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a b s t r a c t

If trees are constructed from a pure birth process and one defines the depth of a leaf
to be the number of edges to its root, it is known that the variance in the depth of a
randomly selected leaf of a randomly selected tree grows linearly in time. In this letter,
we instead consider the variance of the average depth of leaves within each individual
tree, establishing that, in contrast, it converges to a constant, 7. This result indicates
that while the variance in leaf depths amongst the ensemble of pure birth processes
undergoes large fluctuations, the average depth across individual trees is much more
consistent.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Continuous time branching processes form fundamental building blocks of many stochastic models (e.g. Kimmel and
Axelrod (2002)) and much is known about many statistics associated with them. A pure birth process (Resnick, 2013) is
the simplest continuous time branching process. It describes the growth of a directed tree that starts at time 0 with a
root, which is the first leaf. Each leaf extends the tree by creating two new leaves after an exponentially distributed time
with mean 1/λ, independently of everything else. Pure birth processes appear as a fundamental model of study in a large
number of applications from data structures in computer science to likelihood methods in phylogenetics to the study of
random walkers on random graphs, and are well studied.

Of interest to us here is a measure of tree depth, the distance from root to leaves. If one conditions on the number of
nodes, much is known. For example, Pittel (1984) linked prior results regarding binary search trees (Robson, 1979; Flajolet
and Odlyzko, 1980; Devroye, 1986) to continuous time Markovian branching processes, establishing scaling properties of
the depth of both the shortest and longest leaf. Further extensions of those results have since been found (Pittel, 1994;
Biggins and Grey, 1997). Without conditioning on the number of nodes in the tree, relatively little appears in the literature.
For a pure birth process, it is known that the mean depth of a randomly chosen leaf in a randomly selected tree grows
as 2λt with variance 2λt (Samuels, 1971). However, for many applications, particularly in the life sciences e.g. Perié et al.
(2014) and Marchingo et al. (2016), one is interested in the properties of individual growing trees. Denoting the number
of leaves in a random tree at time t by Z(t) and the sum of their depths by G(t), with Z(0) = 1 and G(0) = 0. The object
of the present study is the variance across trees of the average depth of the leaves within them, i.e. G(t)/Z(t), and our
main result is as follows.
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Fig. 1. 104 Monte Carlo simulations of a pure birth process were used to determine the variance of the average depth of a leaf in a random tree,
N∗(t), and the variance of the average depth of a tree, G(t)/Z(t), where λ equals 1 (lower lines) and 1.3 (upper lines), and the blue shaded region
indicates 95% confidence intervals based on bootstrap percentiles (Efron and Tibshirani, 1994, Chapter 13). (a) Consistent with Samuels (1971),
Var (N∗(t)) ∼ 2λt . (b) Consistent with Theorem 1, Var (G(t)/Z(t)) ∼ 7 irrespective of λ.

Theorem 1. For a pure birth process, we have that

lim
t→∞

Var
(
G(t)
Z(t)

)
= 7.

In addition to the results in Samuels (1971), this finding is potentially surprising because it is known that the two
processes {Z(t)} and {G(t)} have different growth rates, eλt and teλt , respectively (Jagers, 1969; Weber et al., 2016), from
which one might anticipate that the variability of the average depth of a tree diverges to infinity as t2. Those suppositions
are incorrect as it has recently been established that, for general continuous time branching processes, Z(t) and G(t) are
strongly correlated at the level of sample paths (Meli et al., 2018), and that, for a pure birth process, limt Z(t)/(tG(t)) = 2λ
almost surely. A visualization of the result in Theorem 1, obtained by Monte Carlo simulation, is provided in Fig. 1. Note
that the result does not depend on λ, which only influences the speed of convergence.

In order to evaluate Var (G(t)/Z(t)), we condition the average generation G(t)/Z(t) on the number of leaves at time t ,
Z(t). By the Law of Total Variance (e.g. Blitzstein and Hwang (2014))

Var
(
G(t)
Z(t)

)
= E

(
Var

(
G(t)
Z(t)

⏐⏐⏐Z(t)))+ Var
(
E

(
G(t)
Z(t)

⏐⏐⏐Z(t))) (1)

and, in order to study the variance of the average depth of the leaves at time t , we study the quantities E (G(t)/Z(t)|Z(t))
and Var (G(t)/Z(t)|Z(t)) in Lemmas 2 and 3, respectively. Theorem 1 then follows.

2. Results

Before proceeding with the analysis of the two terms on the RHS of (1), we prove a lemma that will simplify the proofs
of Lemmas 2 and 3. For that, we introduce a new process, {S(t)}, denoting the sum of the squares of the depths of the
leaves at time t , which appears when the second moment of G(t)/Z(t) is studied. In the following we also consider the
discrete-time process associated with {G(t)} and {S(t)}, namely {Gk} and {Sk}, which account for the sum and the sum of
the squares of the depths of the leaves, respectively, when the number of leaves is k.

Lemma 1. We have that

E

(
G(t)
Z(t)

⏐⏐⏐Z(t) = k
)

=
E (Gk)

k
= 2

k∑
i=2

1
i
,

E (Sk)
k

= 4
k−1∑
i=2

E (Gi)

i(i + 1)
+

E (Gk)

k
, (2)

E

(
G(t)2

Z(t)2

⏐⏐⏐Z(t) = k
)

=
E
(
G2
k

)
k2

=
k + 1
k

(
k−1∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 4
k−1∑
i=1

1
(i + 1)(i + 2)

+ 4
k−1∑
i=1

E (Gi)

i(i + 2)

)
. (3)

Proof. Throughout this proof, we condition on Z(t) = k and denote by Γ1, Γ2, . . . , Γk the depth of the k leaves present
at time t , which are not independent. From the definitions, we have Gk :=

∑k
i=1 Γi and Sk :=

∑k
i=1 Γ 2

i . The idea of the
proof is to recover the formulas given above by finding recurrence equations for E (Gk) ,E (Sk), and E

(
G2
k

)
.

For j ∈ {1, 2, . . . , k}, denote by Ij a random variable that takes value 1 if the jth leaf is the first one, among the k
existing, to extend the tree with two new leaves, and 0 otherwise. The random variables in the set {Ij, Γ1, . . . , Γk} are
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independent for j ∈ {1, 2, . . . , k} and, due to the memoryless property of the exponential distribution, P
(
Ij = 1

)
= 1/k

for all j ∈ {1, 2, . . . , k}, with k the number of leaves in the tree. Furthermore, the Ij are not independent of each other
because only one of them can assume value 1, i.e.

∑k
j=1 Ij = 1, implying that I2j = Ij and IjIℓ = 0 if j ̸= ℓ. With that in

mind, we establish the following relations

Gk+1 = Gk +

k∑
j=1

IjΓj + 2, Sk+1 = Sk +

k∑
j=1

Ij
(
2(Γj + 1)2 − Γ 2

j

)
, (4)

G2
k+1 = G2

k +

⎛⎝ k∑
j=1

IjΓj

⎞⎠2

+ 4 + 4Gk + 4
k∑

j=1

IjΓj + 2Gk

k∑
j=1

IjΓj = G2
k +

k∑
j=1

IjΓ 2
j + 4 + 4Gk + 4

k∑
j=1

IjΓj

+ 2Gk

k∑
j=1

IjΓj. (5)

From the first equation in (4) we obtain

E (Gk+1) = E (Gk) +

k∑
j=1

E
(
IjΓj
)
+ 2 = E (Gk) +

k∑
j=1

E
(
Ij
)
E
(
Γj
)
+ 2

= E (Gk) +
1
k
E

⎛⎝ k∑
j=1

Γj

⎞⎠+ 2 = E (Gk) +
1
k
E (Gk) + 2 =

k + 1
k

E (Gk) + 2,

where we have used that Ij and Γj are independent. This gives the following recurrence relation E (Gk+1) (k + 1)−1
=

E (Gk) k−1
+ 2(k + 1)−1, that, solved with initial condition E (G1) = 0, results in the first formula in (2).

Similarly, using the second equation in (4), we have that

E (Sk+1) = E (Sk) +

k∑
j=1

E
(
Ij
)
E
(
2(Γj + 1)2 − Γ 2

j

)
= E (Sk) +

1
k

k∑
j=1

E
(
Γ 2
j + 4Γj + 2

)
= E (Sk) +

1
k
E (Sk) +

4
k
E (Gk) + 2 =

k + 1
k

E (Sk) +
4
k
E (Gk) + 2,

from which we get the recurrence equation E (Sk+1) (k + 1)−1
= E (Sk) k−1

+ 4E (Gk) (k(k + 1))−1
+ 2(k + 1)−1. Solving

this recursion with E (S1) = E (G1) = 0, we obtain the second result in (2).
Using (5) and the two results just found (i.e. the formulas in (2)), we can now find an expression for E

(
G2
k

)
.

E
(
G2
k+1

)
=E

(
G2
k

)
+

1
k

k∑
j=1

E
(
Γ 2
j

)
+ 4 + 4E (Gk) +

4
k

k∑
j=1

E
(
Γj
)
+ 2E

⎛⎝Gk

( k∑
j=1

IjΓj

)⎞⎠
=E

(
G2
k

)
+

1
k
E (Sk) + 4 +

(
4 +

4
k

)
E (Gk) +

2
k
E

⎛⎝Gk

k∑
j=1

Γj

⎞⎠
=E

(
G2
k

)
+

E (Sk)
k

+ 4 +
4(k + 1)

k
E (Gk) +

2
k
E
(
G2
k

)
=

k + 2
k

E
(
G2
k

)
+

E (Sk)
k

+ 4 +
4(k + 1)

k
E (Gk) .

The equation above can be rewritten as the recurrence equation

E
(
G2
k+1

)
(k + 1)(k + 2)

=
E
(
G2
k

)
k(k + 1)

+
E (Sk)

k(k + 1)(k + 2)
+

4
(k + 1)(k + 2)

+
4E (Gk)

k(k + 2)
,

that, when solved with initial condition E (G1) = E
(
G2
1

)
= E (S1) = 0, gives (3). □

We now use Lemma 1 to study the limit behaviour of the first term on the RHS of (1).

Lemma 2. For a pure birth process, we have that

lim
t→∞

E

(
Var

(
G(t)
Z(t)

⏐⏐⏐Z(t))) = 7 −
2
3
π2.
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Proof. Given that limt→∞ Z(t) = ∞ a.s. Harris (1963, Chapter 5), for every fixed k ∈ N we have that limt→∞ P (Z(t) = k)
= 0. This implies that

lim
t→∞

E

(
Var

(
G(t)
Z(t)

⏐⏐⏐Z(t))) = lim
t→∞

∞∑
k=1

Var
(
Gk

k

⏐⏐⏐Z(t) = k
)

P (Z(t) = k) = lim
k→∞

Var
(
Gk

k

)
.

Using Lemma 1, we can now compute this variance:

Var
(
Gk

k

)
=

E
(
G2
k

)
k2

−
E (Gk)

2

k2
=

k + 1
k

[ k−1∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 4
k−1∑
i=1

1
(i + 1)(i + 2)

+ 4
k−1∑
i=1

E (Gi)

i(i + 2)

]
−

E (Gk)
2

k2

=
k + 1
k

[ k−1∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 4
k−1∑
i=1

1
(i + 1)(i + 2)

+ 4
k∑

i=1

E (Gi)

i2
+ 4

k−1∑
i=1

( E (Gi)

i(i + 2)
−

E (Gi)

i2

)
− 4

E (Gk)

k2

]
−

E (Gk)
2

k2

=
k + 1
k

[ k−1∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 4
k−1∑
i=1

1
(i + 1)(i + 2)

+ 4
k∑

i=2

1
i2

+
E (Gk)

2

k2
− 8

k−1∑
i=1

E (Gi)

i2(i + 2)
− 4

E (Gk)

k2

]
−

E (Gk)
2

k2

=
k + 1
k

[ k−1∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 4
k−1∑
i=1

1
(i + 1)(i + 2)

+ 4
k∑

i=2

1
i2

− 8
k−1∑
i=1

E (Gi)

i2(i + 2)
− 4

E (Gk)

k2

]
+

E (Gk)
2

k3
,

where in the third equality we have added and subtracted the quantity

4
k∑

i=1

E (Gi)

i2
= 8

k∑
i=2

1
i

i∑
j=2

1
j

= 8
k∑

i=2

1
i2

+ 8
k∑

i=2

i−1∑
j=2

1
ij

= 8
k∑

i=2

1
i2

+ 4

⎛⎝( k∑
i=2

1
i

)2

−

k∑
i=2

1
i2

⎞⎠ = 4
k∑

i=2

1
i2

+
E (Gk)

2

k2
.

Taking the limit as k → ∞, we have that

lim
k→∞

Var
(
Gk

k

)
=

∞∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 4
∞∑
i=1

1
(i + 1)(i + 2)

+ 4
∞∑
i=2

1
i2

− 8
∞∑
i=1

E (Gi)

i2(i + 2)

=

∞∑
i=1

E (Si)
i(i + 1)(i + 2)

+ 2 + 4
(π2

6
− 1

)
− 8

∞∑
i=1

E (Gi)

i2(i + 2)
. (6)

Using Lemma 1, the first term on the RHS of (6) becomes

∞∑
i=1

1
(i + 1)(i + 2)

(
4

i−1∑
k=2

1
k + 1

E (Gk)

k
+

E (Gi)

i

)
= 8

∞∑
i=1

1
(i + 1)(i + 2)

i−1∑
k=2

1
k + 1

k∑
j=2

1
j

+ 2
∞∑
i=1

1
(i + 1)(i + 2)

i∑
k=2

1
k
. (7)

The first term on the RHS of (7) is given by

8
∞∑
j=2

1
j

∞∑
k=j

1
k + 1

∞∑
i=k+1

1
(i + 1)(i + 2)

= 8
∞∑
j=2

1
j

∞∑
k=j

1
k + 1

1
k + 2

= 8
∞∑
j=2

1
j

1
j + 1

= 4,

whereas the second one is given by

2
∞∑
k=2

1
k

∞∑
i=k

1
(i + 1)(i + 2)

= 2
∞∑
k=2

1
k

1
k + 1

= 1.

So, the first sum in the RHS of (6) is equal to 4 + 1 = 5. For the last sum in the RHS of (6), we have

−8
∞∑
i=1

1
i(i + 2)

E (Gi)

i
= −16

∞∑
i=1

1
i(i + 2)

i∑
j=2

1
j

= −16
∞∑
j=2

1
j

∞∑
i=j

1
i(i + 2)

= −16
∞∑
j=2

1
j

1 + 2j
2j(j + 1)

= −
4
3
(π2

− 3).
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Joining all these results, we obtain

lim
k→∞

Var
(
Gk

k

)
= 5 + 2 + 4

(π2

6
− 1

)
−

4
3
(π2

− 3) = 7 −
2
3
π2. □

Lemma 1 allows us to also understand the behaviour of the conditional variance of the expected average depth of the
leaves given their number.

Lemma 3. For a pure birth process, we have that

lim
t→∞

Var
(
E

(
G(t)
Z(t)

|Z(t)
))

=
2
3
π2

≈ 6.58.

Proof. From Lemma 1 we know that

Var
(
E

(
G(t)
Z(t)

|Z(t)
))

= Var

(
2

Z(t)∑
i=2

1
i

)
= 4Var

( Z(t)∑
i=1

1
i

)
= 4

⎛⎝E

⎛⎝( Z(t)∑
i=1

1
i

)2⎞⎠−

(
E

( Z(t)∑
i=1

1
i

))2⎞⎠ , (8)

where, in the second inequality, we have used the fact that the variance of a process does not change when a constant is
added. Given that {Z(t)} is a pure birth process, the distribution of Z(t) is given by (e.g. Resnick (2013, pg. 430))

P (Z(t) = k) = e−λt (1 − e−λt )k−1, k = 1, 2, . . .

where 1/λ is the expected time before a leaf generates two new leaves, which allows us to evaluate the second term in
(8) exactly:

E

( Z(t)∑
i=1

1
i

)
=

∞∑
k=1

P(Z(t) = k)
k∑

i=1

1
i

=
e−λt

1 − e−λt

∞∑
k=1

(1 − e−λt )k
k∑

i=1

1
i

=
e−λt

1 − e−λt

∞∑
i=1

1
i

∞∑
k=i

(1 − e−λt )k =
1

(1 − e−λt )

∞∑
i=1

1
i
(1 − e−λt )i.

Let f (t) :=
∑

∞

i=1(1 − e−λt )i/i. Then

f ′(t) = λe−λt
∞∑
i=1

1
i
i(1 − e−λt )i−1

= λe−λt
∞∑
i=1

(1 − e−λt )i−1
= λ,

and, given f (0) = 0, we have that f (t) = λt . This implies that

E

( Z(t)∑
i=1

1
i

)
=

λt
(1 − e−λt )

= λt + o(1), (9)

and the second term in the brackets on the RHS of (8) is therefore (λ2t2)/(1 − e−λt )2.
Consider the first term on the RHS of (8).

E

⎛⎝( Z(t)∑
i=1

1
i

)2⎞⎠ =
e−λt

1 − e−λt

∞∑
i=1

(
i∑

k=1

1
k

)2

(1 − e−λt )i

=
e−λt

1 − e−λt

⎛⎝ ∞∑
i=1

i∑
k=1

1
k2

(1 − e−λt )i + 2
∞∑
i=1

i∑
k=1

k−1∑
j=1

1
k
1
j
(1 − e−λt )i

⎞⎠ . (10)

The first term in the brackets on the RHS of (10) is given by

∞∑
i=1

i∑
k=1

1
k2

(1 − e−λt )i =

∞∑
k=1

∞∑
i=k

1
k2

(1 − e−λt )i = eλt
∞∑
k=1

1
k2

(1 − e−λt )k.

For the second term, we have that

2
∞∑
i=1

i∑
k=1

k−1∑
j=1

1
k
1
j
(1 − e−λt )i = 2

∞∑
k=1

k−1∑
j=1

∞∑
k=i

1
k
1
j
(1 − e−λt )i = 2eλt

∞∑
k=1

k−1∑
j=1

1
k
1
j
(1 − e−λt )k.
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Denoting with g(t) := 2
∑

∞

k=1
∑k−1

j=1 (1 − e−λt )k/(kj) and noticing that g(0) = 0 and

g ′(t) =
2λe−λt

1 − e−λt

∞∑
k=1

k−1∑
j=1

1
j
(1 − e−λt )k =

2λe−λt

1 − e−λt

∞∑
j=1

∞∑
k=j+1

1
j
(1 − e−λt )k

=
2λ

1 − e−λt

∞∑
j=1

1
j
(1 − e−λt )j+1

= 2λf (t) = 2λ2t,

we obtain that g2(t) = λ2t2, and the second term on the RHS of (10) is thus (λ2t2)/(1 − e−λt ).
So, joining all the results, we have that

lim
t→∞

Var
(
E

(
G(t)
Z(t)

|Z(t)
))

= lim
t→∞

4

(
∞∑
k=1

(1 − e−λt )k−1

k2
+

λ2t2

1 − e−λt −
λ2t2

(1 − e−λt )2

)
= 4

∞∑
k=1

1
k2

=
2
3
π2 □

Theorem 1 follows from Eq. (1) using the results in Lemmas 2 and 3.
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