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Abstract— The problem of remote state estimation in the
presence of eavesdroppers has recently been investigated in the
literature. For unstable systems it has been shown that one
can keep the expected estimation error covariance bounded,
while the expected eavesdropper error covariance becomes
unbounded in the infinite horizon, using schemes based on
transmission scheduling. In this paper we consider an alter-
native approach to achieve security, namely injecting noise into
sensor transmissions, similar to the artificial noise technique
used in physical layer security for wireless communications.
Numerical results demonstrate significant performance im-
provements using this approach, with respect to the trade-off
between the expected estimation error covariance and expected
eavesdropper covariance.

I. INTRODUCTION

The amount of data transmitted wirelessly has increased
tremendously over the last decade. Due to the broadcast
nature of the wireless medium, other agents in the vicinity
can often overhear what is being transmitted, and there is
a need to protect transmissions from eavesdroppers. Infor-
mation security issues have traditionally been studied in
the context of cryptography. However, due to 1) the often
limited computational power available at the transmitters to
implement strong encryption, 2) the increased computational
power available to malicious agents, and 3) poorly imple-
mented security in e.g. some Internet of Things devices,
achieving security using solely cryptographic means may
not necessarily be guaranteed. Alternative ways to imple-
ment security using information theoretic and physical layer
techniques, complementary to the traditional cryptographic
approaches, have thus received significant recent interest [1].

In information theoretic security, a communication system
is regarded as secure if the mutual information between the
original message and what is received at the eavesdropper
is either zero or becomes vanishingly small as the block
length of the codewords increases [2]. The term “physical
layer security” refers to approaches to implement information
theoretic security using physical layer characteristics of the
wireless channel such as fading, interference, and noise, [3].

Using physical layer security ideas, estimation problems
with eavesdroppers have recently been studied, such as [4]–
[7] for estimation of constants or i.i.d. sources, and [8]–
[10] for state estimation of dynamical systems. One of the
main results shown in the works [9], [10] is that for the
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case of unstable systems, it is possible to drive the expected
eavesdropper error covariance unbounded while keeping
the expected estimation error covariance at the legitimate
remote estimator (or receiver) bounded. The techniques used
to achieve this behaviour involves transmission scheduling
by withholding certain transmissions, both with [10] and
without [9] feedback. However, withholding transmission
means that the performance at the remote estimator will
also be affected when no transmissions occur. This motivates
us to search for other secure estimation schemes where
the performance at the legitimate remote estimator will not
deteriorate, or at least not significantly.

The concept of artificial noise [11], where noise is artifi-
cially injected into the null space of the legitimate receiver’s
channel, so that the noise will affect the eavesdropper but not
the receiver, is widely regarded as one of the most effective
techniques to implement physical layer security in wireless
communications [3]. In the current paper we will adapt this
technique to remote state estimation of dynamical systems
in the presence of eavesdroppers. This technique requires
the use of multiple transmit antennas, which have not been
considered much in the control literature, but nevertheless are
commonly implemented in current wireless communication
standards such as Wi-Fi and 4G.

We consider packet dropping links where the probability
of a successful reception depends on the received signal-to-
noise ratio (SNR), where the received SNR can depend on
the fading channel gains, transmission energies and noise
powers. In the context of packet drop models with fading,
a single antenna model was studied in [12]. This paper
considers an extension of the packet drop model with fading
to multiple transmit antennas. We show that for sufficiently
large transmission energies and artificial noise variances, the
expected eavesdropper covariance can be made unbounded
while the expected error covariance at the legitimate receiver
remains bounded, irrespective of how good/bad the channels
are.

II. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1. We
consider a discrete time process

xk+1 = Axk + wk (1)

where xk ∈ Rnx and wk is i.i.d. Gaussian with zero mean
and covariance Q ≥ 0.1 The sensor has measurements

yk = Cxk + vk, (2)
1For a symmetric matrix X , we say that X > 0 if it is positive definite,

and X ≥ 0 if it is positive semi-definite.
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Fig. 1. System Model

where yk ∈ Rny and vk is i.i.d. Gaussian with zero mean
and covariance R > 0. The noise processes {wk} and {vk}
are assumed to be mutually independent, and independent of
the initial state x0.

Let x ∈ X ,2 and let Sk(.) : X → C be a mapping such that
Sk(x) is the digital symbol of x, represented as a point on
a complex signal constellation [13], [14], which in general
depends on the modulation scheme used for transmission
at time k. We assume there is sufficient bit rate such that
quantization effects are negligible. The sensor wishes to send
quantities sk ∈ C to the remote estimator. Common choices
for sk are the sensor measurements, i.e. sk = Sk(yk), or
the local state estimates sk = Sk(x̂sk|k) [15]. In the case
where the local state estimates are transmitted, the local state
estimates and estimation error covariances

x̂sk|k−1 , E[xk|y0, . . . , yk−1], x̂sk|k , E[xk|y0, . . . , yk]

P sk|k−1 , E[(xk − x̂sk|k−1)(xk − x̂sk|k−1)T |y0, . . . , yk−1]

P sk|k , E[(xk − x̂sk|k)(xk − x̂sk|k)T |y0, . . . , yk]

can be computed at the sensor using the standard Kalman
filtering equations. We will assume that the pair (A,C) is
detectable and the pair (A,Q1/2) is stabilizable. Let P̄ be the
steady state value of P sk|k as k → ∞, which exists due to
the detectability assumption. In the case where local state
estimates are transmitted, the local Kalman filter will be
assumed to be operating in the steady state regime, so that
P sk|k = P̄ ,∀k. We note that in general convergence to steady
state occurs at an exponential rate.

A. MIMO Communications and Artificial Noise

In multiple-input multiple-output (MIMO) communica-
tions with NT transmit antennas and NR receive antennas,
it is common to represent the MIMO channel by a NR×NT
matrix Hk, where the (i, j)-th element of Hk represents
the complex valued channel gain at time k from transmit
antenna j to receive antenna i [16]. In this paper we will
investigate the case of multiple transmit antennas and a single
receive antenna, and thus Hk will be a 1×NT matrix or row
vector (the artificial noise technique can also be extended to
multiple receive antennas, provided the number of transmit

2In the case where local state estimates are transmitted, we would have
X = Rnx , and in the case where measurements are transmitted X = Rny .

antennas is greater than the number of receive antennas of
the eavesdropper [11]). In order to implement security to the
transmission, the technique of adding artificial noise will be
used [11]. The transmitted signal s̄k ∈ CNT is of the form

s̄k = pksk + ak. (3)

In (3), pk ∈ CNT with ||pk|| = 1 is a beamforming vector
used to choose the direction of transmission, and ak ∈ CNT

is the complex Gaussian3 artificial noise vector. The artificial
noise is chosen such that ak lies in the null space of Hk, so
that Hkak = 0. Specifically, write

ak = Zkãk, (4)

where the columns of the NT × (NT − 1) matrix Zk
form an orthonormal basis for the null space of Hk, with
Zk satisfying Z†kZk = I where † denotes the Hermitian
transpose (this can be done by performing a singular value
decomposition on Hk), and the components of ãk ∈ CNT−1

are i.i.d. complex Gaussian with zero mean and variance
σ2
a,k. Note that this requires the following assumption:
Assumption 2.1: Hk is known to the sensor at time k.

Knowledge of Hk at the sensor can be obtained in practice by
using channel estimation algorithms (either estimated at the
sensor, or estimated at the remote estimator and fed back to
the sensor [11]). We will also assume that the artificial noise
variances σ2

a,k can be chosen by us to satisfy performance
objectives, see Section III.

B. Eavesdropper

The sensor transmissions can be overheard by an eaves-
dropper (called ‘Eve’ in Fig. 1) over another channel He,k.
We assume the eavesdropper to have a single receive antenna,
so that He,k is also a 1 × NT matrix or row vector. The
random processes {Hk} and {He,k} will be assumed to be
mutually independent.4 The i.i.d. block fading model will be
assumed [17], such that Hk remains constant over a fading
block, but are i.i.d. in different blocks (similarly for He,k).
Denote zk ∈ C and ze,k ∈ C as the signals received by the
remote estimator and eavesdropper respectively. We have

zk = Hks̄k + nk = Hkpksk + nk

ze,k = He,ks̄k + ne,k = He,kpksk + He,kak + ne,k

where nk ∈ C and ne,k ∈ C are complex Gaussian
channel noises with zero means and variances σ2

n and σ2
e

respectively. The received signals zk and ze,k are then used
by the remote estimator and eavesdropper respectively to
demodulate/decode the information signal sk. In order to

3A complex valued random variable Z = X + jY is complex Gaussian
if X and Y are jointly Gaussian random variables, with mean and variance
defined by E[Z] = E[X] + jE[Y ] and Var[Z] = Var[X] + Var[Y ]. A
complex random vector Z = X + jY is complex Gaussian if X and Y
are jointly Gaussian random vectors [13], [16].

4In wireless communication, it is known that channel fading becomes
approximately independent for receivers separated by distances greater than
half a wavelength of the transmitted signal [16, p.71]. For the transmission
frequencies currently in use in 3G/4G mobiles and Wi-Fi, such wavelengths
are on the order of centimeters.
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perform coherent reception when demodulating the received
signals [14], [16], we will make the following assumption.

Assumption 2.2: Hk is known to the remote estimator
at time k, while both He,k and Hk are known to the
eavesdropper at time k.

Remark 2.1: The assumption of knowledge of Hk at the
eavesdropper gives an upper bound on the best performance
that can be achieved at the eavesdropper,5 and is in the spirit
of Kerckhoff’s principle in cryptography [18], namely that
a cryptosystem should be secure even if the enemy knows
everything about the system except the secret key, to avoid
the problem of “security through obscurity”.

C. Packet Reception Model
Define random variables γk such that γk = 1 if sk is

successfully decoded at the remote estimator, which we will
also regard as a successful packet reception, and γk = 0
if there are errors (which we will regard as a packet drop).
Similarly, define γe,k such that γe,k = 1 if sk is successfully
decoded at the eavesdropper, and γe,k = 0 otherwise.

For many digital modulation and demodulation schemes,
the probability of correct decoding is an increasing function
of the received signal-to-noise ratio (SNR), which in turn
depends on variables such as the channel fading, transmission
energies and noise powers, see e.g. [13], [14]. The condi-
tional probability of successful decoding will be represented
by f(SNRk), where f(.) : [0,∞) → [0, 1] is a monoton-
ically increasing continuous function whose form depends
on the particular digital modulation and demodulation (plus
possible channel coding) schemes used (see e.g. (19) for
the case of quadrature amplitude modulation), and SNRk
denotes the received SNR at time k. We have

P(γk = 1|SNRk) = f(SNRk) = f

(
|Hkpk|2Es,k

σ2
n

)
P(γe,k = 1|SNRe,k) = f(SNRe,k)=f

(
|He,kpk|2Es,k

E|He,kak|2 + σ2
e

)
= f

(
|He,kpk|2Es,k

He,kZkZ
†
kH
†
e,kσ

2
a,k + σ2

e

)
,

(5)

where Es,k is the transmission energy of the symbol sk, and
the last equality follows from (4) and Assumption 2.2. In
the case of single antenna transmissions, similar models for
packet drop in the presence of fading have been used in e.g.
[12], [19].

The instantaneous channel of the eavesdropper He,k is
assumed to be unknown to both the sensor and remote
estimator, and we will thus choose the beamforming vector
as in [11]:

pk =
H†k
||Hk||

.

Then we can further express (5) as

P(γk = 1|SNRk) = f

(
||Hk||2Es,k

σ2
n

)
5Knowledge of Hk might also be obtained at the eavesdropper if the

remote estimator broadcasts Hk back to the sensor [11].

P(γe,k = 1|SNRe,k) = f

(
|He,kH

†
k|2Es,k/||Hk||2

He,kZkZ
†
kH
†
e,kσ

2
a,k+σ2

e

)
.

D. Remote Estimator

Define

Ik ,{γ0, . . . , γk, γ0s0, . . . , γksk}

as the information set available to the remote estimator at
time k, and denote the state estimates and error covariances
at the remote estimator by:

x̂k|k−1 , E[xk|Ik−1], x̂k|k , E[xk|Ik],

Pk|k−1 , E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |Ik−1],

Pk|k , E[(xk − x̂k|k)(xk − x̂k|k)T |Ik].

(6)

Similarly, define

Ie,k ,{γe,0, . . . , γe,k, γe,0s0, . . . , γe,ksk}

as the information set available to the eavesdropper at time
k, and

x̂e,k|k−1 , E[xk|Ie,k−1], x̂e,k|k , E[xk|Ie,k],

Pe,k|k−1 , E[(xk − x̂e,k|k−1)(xk − x̂k|e,k−1)T |Ie,k−1],

Pe,k|k , E[(xk − x̂e,k|k)(xk − x̂e,k|k)T |Ie,k].
(7)

Let
h(X) , AXAT +Q. (8)

When local state estimates are transmitted, the optimal
remote estimator can be shown to have the form [15]:

x̂k|k =

{
Ax̂k−1|k−1 , γk = 0

x̂sk|k , γk = 1

Pk|k =

{
h(Pk−1|k−1) , γk = 0

P̄ , γk = 1

(9)

while at the eavesdropper:

x̂e,k|k =

{
Ax̂e,k−1|k−1 , γe,k = 0

x̂sk|k , γe,k = 1

Pe,k|k =

{
h(Pe,k−1|k−1) , γe,k = 0

P̄ , γe,k = 1.

(10)

In the case where measurements are transmitted, the
optimal remote estimator has the form [20]:

x̂k+1|k = Ax̂k|k

x̂k|k=

{
x̂k|k−1, γk = 0

x̂k|k−1+Kk(yk−Cx̂k|k−1), γk = 1

Pk+1|k=h(Pk|k)

Pk|k=

{
Pk|k−1, γk = 0

Pk|k−1 −KkCPk|k−1, γk = 1,

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1,

(11)

and similarly at the eavesdropper.
For simplicity of presentation, we will assume that the

initial covariances P0|0 = P̄ and Pe,0|0 = P̄ .
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III. SECURE ESTIMATION USING ARTIFICIAL NOISE

We consider the case where A is unstable, i.e. the spectral
radius ρ(A) > 1. We will also use the shorthand Pk , Pk|k.
From Section II we see that there are two power/energy-
type parameters6 which can be varied, namely the symbol
energy Es,k and the variance of the artificial noise σ2

a,k. To
allow for possible power control, we will consider the case
that Es,k(Hk, Pk−1) and σ2

a,k(Hk, Pk−1) can be functions
of the channel Hk and estimation error covariance Pk−1

(which in turn is a function of γ0, . . . , γk−1). The quantities
Es,k(Hk, Pk−1) and σ2

a,k(Hk, Pk−1) can be computed at
the remote estimator and fed back to the sensor. We note
that equations (9)-(11) will still hold, as knowledge of
(Hk, Pk−1) does not provide additional information about
the state xk.

The following result (Theorem 3.1) provides sufficient
conditions on Es,k(Hk, Pk−1) and σ2

a,k(Hk, Pk−1), for the
expected estimation error covariance to be bounded and the
expected eavesdropper covariance to become unbounded.
First note that we can write

P(γk = 1|Pk−1) =

∫
Ω

f

(
||Hk||2Es,k(Hk, Pk−1)

σ2
n

)
dP(Hk)

P(γe,k = 1|Pe,k−1)

=

∫
P(γe,k = 1|Pe,k−1, Pk−1,Hk,He,k)

.dP(Pk−1,Hk,He,k|Pe,k−1)

=

∫
Pk−1

∫
Ωe

f

(
|He,kH

†
k|2Es,k(Hk, Pk−1)/||Hk||2

He,kZkZ
†
kH
†
e,kσ

2
a,k(Hk, Pk−1) + σ2

e

)
.dP(Hk,He,k)dP(Pk−1|Pe,k−1)

(12)

where Pk−1 represents the support of Pk−1, Ω the support
of Hk, and Ωe the support of (Hk,He,k).

Theorem 3.1: Let A be unstable. Suppose
Es,k(Hk, Pk−1) and σ2

a,k(Hk, Pk−1) are such that

P(γk = 1|Pk−1) > 1− 1

||A||2
, ∀Pk−1 (13)

P(γe,k = 1|Pe,k−1) < 1− 1

ρ(A)2
, ∀Pe,k−1, (14)

where ρ(A) is the spectral radius of A, ||A|| the spectral
norm of A, and P(γk = 1|Pk−1) and P(γe,k = 1|Pe,k−1)
are given by (12). Then

E[trPk] <∞, ∀k (15)
and E[trPe,k]→∞ as k →∞. (16)

Proof: The proof of the implication (13) ⇒ (15) can
be shown using similar techniques as in [21], and is omitted
for brevity. For the implication (14) ⇒ (16), we use the
following argument. Consider a horizon K > 0. Let ω
denote the event that every transmission is unsuccessfully
overheard by the eavesdropper. By the definition of ω and
the assumption that Pe,0 = P̄ , the eavesdropper error

6In this paper we consider energy on a per channel use basis and will
refer to the terms energy and power interchangeably.

covariances are given by Pe,k = hk(P̄ ), k = 1, . . . ,K,
where hk(.) is the k-fold composition of h(.) defined in (8),
and h0(X) , X . We have

P(ω) = P(γe,K = 0, . . . , γe,1 = 0)

=

K∏
k=1

P(γe,k = 0|γe,k−1 = 0, . . . , γe,1 = 0)

=

K∏
k=1

P(γe,k = 0|Pe,k−1 = hk−1(P̄ ))

Let ωc denote the complement of ω. Then

trE[Pe,K ] = trE[Pe,K |ω]P(ω) + trE[Pe,K |ωc]P(ωc)

> trE[Pe,K |ω]P(ω)

> tr(AK P̄ (AK)T )P(ω)

= tr(AK P̄ (AK)T )

K∏
k=1

P(γe,k = 0|Pe,k−1 = hk−1(P̄ ))

→∞ as K →∞,

where the last line follows from (14).

A. Constant Energies

Verifying the conditions (13) and (14) in Theorem 3.1 for
arbitrary Es,k(Hk, Pk−1) and σ2

a,k(Hk, Pk−1), in general
may not be straightforward. Here we consider the case
of constant or time-invariant symbol transmission and ar-
tificial noise energies, where Es,k(Hk, Pk−1) = Es,∀k
and σ2

a,k(Hk, Pk−1) = σ2
a,∀k. For this simpler situation,

conditions (13) and (14) become

P(γk = 1) =

∫
Ω

f

(
||Hk||2Es

σ2
n

)
dP(Hk) > 1− 1

||A||2
(17)

P(γe,k = 1)

=

∫
Ωe

f

(
|He,kH

†
k|2Es/||Hk||2

He,kZkZ
†
kH
†
e,kσ

2
a + σ2

e

)
dP(Hk,He,k)

< 1− 1

ρ(A)2
.

(18)

We next show that (17) and (18) can always be satisfied by
choosing Es and σ2

a to be sufficiently large.
Lemma 3.2: i) Suppose f(.) satisfies f(SNR) → 1 as

SNR→∞. Then (17) holds for all sufficiently large Es.
ii) Suppose f(0) < 1 − 1

ρ(A)2 . Then (18) holds for all
sufficiently large σ2

a.
Proof: i) Fix an ε > 0. Partition Ω as Ω = Ω1 ∪ Ω2,

where

Ω1 ,

{
Hk : f

(
||Hk||2Es

σ2
n

)
> 1− 1

||A||2
+ ε

}
and Ω1 ∩ Ω2 = ∅. Since f(SNR) → 1 as SNR → ∞, we
have P(Ω1)→ 1 and P(Ω2)→ 0 as Es →∞. Then

P(γk = 1) =

∫
Ω1

f

(
||Hk||2Es

σ2
n

)
dP(Hk)
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+

∫
Ω2

f

(
||Hk||2Es

σ2
n

)
dP(Hk)

>

(
1− 1

||A||2
+ ε

)
P(Ω1)

≥
(

1− 1

||A||2
+ ε

)
for all sufficiently large Es,

and so P(γk = 1) > 1− 1
||A||2 for all sufficiently large Es.

ii) Since f(0) < 1− 1
ρ(A)2 , there exists some ε > 0 such

that
f(0) < 1− 1

ρ(A)2
− ε.

Now partition Ωe as Ωe = Ωe,1 ∪ Ωe,2, where

Ωe,1 ,

{
(Hk,He,k) :

f

(
|He,kH

†
k|2Es/||Hk||2

He,kZkZ
†
kH
†
e,kσ

2
a+σ2

e

)
<1− 1

ρ(A)2
− ε

}
and Ωe,1 ∩ Ωe,2 = ∅. From f(0) < 1 − 1

ρ(A)2 and
the continuity of f(.), it is clear that P(Ωe,1) → 1 and
P(Ωe,2)→ 0 as σ2

a →∞. Then

P(γe,k = 1)

=

∫
Ωe,1

f

(
|He,kH

†
k|2Es/||Hk||2

He,kZkZ
†
kH
†
e,kσ

2
a + σ2

e

)
dP(Hk,He,k)

+

∫
Ωe,2

f

(
|He,kH

†
k|2Es/||Hk||2

He,kZkZ
†
kH
†
e,kσ

2
a + σ2

e

)
dP(Hk,He,k)

<

(
1− 1

ρ(A)2
− ε
)
P(Ωe,1) + P(Ωe,2)

≤
(

1− 1

ρ(A)2
− ε
)

for all sufficiently large σ2
a,

and so P(γe,k = 1) < 1− 1
ρ(A)2 for all sufficiently large σ2

a.

B. Comparison with Previous Schemes

Similar behaviour as predicted by (15)-(16) has been
obtained in [9], [10] using mechanisms which withhold
certain transmissions. In the current paper, one does not
withhold any transmissions, so that the remote estimator
doesn’t suffer from the performance degradation due to non-
transmissions.

In the case of constant energies, by choosing Es and
σ2
a to be sufficiently large, the conditions (13) and (14)

can always be satisfied, no matter how good the eaves-
dropper channel is. For i.i.d. packet dropping channels, it
was shown in [10] that (15)-(16) could be achieved for
all eavesdropping probabilities strictly less than one, but
the constructed scheme required transmission decisions (or
alternatively knowledge of whether previous transmissions
were successfully decoded) to be determined at the remote
estimator and fed back to the sensor. In contrast, in the
current scheme, when using constant energies feedback is
not required (though in practice obtaining knowledge of Hk
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Fig. 2. Average probabilities of successful decoding for different propor-
tions of energy invested in symbol transmission

at the sensor will still require either the transmission of
pilot training signals or feedback of Hk from the estimator
to the sensor). What is required for the current scheme is
the availability of multiple transmit antennas at the sensor
and additional energy to generate the artificial noise, but as
mentioned in the Introduction multiple antenna technology
is commonplace in modern wireless communications.

IV. NUMERICAL STUDIES

We consider a system with parameters

A =

[
1.2 0.2
0.3 0.8

]
, C =

[
1 1

]
, Q = I, R = 1.

The communication structure is chosen with NT = 2
transmit antennas and 16 Quadrature Amplitude Modulation
(16-QAM) for the symbol constellation. For both channels
we consider Rayleigh fading, such that Hk and He,k are dis-
tributed as complex i.i.d zero mean Gaussian with variance
σ2
H = σ2

He
= 1, which is induced by the assumed block

fading. The complex Gaussian channel noise variances are
σ2
n = σ2

e = 0.1 mWh. We will use constant energies as
in Section III-A. The complete amount of energy EC for
transmitting and securing the state estimation is defined as:

EC , Es + (NT − 1)σ2
a.

We consider the case where EC = 1 mWh is kept
fixed. Fig. 2 plots the average probability for successful
remote estimator and eavesdropper decoding vs. different
proportions of EC invested in symbol transmission, obtained
by computing the integrals in (17) and (18), where f(.) for
M -ary QAM has the form [14, p.226]:

f(SNR) = 1− 4

√
M−1√
M
Q
(√ 3SNR

M − 1

)
+ 4
(√M−1√

M

)2

Q2
(√ 3SNR

M − 1

)
,

(19)

with Q(x) = 1/
√

2π
∫∞
x

exp(−u2/2)du being the Q-
function. The integrals are evaluated by Monte Carlo aver-
aging over 105 random samples of (Hk,He,k). Additionally,

329

Authorized licensed use limited to: Maynooth University Library. Downloaded on October 05,2020 at 13:00:18 UTC from IEEE Xplore.  Restrictions apply. 



E[tr(P
k
)]

2 4 6 8 10 12 14 16 18 20 22 24

E
[tr

(P
e,

k)]

100

102

104

106

108

1010

1012

1014

tx estimates - artificial noise
tx measurements - artificial noise
tx estimates - scheme of [10]
tx measurements - scheme of [10]

Fig. 3. Artificial noise technique compared to method of [10].

the probability 1−1/ρ(A)2 (for eavesdropping) below which
E[trPe,k] becomes unbounded is displayed. One can observe
that a relatively small proportion (about 20%) of the total
energy invested in artificial noise will result in an unbounded
expected eavesdropper covariance, while the probability of
successful remote estimator decoding does not decrease
significantly.

We next compute the expected error covariance at the
remote estimator and the eavesdropper for different amounts
of artificial noise, while still keeping EC = 1 mWh con-
stant. We consider both cases where local state estimates
and measurements are transmitted. Fig. 3 plots E[trPk] vs.
E[trPe,k], where each of the points is obtained by taking the
time average of a Monte Carlo run of length 106. To reduce
variability, each of the simulations was initialized with the
same random seed. We see that the results for transmitting
local estimates and measurements are similar, with a slightly
better trade-off when transmitting local estimates.

For comparison, we also consider the method proposed
in [10],7 where sensor transmissions occur if and only if
tr(Pk−1) ≥ tr(ht(P̄ )) for some t ∈ N, where ht(.) is the
t-fold composition of h(.) defined in (8). In this scheme all
the energy is used for symbol transmission, i.e. Es = EC =
1 mWh. Fig. 3 also plots the values of E[trPk] and E[trPe,k]
obtained for different values of t. We observe that the new
scheme using artificial noise performs better compared to
the method proposed in [10], in that much larger values of
E[trPe,k] are obtained for a given E[trPk]. For instance, when
E[trPk] is close to 5, using the scheme of [10] one obtains
a simulated E[trPe,k] of around 103 − 104, while using the
artificial noise technique one obtains an E[trPe,k] of around
107 − 108.

V. CONCLUSION

The use of artificial noise for remote state estimation of
linear dynamical systems in the presence of an eavesdropper
has been studied in this paper. Numerical results have shown

7Only the case of local estimate transmission was considered in [10].

significant performance improvements in this approach when
compared to previous schemes which achieve security by
withholding certain transmissions.

Other approaches to security using coding have been
recently proposed [8], [22]. The artificial noise technique
could also be combined with these alternative approaches to
further improve performance.
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