑n
i=1 a∗

i bi

converges almost surely to the distribution mean Cab as n tends
to infinity.

In the asymptotic regime, i.e., as N tends to infinity, the
elements of Gmm ′,nn ′ = WH

mHmm ′,nn ′ can be calculated using
the law of large numbers. In particular, as N grows large, the
element (k, k′) of Gmm ′,nn ′ converges almost surely to

Gk,k ′
mm ′,nn ′ → E

{(
Hi,k

m

)∗
Hi,k ′

mm ′,nn ′

}
. (14)

To calculate the right hand side of (14), we first find the equiva-
lent time-domain channel impulse response after multi-antenna
combining. In particular, let gk,k ′

mm ′ [n] denote the equivalent chan-
nel impulse response between the transmitted symbols at sub-
carrier m′ of terminal k′ and the received ones at subcarrier
m of BS output corresponding to terminal k after combining.2

Following (11), we have

gk,k ′
mm ′ [n] =

1
N

N −1∑

i=0

(
Hi,k

m

)∗(
fm ′ [l] � hi,k ′ [l] � f ∗

m [−l]
)
↓M

2
.

(15)

Hence, as the number of BS antennas grows large, the asymp-
totic equivalent channel response can be obtained using the law
of large numbers according to

gk,k ′
mm ′ [n] → E

{(
Hi,k

m

)∗ (
fm ′ [l] � hi,k ′ [l] � f ∗

m [−l]
)
↓M

2

}

=
(
fm ′ [l] � E

{(
Hi,k

m

)∗
hi,k ′ [l]

}
� f ∗

m [−l]
)

↓M
2

.

(16)

The above expression includes a correlation between the channel
frequency coefficient Hi,k

m and the channel impulse response

2Note that we have used the letters g and G, respectively, to denote the
equivalent time and frequency channel coefficients after combining. On the
other hand, letters h and H have been used in (11), to refer to the respective
channel coefficients before combining.
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Fig. 3. Block diagram of the proposed receiver structure to resolve the saturation issue. Here, only the portion of the receiver corresponding to subcarrier m and
terminal k is shown.

hi,k ′ [l]. This correlation can be calculated as

E
{(

Hi,k
m

)∗
hi,k ′ [l]

}
=

Lh −1∑

	=0

E
{
h∗

i,k [	]hi,k ′ [l]
}

ej 2 π 	 m
M

= pk [l]ej 2 π l m
M δkk ′ = pk,m [l]δkk ′ , (17)

where pk,m [l] � pk [l]ej 2 π l m
M is the channel PDP of terminal k

modulated to the center frequency of the mth subcarrier. The
result in (17) shows the correlation between the combiner taps
at the receiver and the channel impulse responses between MTs
and the BS antennas. The following proposition states the impact
of this correlation on the SINR at the receiver outputs.

Proposition 1: In an FBMC massive MIMO system, as the
number of BS antennas tends to infinity, the effects of multiuser
interference and noise vanish. However, some residual ISI and
ICI from the same user remain even with infinite number of
BS antennas. In particular, for a given user k, the equivalent
channel impulse response between the transmitted data symbols
at subcarrier m′ and the received ones at subcarrier m tends to

gk,k
mm ′ [n] →

(
fm ′ [l] � pk,m [l] � f ∗

m [−l]
)

↓M
2

, (18)

which is dependent on the channel PDP. As a result, the SINR
converges almost surely to

SINRk
m,n → �2

{
Gk,k

mm,nn

}
∑+∞

n ′=−∞
∑M −1

m ′=0
(m ′,n ′) =(m,n)

�2
{
Gk,k

mm ′,nn ′
} , (19)

where Gk,k
mm ′,nn ′ = gk,k

mm ′ [n − n′]ej (θm ′ , n ′−θm , n ) . The above
value constitutes an upperbound for the SINR performance
of the system. Hence, arbitrarily large SINR values cannot be
achieved by increasing the BS array size.

Proof: As suggested by (17), when k′ = k, the channel re-
sponse tends to zero. Thus, multiuser interference tends to zero.
A similar argument can be made for the additive noise. This
results from the law of large numbers and the fact that the
combiner coefficients are uncorrelated with the filtered noise
samples. When k′ = k, which implies the interference from
the same user on itself, the channel response tends to (18).
Notice that due to the presence of pk,m [l], the orthogonality
condition of (3) does not hold anymore even with an infinite
number of BS antennas. Consequently, some residual ISI and
ICI remain and cause the SINR to saturate at a deterministic
level given in (19). �

We note that according to (14), the asymptotic SINR satura-
tion results from the statistical correlation between the multi-
antenna combiner taps and the interference coefficients. This
correlation is an inherent property of FBMC-based massive
MIMO systems and is due to the transients of the channel
impulse response since no cyclic prefix (CP) is used. In par-
ticular, when the multi-antenna combining is performed in the
frequency domain according to (13), such correlation appears
as a result of the leakage due to the absence of CP. This result
is general as a similar phenomenon also emerges in massive
MIMO systems based on OFDM without CP, [17].

IV. EQUALIZATION

As discussed in the previous section, even with an infinite
number of BS antennas, some residual ICI and ISI remain due
to the correlation between the combiner taps and the channel
impulse responses between the MTs and the BS antennas. As a
solution to this problem, in this section, we propose an efficient
equalization method to remove the above correlation.

In (18), the problematic term that leads to the saturation is-
sue is the modulated channel PDP, pk,m [l]. In the absence of
this term, the channel response gk,k

mm ′ [n] =
(
fm ′ [l] � f ∗

m [−l]
)
↓M

2

does not incur any interference provided that q[l] = f [l] �
f ∗[−l] is a Nyquist pulse. This observation suggests that we can
resolve the saturation issue by equalizing the effect of pk,m [l].
Let Pk (ω) denote the discrete-time Fourier transform (DTFT) of
pk [l]. Similarly, we define Pk,m (ω) = Pk (ω − 2πm/M) as the
DTFT of pk,m [l]. This observation implies that one can equalize
the effect of pk,m [l] by introducing a filter φk,m [l] with transfer
function

Φk,m (ω) =
1

Pk,m (ω)
, (20)

in cascade with f ∗
m [−l] to achieve the desired equivalent chan-

nel response gk,k
mm ′ [n] → (

fm ′ [l] � f ∗
m [−l]

)
↓M

2
in the asymptotic

regime. This modifies the receiver structure as illustrated in
Fig. 3.

Proposition 2: In an FBMC massive MIMO system, as the
number of BS antennas tends to infinity and by using the pro-
posed equalization method, the channel distortions, i.e., ICI and
ISI, as well as MUI and noise effects will disappear, and arbi-
trarily large SINR performances can be achieved.
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Fig. 4. Block diagram of the simplified receiver. Utilizing multi-rate signal processing techniques, the additional equalization block can be moved to after the
analysis filter bank and combiner to minimize the computational cost.

Proof: Using the equalizer in (20), the distortion due to the
channel PDP pk,m [l] in the equivalent channel impulse response
in (18) is removed. Hence, the equivalent channel impulse re-
sponse tends to that of an ideal channel. As a result, the effects
of ICI and ISI will vanish asymptotically.

Note that in the presence of the proposed equalizer, multiuser
interference still tends to zero. This is due to the fact that the
asymptotic values of the multiuser interference coefficients are
given by (14) for k = k′. Since the channels of different users
are independent, the effect of multiuser interference tends to
zero whether or not the proposed equalizer is in place. This ar-
gument also holds for the noise contribution since the combining
coefficients and the filtered noise samples are independent. �

It is worth mentioning that in the above analysis, we did not
make any assumption about the flatness of the channel response
over the bandwidth of each subcarrier. Thus, the result obtained
in Proposition 2 is valid for any frequency-selective channel. It
is worth mentioning that according to (20), the proposed filter
response depends on the channel PDPs. Hence, the BS needs to
estimate the channel PDP for each terminal to be able to avoid
the saturation issue. Fortunately, in massive MIMO systems, the
channel PDP can be estimated in a relatively easy and feasible
manner. In particular, the channel PDP for each terminal can
be determined by calculating the mean power of each tap of
the respective channel impulse responses across different BS
antennas. As the number of BS antennas increases, according
to the law of large numbers, this estimate becomes closer to the
exact channel PDP.

Although the above method resolves the saturation problem,
it may not be of practical interest as it may lead to a very complex
receiver. The source of the complexity lies in the requirement of
a separate filter φk,m [l] per user per antenna. Hence, the receiver
front-end processing has to be repeated for each terminal sepa-
rately. Next, we utilize multi-rate signal processing techniques
and propose the following steps to resolve the complexity issue.

Proposition 3: In an FBMC massive MIMO system, the
channel PDP equalization can be performed after analysis filter
bank and combiner as in Fig. 4. Here,

φ̃k [n] �
(
φk [l] � sinc(2l/M)

)

↓M
2

, (21)

where φk [l] � φk,0 [l] and sinc(t) � sin(πt)
πt . Note that the term

sinc(2l/M) acts as an ideal low-pass filter with bandwidth 2π
M .

Proof: The FBMC prototype filter is normally designed such
that its frequency response is almost perfectly confined to the

Fig. 5. Two equivalent systems considered in the proof of Proposition 3.

interval [− 2π
M , 2π

M ]. Hence, in Fig. 3, after filtering the incom-
ing signal ym [l] by f ∗

m [−l], the frequency response of the
result is almost perfectly confined to the frequency interval[ 2π (m−1)

M , 2π (m+1)
M

]
. This implies that the input to φk,m [l] is

band-limited. It is intuitive that since the input to the equal-
izer is band-limited, the equalization processing can take place
in the low rate (after decimation). Subsequently, the filtering
can be moved to after the combining due to the linearity. This
leads to the structure in Fig. 4. Note that the equalizer used
for any particular subcarrier can be obtained from the one used
for subcarrier 0. In the following, we rigorously prove that the
equalization can be performed after the decimation.

For simplicity, consider the two systems given in Fig. 5. Here,
x[l] is an arbitrary band-limited signal whose spectrum is con-
fined to the frequency interval [− 2π

M , 2π
M ], and h[l] is an arbi-

trary filter impulse response. Moreover, let xm [l] � x[l]ej 2 π m l
M

and hm [l] � h[l]ej 2 π m l
M represent the modulated versions of x[l]

and h[l], respectively, and h̃[n] �
(
h[l] � sinc(2l/M)

)
↓M

2
de-

note the band-limited and decimated version of h[l]. We prove
that two systems shown in Fig. 5 are equivalent.

First consider the top system in Fig. 5, and let ĥ[l] � h[l] �
2
M sinc(2l/M) which has the transfer function

Ĥ(ω) =
{

H(ω), ω ∈ [− 2π
M , 2π

M ],
0, else.

.

Note that since the input signal does not have any fre-
quency component outside of the frequency interval [ 2π (m−1)

M ,
2π (m+1)

M ], it is possible to use the filter ĥm [l] � ĥ[l]ej 2 π m l
M in-

stead of hm [l] in the top system in Fig. 5. Subsequently, after
the decimation operation, the DTFT of the output signal y[n]
can be expressed as, [18],

Y (ω) =
2
M

M
2 −1∑

k=0

X

(
2ω − 2π(2k + m)

M

)

Ĥ

(
2ω − 2π(2k + m)

M

)
.
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Using the fact that both X(ω) and Ĥ(ω) are band-limited to
[− 2π

M , 2π
M ], we find that in the summation above, only one of the

terms is non-zero. In particular, for even m we have

Y (ω) =
2
M

X
(2ω

M

)
Ĥ
(2ω

M

)
, −π ≤ ω ≤ +π,

and for odd m we have

Y (ω) =
2
M

X
(2ω − 2π

M

)
Ĥ
(2ω − 2π

M

)
, 0 ≤ ω ≤ 2π.

Here, it is worth to mention that when m is even, 2
M X

( 2ω
M

)

and 2
M Ĥ

( 2ω
M

)
represent the DTFT of the decimated versions

of xm [l] and ĥm [l], respectively. Similarly, when m is odd,
2
M X

( 2ω−2π
M

)
and 2

M Ĥ
( 2ω−2π

M

)
express the DTFT of the deci-

mated versions of xm [l] and ĥm [l], respectively. Consequently,
instead of passing xm [l] through the filter ĥm [l] and decimating
the result, one can decimate both xm [l] and ĥm [l] separately, and
then convolve them together in the low rate. Before we finish
the proof, we just aim to derive the decimated version of ĥm [l]
in terms of h[l]. We have

M

2

(
ĥm [l]

)

↓M
2

=
M

2

((
h[l] �

2
M

sinc(2l/M)
)

ej 2 π m l
M

)

↓M
2

= h̃[n]ejπmn .

This results in the system given in Fig. 5. This completes the
proof. �

As suggested by the above proposition, one can incorporate
the receiver structure shown in Fig. 4 to resolve the saturation
issue in an efficient manner. In particular, after the analysis filter
bank and multi-antenna combining, the filter φ̃k [n]ejπmn can
be incorporated to equalize the effect of the problematic term
pk,m [l] in (18). Note that in this approach, the main parts of
the receiver front-end including the analysis filter bank and the
multi-antenna combiner will remain unchanged. The advantages
of this simplified structure as compared to the previous one
include: (i) The analysis filter bank is common for all terminals
and can be performed once. (ii) The additional equalizer has
a very short length since it is performed at the low rate after
decimation, and (iii) the equalizer is performed after the multi-
antenna combining, hence, its computational cost is independent
of the number of BS antennas.

Before we end this section, we note that according to (18), a
frequency shifted version of the power delay profile pk [l] distorts
the equivalent channel. As a result, only the frequency response
of pk [l] limited to the interval ω ∈ [− 2π

M ,+2π
M ] affects the re-

spective equivalent channel response. This interval corresponds
to the width of a single subcarrier.

V. FREQUENCY-DOMAIN PERSPECTIVE

In this section, we aim at studying the results of the previous
sections from the frequency-domain point of view. As we show,
this study leads to a deeper understanding of FBMC in massive
MIMO channels.

In OFDM-based systems, presence of the CP greatly sim-
plifies the equalization procedure. In particular, as long as the
length of the CP is larger than the duration of channel impulse

response, one can utilize a single-tap equalizer per subcarrier to
undo the effect of the channel and retrieve the transmitted data
symbols. On the other hand, in FBMC-based systems, since no
CP is adopted, single-tap equalization does not fully compen-
sate the channel frequency-selectivity across subcarrier bands.
However, assuming that the number of subcarriers is sufficiently
large so that the channel frequency response is approximately
flat over each subcarrier band, then the model described by (8)
is going to be valid. Therefore, the task of equalization can be
simplified by using single-tap equalization per subcarrier.

In this section, we aim at discussing the fact that in massive
MIMO systems, by using the equalization method developed in
Section IV, it is not necessary to have a flat channel response
over the band of each subcarrier in order to use single-tap equal-
izer. In particular, by using the simple single-tap per subcarrier
equalization even in strong frequency selective channels and by
incorporating a large number of antennas at the BS, the effec-
tive channel response becomes flat. It is clear that this property
has a number of advantages from the system implementation
point of view. In particular, since there is no need for flat-fading
assumption over the band of each subcarrier, one can widen the
subcarrier widths (or equivalently decrease the symbol dura-
tion). Consequently, the following advantages can be achieved,
[8].

1) The sensitivity to carrier frequency offset (CFO) in the up-
link of multiple access networks is decreased by widening
the subcarrier bands.

2) The peak-to-average power ratio (PAPR) is lowered,
which leads to larger coverage and higher battery effi-
ciency in mobile terminals. This is a direct consequence
of reducing the number of subcarriers in a synthesized
signal.

3) The sensitivity to channel time variations within the
FBMC symbol duration is reduced. This advantage arises
from the reduction of the symbol duration. As a result,
a higher quality of service is expected in highly time-
varying channels such as in high speed trains.

4) The latency between the terminals and the BS is decreased,
as a result of shorter symbol durations. This is crucial
for addressing the low-latency requirements of the 5G
networks.

5) The inefficiency due to the ramp-up and ramp-down of
the prototype filter at the beginning and the end of each
packet, especially in bursty communications, is decreased.
This results from the shortening of the symbol duration
which in turn leads to a shorter prototype filter in the time
domain, [19].

Following (15), we can obtain the frequency response of the
equivalent channel after combining. To this end, consider a given
terminal k, and let Gk,k

mm ′(ω) denote the frequency response of
the high-rate (i.e., without decimation) equivalent channel be-
tween the transmitted symbols at subcarrier m′ and the received
ones at subcarrier m. We have

Gk,k
mm ′(ω) =

1
N

N −1∑

i=0

(
Hi,k

m

)∗
Fm ′(ω)Hi,k (ω)F ∗

m (ω)

= Ck,k
m (ω)Fm ′(ω)F ∗

m (ω), (22)
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Fig. 6. Illustration of the equivalent channel response. Here, we assume M = 512, and consider an exponentially decaying channel PDP with the decaying
factor of 0.06 and the length of Lh = 50. (a) The equivalent channel, Ck ,k

m (ω), for subcarrier m = 0, without the proposed equalizer. (b) The equivalent channel,
C̃ k ,k

m (ω), for subcarrier m = 0, with the proposed equalizer. As the number of BS antennas increases, the equivalent channel becomes flat only when the proposed
equalizer is in place.

where

Ck,k
m (ω) =

1
N

N −1∑

i=0

(
Hi,k

m

)∗
Hi,k (ω). (23)

In (22), Fm ′(ω) and F ∗
m (ω) are two modulated square-root

Nyquist filters, i.e., Q(ω) = |F (ω)|2 is a Nyquist pulse, and
Ck,k

m (ω) is due to the multipath channel. Ideally, Ck,k
m (ω) should

be flat over the pass band of the subcarrier m so that the sym-
bols of subcarrier m can be perfectly reconstructed without any
interference. However, when there exists a frequency-selective
channel, the term Ck,k

m (ω) may incur some distortion over the
pass band of subcarrier m and, accordingly, lead to some inter-
ference in the detected symbols. As the number of BS antennas
grows large, using the law of large numbers and according to
(17), Ck,k

m (ω) tends to Pk,m (ω). Therefore, the flat-fading con-
dition may not be achieved by just increasing the BS array size.

On the other hand, when the equalizer in (20) is utilized, the
equivalent channel in the frequency domain can be expressed as

G̃k,k
mm ′(ω) = C̃k,k

m (ω)Fm ′(ω)F ∗
m (ω), (24)

where

C̃k,k
m (ω) =

1
N

∑N −1
i=0

(
Hi,k

m

)∗
Hi,k (ω)

Pk,m (ω)
=

Ck,k
m (ω)

Pk,m (ω)
. (25)

Therefore, since Ck,k
m (ω) asymptotically tends to Pk,m (ω),

C̃k,k
m (ω) will in turn tend to a frequency flat channel. Thus,

no interference is expected in large antenna regime. This chan-
nel flattening effect of FBMC-based massive MIMO systems is
illustrated in Fig. 6.

VI. SINR ANALYSIS

In this section, we analyze the SINR performance of an
FBMC-based massive MIMO system in the uplink incorporat-
ing the proposed equalization method. We limit our study to the
two most prominent linear combiners namely, MRC and ZF. As
mentioned earlier, in the large antenna regime, all the combiners
in (13) tend to 1

N Hm , and hence, the same asymptotic SINR
performance as in MRC and ZF is expected for the MMSE com-
biner. As mentioned earlier, the equalization approaches given
in Figs. 3 and 4 are equivalent. Although the method given in
Fig. 4 is preferred for implementation, here, for the purpose of
analysis, we consider the approach given in Fig. 3. Through-
out this section, we consider normalized channel PDPs for each
terminal such that

Lh −1∑

l=0

pk [l] = 1, k ∈ {0, . . . , K − 1}. (26)

In Fig. 3, the receiver filter f ∗
m [−l] and the equalizer φk,m [l]

can be combined together as a single filtering block with im-
pulse response f̃ ∗

k,m [−l] � f ∗
m [−l] � φk,m [l]. Therefore, we can

consider having the new receiver filter f̃ ∗
k,m [−l] in place, and

use (12) to obtain the estimated data symbols. To this end, let
H̃k

mm ′,nn ′ be an N × K matrix with elements given by (11)

but with the new filter f̃ ∗
k,m [−l] in place instead of f ∗

m [−l].
Moreover, we form the K × K matrix G̃mm ′,nn ′ similar to
Gmm ′,nn ′ . In particular, the kth row of G̃mm ′,nn ′ can be cal-
culated as wH

m,kH̃
k
mm ′,nn ′ , where wm,k is the kth column of

the combiner matrix Wm . Following the above definitions, the
interference coefficients are determined by the real part of the
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elements of G̃mm ′,nn ′ . In order to pave the way for our SINR
analysis, we desire to find the elements of G̃mm ′,nn ′ in a matrix
form. Towards this end and based on (11) and (12), the con-
volution, downsampling, multi-antenna combining, and phase
compensation operations can all be expressed compactly as

G̃k,k ′
mm ′,nn ′ =

(
ψk

mm ′,nn ′
)Hgk,k ′

m , (27)

where

gk,k ′
m =

N −1∑

i=0

(W i,k
m

)∗
hi,k ′ , (28)

and
(
ψk

mm ′,nn ′
)H = ej (θm ′ , n ′−θm , n )eT

nn ′F̃k,mFm ′ . (29)

The vector gk,k ′
m is the effective multipath channel impulse

response between terminals k and k′ at subcarrier m, after
the combining operation. hi,k �

[
hi,k [0], . . . , hi,k [Lh − 1]

]T

is the vector of channel impulse response between ith BS an-
tenna and kth terminal. Fm ′ and F̃k,m are two Toeplitz matri-
ces that are defined in (30a) and (30b), respectively, and sig-
nify the synthesis filter at subcarrier m′ and the new analysis
filter at subcarrier m, respectively. Note that the size of the
matrix Fm ′ is (Lf + Lh − 1) × Lh . To determine the size of
F̃k,m , we follow (20) to note that fm [l] = f̃k ,m [l] � p∗k,m [−l].
Hence, the length of the new filter f̃k ,m [l] can be obtained as
Lf̃ = Lf − Lh + 1. As a result, the size of F̃k,m can be calcu-
lated as (2Lf − 1) × (Lf + Lh − 1). The (2Lf − 1) × 1 vector
enn ′ is accounted for the downsampling operation and contains
zeros except on its (Lf + (n − n′)M

2 )th entry which is equal to
one. Finally, ej (θm ′ , n ′−θm , n ) is due to the phase compensation.

Fm ′ =

⎛

⎜⎜⎜⎜⎜⎝

fm ′ [0] 0 · · · 0 0
fm ′ [1] fm ′ [0] · · · 0 0

...
...

...
...

...
0 0 · · · fm ′ [Lf − 1] fm ′ [Lf − 2]
0 0 · · · 0 fm ′ [Lf − 1]

⎞

⎟⎟⎟⎟⎟⎠
,

(30a)

F̃k,m =

⎛

⎜⎜⎜⎜⎜⎜⎝

f̃ ∗
k,m [Lf̃ − 1] 0 · · · 0 0

f̃ ∗
k,m [Lf̃ − 2] f̃ ∗

k,m [Lf̃ − 1] · · · 0 0
...

...
...

...
...

0 0 · · · f̃ ∗
k,m [0] f̃ ∗

k,m [1]
0 0 · · · 0 f̃ ∗

k,m [0]

⎞

⎟⎟⎟⎟⎟⎟⎠
.

(30b)

Note that in (27), the termψk
mm ′,nn ′ is completely determinis-

tic, whereas gk,k ′
m is a random vector. Therefore, in this equation,

we have decomposed the interference coefficients into random
and deterministic components. Moreover, while ψk

mm ′,nn ′ does
not depend on the type of combining, gk,k ′

m is directly related to
the combining method and should be evaluated for each com-
biner separately.

A. MRC

In MRC, as the number of BS antennas grows large, Dm in
(13) tends to NIK . Therefore, we can write gk,k ′

m = 1
N

∑N −1
i=0

(Hi,k
m )∗hi,k ′ . In the Appendix, we have calculated the first and

second order statistics of the complex random vector gk,k ′
m . The

result is

μk,k ′
m � E

{
gk,k ′

m

}
= δkk ′pk,m , (31a)

Γk,k ′
m � E

{(
gk,k ′

m − μk,k ′
m

)(
gk,k ′

m − μk,k ′
m

)H
}

=
1
N

Dpk ′ ,

(31b)

Kk,k ′
m � E

{(
gk,k ′

m − μk,k ′
m

)(
gk,k ′

m − μk,k ′
m

)T
}

=
1
N

δkk ′pk,mpT
k,m , (31c)

where Dpk
� diag

{[
pk [0], pk [1], . . . , pk [Lh− 1]

]T}
, and pk,m

�
[
pk,m [0], pk,m [1], . . . , pk,m [Lh − 1]

]T
.

Let γk,k ′
m be a zero-mean random vector defined as γk,k ′

m �
gk,k ′

m − μk,k ′
m . Thus, from (27) and (31a) we have

G̃k,k ′
mm ′,nn ′

=
(
ψk

mm ′,nn ′
)H
γk,k ′

m + δkk ′
(
ψk

mm ′,nn ′
)Hpk,m

=
(
ψk

mm ′,nn ′
)H
γk,k ′

m + δkk ′
(
δmm ′δnn ′ + jAmm ′,nn ′

)
, (32)

where Amm ′,nn ′ � �{∑+∞
l=−∞ am ′,n ′ [l]a∗

m,n [l]
}

. The second
line of (32) follows from the real-orthogonality property of
FBMC given in (3). We recall that by incorporating the
equalizer φk,m [l], the effect of the modulated channel PDP
pk,m [l] is removed and the real-orthogonality condition is
satisfied. Hence, the term (ψk

mm ′,nn ′)Hpk,m = ej (θm ′ , n ′−θm , n )

eT
nn ′F̃k,mFm ′pk,m is equal to δmm ′δnn ′ + jAmm ′,nn ′ since the

matrix F̃k,m compensates the effect of pk,m .
As mentioned above, the interference coefficients are given

by the real part of the elements of G̃mm ′,nn ′ . Let Rmm ′,nn ′ �
�{G̃mm ′,nn ′ }, and ν ′′

m,n � �{ν ′
m,n}. Accordingly, (12) can

be reformulated as

d̂m,n =
+∞∑

n ′=−∞

M −1∑

m ′=0

Rmm ′,nn ′dm ′,n ′ + ν ′′
m,n . (33)

By stacking the real and imaginary parts of the matrices and
vectors that constitute the elements of G̃mm ′,nn ′ , it is possible
to find an expression for the elements of Rmm ′,nn ′ . In partic-
ular, for an arbitrary complex matrix or vector a, we define
ǎ � [�{aT},�{aT}]T . Thus, following (32) we can find the
elements of Rmm ′,nn ′ as

Rk,k ′
mm ′,nn ′ =

(
ψ̌

k
mm ′,nn ′

)T
γ̌k,k ′

m + δkk ′δmm ′δnn ′ . (34)
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We note that the real-valued random vector γ̌kk ′
m is zero-mean

and its covariance matrix can be determined using (31) as

Ck,k ′
m � E

{(
γ̌k,k ′

m − E
{
γ̌k,k ′

m

})(
γ̌k,k ′

m − E
{
γ̌k,k ′

m

})T
}

=
1
2

[
�{Γk,k ′

m + Kk,k ′
m } �{−Γk,k ′

m + Kk,k ′
m }

�{Γk,k ′
m + Kk,k ′

m } �{Γk,k ′
m − Kk,k ′

m }

]

=
1
N

(Dpk ′ + δkk ′Pk,m

)
, (35)

where Dpk ′ � 1
2 [Dp

k ′
0

0
Dp

k ′
] and Pk,m � 1

2 [�{pk , m pT
k , m }

�{pk , m pT
k , m }

�{pk , m pT
k , m }

−�{pk , m pT
k , m } ].

Following (34), the instantaneous power corresponding to
Rk,k ′

mm ′,nn ′ can be calculated as

Pk,k ′
mm ′,nn ′ =

(
Rk,k ′

mm ′,nn ′

)2

=
(
γ̌k,k ′

m

)TΨk
mm ′,nn ′ γ̌k,k ′

m + δkk ′δmm ′δnn ′

+ 2δkk ′δmm ′δnn ′
(
ψ̌

k
mm ′,nn ′

)T
γ̌k,k ′

m ,

where Ψk
mm ′,nn ′ � ψ̌

k
mm ′,nn ′(ψ̌

k
mm ′,nn ′)T . From the above

equation, the average power, with averaging over different chan-
nel realizations, can be calculated according to [20, p. 53],

P̄ k,k ′
mm ′,nn ′

= tr
{
Ck,k ′

m Ψk
mm ′,nn ′

}
+ δkk ′δmm ′δnn ′

=
1
N

tr
{
(Dpk ′ + δkk ′Pk,m )Ψk

mm ′,nn ′
}

+ δkk ′δmm ′δnn ′ .

(36)

Thus, the SINR can be calculated as given in the following
proposition.

Proposition 4: In the uplink of an FBMC massive MIMO
system with MRC combiner and the proposed PDP equalizer,
the effective SINR can be calculated according to (37) shown at
the bottom of this page.

Proof: This follows from (36), and noting that unnumbered
equation shown at the bottom of this page. �

B. ZF

In the Appendix, it is shown that for the ZF combiner, pro-
vided that N ≥ K + 1, the first and second order statistics of
the random vector gk,k ′

m can be calculated according to

μk,k ′
m = δkk ′pk,m , (39a)

Γk,k ′
m =

1
N − K

(
Dpk ′ − pk ′,mpH

k ′,m
)
, (39b)

Kk,k ′
m = 0. (39c)

Hence, the covariance matrix of γ̌k,k ′
m is determined by

Ck,k ′
m =

1
N − K

(Dpk ′ − P̃k ′,m
)
, (40)

where P̃k,m � 1
2 [�{pk , m pH

k , m }
�{pk , m pH

k , m }
−�{pk , m pH

k , m }
�{pk , m pH

k , m } ].

Proposition 5: In the uplink of an FBMC massive MIMO
system with ZF combiner and the proposed PDP equalizer, and
provided that N ≥ K + 1, the effective SINR can be calculated
according to (38).

Proof: This follows from the covariance matrix given in (40)
and similar analysis as in the MRC case. �

VII. NUMERICAL RESULTS

In this section, we deploy computer simulations to evaluate
the efficacy of the proposed equalization method as well as
the analysis of the previous sections. For all the simulations in
this section, we let M = 512 and assume K = 10 terminals in
the network. We consider the PHYDYAS prototype filter, [21],
with the overlapping factor κ = 4. Normalized exponentially
decaying channel PDPs pk [l] = e−αk l/

(∑Lh −1
	=0 e−αk 	

)
, l =

0 . . . , Lh − 1 for k = 0, · · · ,K − 1 with different decaying
factors αk = (k + 1)/20 for different terminals and length

MRC:

SINRk
m,n =

N + tr
{(Dpk

+ Pk,m

)
Ψk

mm,nn

}
∑K−1

k ′=0
k ′ =k

∑+∞
n ′=−∞

∑M −1
m ′=0tr

{Dpk ′Ψ
k
mm ′,nn ′

}
+

∑+∞
n ′=−∞

∑M −1
m ′=0

(m ′,n ′) =(m,n)
tr
{(Dpk

+ Pk,m

)
Ψk

mm ′,nn ′
}

+ σ2
ν

(37)

ZF:

SINRk
m,n =

N − K
∑K−1

k ′=0
∑+∞

n ′=−∞
∑M −1

m ′=0
(m ′,n ′) =(m,n)

tr
{(Dpk ′ − P̃k ′,m

)
Ψk

mm ′,nn ′
}

+ σ2
ν

(38)

SINRk
m,n �

P̄ k,k
mm,nn∑+∞

n ′=−∞
∑M −1

m ′=0
(m ′,n ′) =(m,n)

P̄ k,k ′
mm ′,nn ′ +

∑+∞
n ′=−∞

∑M −1
m ′=0

∑K−1
k ′=0
k ′ =k

P̄ k,k ′
mm ′,nn ′ + σ2

ν

.
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Fig. 7. SINR performance comparison for the case that the proposed equalizer
is not utilized.

Lh = 50 are assumed.3 Notice that the channel PDPs are nor-
malized, i.e.,

∑Lh −1
l=0 pk [l] = 1, for k = 0, . . . , K − 1. Hence,

following the channel model in Section III, the average signal-
to-noise ratio (SNR) at the BS antennas input can be calculated
as SNR = 1/σ2

ν . We present the SINR performance correspond-
ing to terminal k = 0.

First, we show the SINR for the case where the proposed
equalization is not incorporated at the BS. Fig. 7 shows the av-
erage SINR performance (with averaging over different channel
realizations) of MRC, ZF, and MMSE combiners as a function
of different number of BS antennas. The noise level is selected
such that the SNR at the input of the BS antennas is equal to
10 dB. From Fig. 7, we can see that without the proposed equal-
ization, the SINR performance of all three linear detectors, i.e.,
MRC, ZF, and MMSE, tend to the saturation level predicted
by (19) as N grows large. Accordingly, arbitrarily large SINR
values cannot be achieved by increasing the BS array size. Also,
the SINR performance of ZF and MMSE combiners converges
faster to the saturation level as compared to the one in MRC. In
practice, when considering a finite number of BS antennas, the
impact of SINR saturation depends on the combining method
used as well as the channel PDP and noise level.

In the next set of simulations, we evaluate the performance
of FBMC with the proposed equalizer in place. Fig. 8 shows
the SINR performance of MRC, ZF, and MMSE combiners as
a function of different number of BS antennas. The noise level
is selected such that the SNR at the input of the BS antennas is
equal to 10 dB. As it is shown, using the proposed equalization
method, the saturation problem of the conventional FBMC sys-
tems in massive MIMO channels is avoided and arbitrarily large
SINR values can be achieved by increasing N . In Fig. 8, we have
also shown the theoretical SINR values for MRC and ZF com-
biners, as calculated in (37) and (38), respectively. This figure

3A similar approach has been taken in [22] to choose the channel PDPs for
different terminals.

Fig. 8. SINR performance comparison for the case that the proposed equalizer
is utilized.

Fig. 9. SINR performance comparison as a function of different SNR values.
In the case of FBMC, the proposed equalizer is incorporated at the BS. Here
N = 100 BS antennas is considered.

confirms that the theoretical SINR values match the simulated
ones. This verifies the accuracy of the analysis of Section VI.

Fig. 9 shows the theoretical SINR performance of the MRC
and ZF combiners and with the proposed equalization as a func-
tion of different input SNR values. Moreover, the SINR perfor-
mance of OFDM with MRC and ZF combiners is shown as a
benchmark; see [16] for the SINR expressions of OFDM. In this
figure, we consider N = 100 BS antennas. As the figure shows,
OFDM and FBMC have almost identical SINR performance
when MRC is utilized. On the other hand, in the case of ZF
combiner, although the performance of OFDM and FBMC are
very close in the low SNR regime, a better SINR is expected for
OFDM in the high SNR region. The reason for this phenomenon
is that in OFDM, the interference is entirely removed using the
CP. Hence, by increasing the input SNR, a better SINR at the
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Fig. 10. SINR performance comparison for different values of the FBMC
subcarrier spacing ΔF � 1/M .

output is also expected. In contrast, the FBMC waveform is de-
signed to increase the bandwidth efficiency by excluding the CP
overhead and providing much lower out-of-band emission than
OFDM. Hence, due to the absence of CP, some residual interfer-
ence remains after the ZF combining. This residual interference
becomes noticeable only in the very high SNR regime.

As discussed in Section V, by incorporating a large number
of BS antennas, one can widen the subcarrier bands in an FBMC
system. This, in turn, brings a number of advantages, e.g., ro-
bustness to CFO and channel time variations, lower PAPR, lower
latency, higher bandwidth efficiency. These benefits are crucial
for the next generation of wireless systems. In the next experi-
ment, we aim at evaluating the SINR performance as we widen
the subcarrier bands. Fig. 10 shows the SINR for different values
of FBMC subcarrier spacings, ΔF � 1/M . In this experiment,
the input SNR of 0 dB is considered. To use the simple single-tap
equalizer per subcarrier, the design norm is to choose the symbol
spacing to be about an order of magnitude larger than the chan-
nel length. In this case, with Lh = 50, this leads to the symbol
spacing of around M/2 = 500, which in turn yields the subcar-
rier spacing of ΔF = 0.001. However, as the figure shows, by
incorporating a large number of BS antennas as well as the pro-
posed equalizer, one can considerably increase the subcarrier
spacing while the SINR performance has a slight degradation.
In particular, increasing the subcarrier spacing by an order of
magnitude leads to about 0.7 dB SINR degradation when using
ZF combiner. In MRC, the degradation is negligible, i.e., less
than 0.3 dB.

Fig. 11 presents the uncoded bit error rate (BER) perfor-
mance comparison. In this experiment, N = 100 BS antennas
is considered. Moreover, the transmitted symbols belong to a
64 quadrature amplitude modulation (QAM) constellation. We
compare the performance of FBMC with and without our pro-
posed channel PDP equalizer. We also show the performance of
OFDM as a benchmark. For all cases, ZF combiner is utilized.

Fig. 11. BER performance comparison. Here, N = 100 BS antennas and the
ZF combiner are considered.

As the figure shows, the BER performance is improved signif-
icantly when the proposed channel PDP equalizer is in place.
Furthermore, we achieve the same performance as in OFDM,
where the channel frequency response is completely flat over
each individual subcarrier band.

VIII. CONCLUSION AND DISCUSSION

In this paper, we studied the performance of FBMC trans-
mission in the context of massive MIMO. We considered
single-tap-per-subcarrier equalization using the conventional
linear combiners, i.e., MRC, ZF, and MMSE. It was shown
that the correlation between the multi-antenna combining
tap weights and the channel impulse responses leads to an
interference which does not fade away even with an infinite
number of BS antennas. Hence, arbitrarily large SINR values
cannot be achieved, and the SINR is upper-bounded by a certain
deterministic value. We derived a closed-form expression for
this upper bound, identified the source of SINR saturation,
and proposed an efficient equalization method to remove the
above correlation and resolve the problem. We mathematically
analyzed the performance of the FBMC system incorporating
the proposed equalization method and derived closed-form
expressions for the SINR in the cases of MRC and ZF.

Throughout this paper, we assumed a co-located BS antenna
array that is sufficiently compact so that the channel responses
corresponding to a particular user and different BS antennas
are subject to the same channel PDP. It is worth mentioning
that there exist another type of massive MIMO setup in which
the elements of the BS array are distributed in a large area. This
setup, which is out of the scope of this paper, is called distributed
or cell-free massive MIMO, [23]. In this scenario, for a given
user, channel responses corresponding to different BS antennas
undergo different PDPs. This is a completely different problem
than what we are considering in this paper. Thus, it remains as
a future study.
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The analyses in this paper was based on single-tap per sub-
carrier equalization. However, we note that as mentioned in
Section III, the asymptotic SINR saturation is an inherent prop-
erty of FBMC-based massive MIMO systems due to the absence
of CP. As a result, one may expect the SINR saturation issue to
appear also in FBMC systems incorporating multi-tap per sub-
carrier equalization methods such as those in [10] and [15] if
we do not equalize the channel PDP. Using multi-tap equalizers,
however, can increase the saturation level in expense of a higher
computational cost. We can also realize this point from the re-
sults of [10], where the performance of multi-tap and single-tap
equalizers are compared with each other for different number of
BS antennas. Therefore, our proposed channel PDP equalizer
can also be adopted in multi-tap systems to further improve the
performance.

APPENDIX

PROOF OF (31) AND (39)

A. MRC

In the case of MRC, we have gk,k ′
m = 1

Dk , k
m

∑N −1
i=0 (Hi,k

m )∗

hi,k ′ . Moreover, for large values of N , Dk,k
m tends to N due to

the law of large numbers. Hence, the mean of the 	th element
of gk,k ′

m , for 	 ∈ {0, . . . , Lh − 1}, can be calculated as

E{gk,k ′
m [	]} =

1
N

N −1∑

i=0

Lh −1∑

l=0

E{h∗
i,k [l]hi,k ′ [	]}ej 2 π l m

M

= δkk ′pk,m [	].

This leads to (31a). We now calculate the correlation between
gk,k ′

m [	] and gk,k ′
m [	′], for 	, 	′ ∈ {0, . . . , Lh − 1}. We consider

the case that k = k′. Hence,

E
{
gk,k ′

m [	]
(
gk,k ′

m [	′]
)∗}

=
1

N 2

N −1∑

i=0

N −1∑

i ′=0

E
{ (

Hi,k
m

)∗
Hi ′,k

m hi,k ′ [	]h∗
i ′,k ′ [	′]

}

=
1

N 2

N −1∑

i=0

N −1∑

i ′=0

Lh −1∑

l=0

Lh −1∑

l ′=0

E{h∗
i,k [l]hi ′,k [l′]hi,k ′ [	]h∗

i ′,k ′ [	′]}

× ej
2 π ( l−l ′)m

M =
1
N

δ		 ′pk ′ [	], for k = k′.

The above correlation for the case of k = k′ can be determined
using a similar line of derivations. The result is

E
{
gk,k

m [	]
(
gk,k

m [	′]
)∗} =

1
N

δ		 ′pk [	] + pk,m [	]p∗k,m [	′].

This leads to (31b). Moreover, the pseudo-covariance matrix
Kk,k ′

m in (31c) can be derived using the same line of derivations
as above.

B. ZF

Here, we use similar techniques as in [24]. We have gk,k ′
m [	] =

wH
m,khk ′ [	], where wm,k is the kth column of the combiner

matrix Wm , and hk ′ [	] is an N × 1 vector with its ith element
equal to hi,k ′ [	]. In the case of ZF equalizer, we have Wm =

Hm (HH
mHm )−1 . Also, let hm,k denote the kth column of Hm .

Hence, the mean of gk,k ′
m [	] can be determined as follows.

E{gk,k ′
m [	]} = E{wH

m,khk ′ [	]}

=
1
M

M −1∑

m ′=0

E{wH
m,khm ′,k ′ }ej 2 π m ′	

M

(a)
=

1
M

M −1∑

m ′=0

Lh −1∑

l=0

E{wH
m,khm,k ′ }pk ′,m [l]ej

2 π m ′( 	−l )
M

(b)
=

1
M

M −1∑

m ′=0

Lh −1∑

l=0

δkk ′pk,m [l]ej
2 π m ′( 	−l )

M = δkk ′pk,m [	].

This results in (39a). In the above equation, (a) follows from the
fact the channel frequency response hm ′,k ′ can be expressed as
a combination of a term that is correlated with hm,k ′ and a term
that is independent of hm,k ′ , i.e.,

hm ′,k ′ = αmm ′,k ′hm,k ′ + hindep
mm ′,k ′ , (41)

where hindep
mm ′,k ′ is independent of hm,k ′ and the correlation co-

efficient αmm ′,k ′ can be calculated as

αmm ′,k ′ = E
{
Hi,k ′

m ′
(
Hi,k ′

m

)∗} = Pk ′ [m′ − m],

where Pk [m] �
∑Lh −1

l=0 pk [l]e−j 2 π m l
M is the mth coefficient of

the M -point discrete Fourier transform of the channel PDP pk [l].
The step (b) above follows from the fact that in the case of ZF
equalization, we have wH

m,khm,k ′ = δkk ′ , which results from

WH
mHm = Ik .

In order to calculate the covariance matrix Γk,k ′
m in (39b),

we now find the correlation between gk,k ′
m [	] and gk,k ′

m [	′], for
	, 	′ ∈ {0, . . . , Lh − 1}. We have,

E
{
gk,k ′

m [	]
(
gk,k ′

m [	′]
)∗} = E{wH

m,khk ′ [	]hH
k ′ [	′]wm,k}

(a)
= δkk ′pk,m [	]p∗k,m [	′] +

1
M 2

M −1∑

m ′=0

M −1∑

m ′′=0

E{wH
m,kh

indep
mm ′,k ′

(
hindep

mm ′′,k ′
)Hwm,k}ej 2 π m ′	

M e−j 2 π m ′′	 ′
M

(b)
= δkk ′pk,m [	]p∗k,m [	′] +

1
M 2(N − K)

M −1∑

m ′=0

M −1∑

m ′′=0
(
Pk ′ [m′ − m′′] − Pk ′ [m′ − m]Pk ′ [m − m′′]

)
ej

2 π (m ′	−m ′′	 ′)
M

(c)
= δkk ′pk,m [	]p∗k,m [	′] +

1
N−K

(
δ		 ′pk ′ [	] − pk ′,m[	]p∗k ′,m[	′]

)
.

This results in (39b). In the above equation, equality (a) follows
from (41). Then, equality (b) follows from the independence of
wm,k from hindep

mm ′,k ′ and hindep
mm ′′,k ′ , the correlation

E
{
hindep

mm ′,k ′
(
hindep

mm ′′,k ′
)H

}

=
(
Pk ′ [m′ − m′′] − Pk ′ [m′ − m]Pk ′ [m − m′′]

)
IN ,

and the identity

E
[
tr
{(WH

m Wm

)−1}] = E
[
tr
{(

HH
mHm

)−1}] =
K

N − K
,
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for N ≥ K + 1. The latter identity is based on the fact that
HH

mHm is a K × K complex central Wishart matrix with N
degrees of freedom and covariance IK , [25]. Finally, the equality
(c) above follows using some straightforward algebraic manipu-
lations. We note that using a similar line of derivations as above,
one can find the pseudo-covariance matrix given in (39c).
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[14] C. Lélé, J.-P. Javaudin, R. Legouable, A. Skrzypczak, and P. Siohan,
“Channel estimation methods for preamble-based OFDM/OQAM modu-
lations,” Eur. Trans. Telecommun., vol. 19, no. 7, pp. 741–750, 2008.

[15] T. Ihalainen, A. Ikhlef, J. Louveaux, and M. Renfors, “Channel equal-
ization for multi-antenna FBMC/OQAM receivers,” IEEE Trans. Veh.
Technol., vol. 60, no. 5, Jun. 2011.

[16] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral
efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436–1449, Apr. 2013.

[17] A. Aminjavaheri, A. Farhang, A. RezazadehReyhani, L. E. Doyle, and B.
Farhang-Boroujeny, “OFDM without CP in massive MIMO,” IEEE Trans.
Wireless Commun., vol. 16, no. 11, pp. 7619–7633, Nov. 2017.
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