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Abstract
In recent years, satellite data has been used to estimate precipitation with the aim of increasing the accuracy of rainfall spatial
distribution especially at ungauged locations. In this research, the satellite data, including visible and infrared reflection data from
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and observation data, consists of rainfall records (10 years
2005–2015) from three synoptic stations in Semnan province, were used to simulate rainfall using an artificial neural network
(ANN) method. The network performance is evaluated through three performance criteria, i.e., correlation coefficient (R), root
mean square error (RMSE), and Nash–Sutcliffe (NS). Findings show that using a combination of visible reflection data of band 3
and infrared reelection data of bands 5, 18, and 19 as input data results in better performance compared with other possible
combinations. In this model, the values of R, NS, and RMSE for test period data were 0.93, 0.81, and 1.49, respectively.

1 Introduction

Accurate measurements of rainfall with high spatial and tem-
poral resolution are important for modeling surface currents,
proper location of reservoirs, flood and drought prediction,
water resource management, and agricultural projects (Jiang
et al. 2012; Liu et al. 2017). Usually, rainfall data is taken from
in situ observations, like rain gauges and climatology stations.
The inadequate number and distribution of these stations and
the lack of monitoring in a short term are the user’s perpetual
problems with rainfall data (Rana et al. 2015; Kidd et al.
2017). Recently, in order to overcome these issues, satellite
data has been widely applied among hydrology researchers
(Alijanian et al. 2017). This demand is crucial especially in
developing countries such as Iran, where rainfall data is not
available in many of its basins sufficiently (Moazami et al.
2013). Different methods and techniques have been developed
to estimate rainfall using satellite data which use different
indirect methods to estimate rainfall. These methods measure
clouds’ characteristics and also temperature in the upper cloud

area to estimate precipitation (Barret and Martin 1981). Many
studies have been carried out using visible (VIS) and infrared
(IR) satellite data, and many algorithms have been developed
to estimate precipitation using these data (Arkin and Meisner
1987; Adler and Negri 1988; Vicente et al. 1998; Todd et al.
1999; Anoop Kumar et al. 2011; Veerakachen and
Raksapatcharawong 2015). One of the most shortcomings in
these techniques is incorrect classification of rainy clouds so
that cold clouds without rainfall in higher latitudes are often
identified as rainy clouds, leading to false estimation of pre-
cipitation values (Scofield and Oliver 1977). Passive micro-
wave (PMW) techniques measure rainfall more directly than
VIS and IR data-based techniques; this is due to the ability of
PMW data to penetrate in the clouds (Mishra et al. 2009).
PMWdata is provided by low-orbit arctic polar satellites, with
low temporal resolution which has led to limitations in the use
of these data (Behrangi et al. 2009). Also, in order to over-
come the weakness of estimating precipitation from a single
source, scientists considered the combination of VIS, IR, and
PMW techniques (Todd et al. 2000; Kidd 2003). Many re-
searchers used Tropical Rainfall Measuring Mission
(TRMM) satellite data’s to predict rainfall. These complemen-
tary methods, which use IR data, can fill the gap which is
generated by using only PMW data in simulating rainfall
fields (Simpson et al. 1996; Huffman et al. 2007; Kneis
et al. 2014). Climate Prediction Center (CPC) morphing tech-
nique product global precipitation analyses at very high spatial
and temporal resolution were developed to overcome the
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limitation of PMW-based precipitation products. This tech-
nique uses atmospheric motion vectors derived from GEO’s
IR data to propagate high-quality PMW precipitation esti-
mates when updated PMW data are unavailable (Joyce et al.
2004; Ebert et al. 2007). Also, many studies have been carried
out to estimate precipitation using the PERSIANN algorithm,
an automated system for predicting remote sensing precipita-
tion using artificial neural network (ANN) and TRMM satel-
lite PMW data (Sorooshian et al. 2002; Zhou et al. 2008; Hsu
and Sorooshian 2009, Liu et al. 2017). In recent years, scien-
tists have been trying to calculate the precipitations of differ-
ent areas of the planet by processing images of polar orbit
satellites. The polar satellites and the sun have a low altitude,
and due to their close proximity to the ground, they are pre-
cisely better than ground satellites (Hong et al. 2004).
Nasrollahi et al. have identified rainfall regions from unpol-
luted areas in the USA using IR and MODIS brightness tem-
perature (BT) data, besides CloudSat satellite observation data
through an ANN method. Results show a remarkable im-
provement in the identification of no-rainfall areas
(Nasrollahi et al. 2013). King et al. evaluated water vapor
and precipitated water using the MODIS sensor. According
to their studies, the general precipitation of rainwater from the
MODIS sensor can be useful in predicting the distribution of
rainfall patterns, the results of which exhibit significant mois-
ture in near infrared (NIR) and thermal infrared (TIR) bands
(King et al. 2002). Gao et al. developed an algorithm for
extracting water vapor through NIR bands of the MODIS
sensor. This algorithm relies on observations from NIR rays
reflected by the surface and clouds (Gao and Kaufman 2003).
Chen et al. have been able to determine the accuracy of total
perceptible water data obtained from the MODIS sensor in the
USA using the prediction model and meteorological research.
It is notable that predicted perceptible water, which is extract-
ed from IR data, is overestimated in a dry atmosphere while it
shows underestimated prediction in a wet atmosphere (Chen
et al. 2008). Yan et al. compared rainfall data using AMSRE
microwave data and the brightness temperature of the 11 -μm
bands from the MODIS sensor. The results indicate that rain
forecasts from the MODIS and AMSRE sensors are very con-
sistent with each other and provide the appropriate precision
and similarity (Yan et al. 2005). Kapacchi et al. estimated the
precipitation in the UK using the VIS and IR data of the polar
satellite Terra combined with the ANN. Their research shows
that the VIS and IR data in combination offer better results
than individual TIR data (Kapacci and Conway 2005).

Due to the limited availability of water resources in
Semnan province, accurate measurements of rainfall are im-
portant for proper management of water resources in the fu-
ture. In this study, daily precipitation data from three synoptic
stations during the 2005–2015 period and MODIS data are
used to simulate precipitation using ANN. Using statistical
assessment criteria, the proper architecture for ANN with the

best combination of inputs to simulate the precipitation is
proposed.

2 Case study and data

The study area is located in Semnan province including three
synoptic stations at Shahroud, Damghan, and Semnan cities.
Shahroud is located in 34° 14′ N and 54° 33′ E (Fig. 1). In
addition, with an average altitude of 1349m above sea level, it
is located on the southern part of Alborz mountains. Based on
long-term records, the average annual temperature and aver-
age annual precipitation are approximately 15 °C and
153 mm, respectively. Damghan is located in 54° 19′ E and
36° 9′ N with an altitude of 1154 m above sea level.
The average annual temperature and precipitation in
Damghan are approximately 15 °C and 121 mm, respec-
tively. Finally, the Semnan is located in 53° 23′ E and
35° 34′ N with an average elevation of 1130 m. Average
annual temperature and precipitation are 18.4 °C and 132 mm,
respectively.

In this study, 6-h rainfall during the statistical period of
2005–2015 was obtained as observational data from synoptic
stations of Shahroud, Damghan, and Semnan, which comprise
a total of 132 precipitation events. Besides the in situ data,
images from MODIS, installed on the polar satellite Terra
EOS, were also downloaded from http://reverb.echo.nasa.
gov. The MODIS sensor can provide satellite images at a
daily time interval, high spectral resolution (36 bands), and
approximately suitable spatial resolution (from 250 to
1000 m). Regarding the recorded daily rainfall data at
synoptic stations of Shahroud, Damghan, and Semnan,
images are available at 1-B level from MODIS with HDF
format, which covers Shahroud, Damghan, and Semnan sta-
tions retrieved from the NASAwebsite.

3 Methodology

In this study, we simulated rainfall precipitation using 6-h
observational data from synoptic stations of Shahroud,
Damghan, and Semnan during the period of 2015–2005 and
MODIS sensor data through an artificial neural network. For
this purpose, firstly, the images of the MODIS sensor were
processed on the day of rainfall precipitation, and VIS and IR
reflection data, emissivity of TIR bands 31 and 32, BTof TIR
bands 31 and 32, and normalized difference vegetation index
(NDVI) were extracted. Extracted data (either individually or
in combination with each other) as input and daily observation
data as output were fed to the artificial neural network. In
order to evaluate the performance of ANN models, three sta-
tistical criteria, namely, correlation coefficient (R), Nash–
Sutcliffe (NS), and root mean square error (RMSE) were used.
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Figure 2 depicts the proposed algorithm for data process-
ing, analyzing and simulating precipitation using the ANN
method.

In this research, for the purpose of managing and organiz-
ing satellite data, three steps, namely, of preprocessing, pro-
cessing, and post processing of remote sensing data were ap-
plied as follows.

3.1 Image preprocessing

The first step in preprocessing satellite imagery is the geomet-
ric correction of images. The downloaded images are not
georeferenced and should be geometrically corrected. For this
purpose, the MCT plugin in ENVI 5.3 was used and satellite
images were defined with the geographical coordinate system
(WGS-84).

3.2 Image processing

In the processing of satellite imagery, the values of the radi-
ance and emissivity parameters can be obtained from the
MCT plugin in ENVI 5.3 software.

The NDVI is one of the most well-known, simplest, and
most applicable plant herbal indicators (Kassa 1990).
Although, from a theoretical point of view, the values of this
index are in the range of − 1 and + 1, but in practice, it has

values less than + 1 and more than − 1. The values of this
index for a dense vegetation cover tend to be + 1, but clouds,
snow, and water bodies have negative values. Bare soils and
rocks, which have similar spectral responses in two bands, get
values close to 0 (Kogan 1993).

The brightness temperature (BT) is the amount of electro-
magnetic radiation that is moving from the upper atmosphere
to the satellite and is equivalent to the temperature of an equiv-
alent black body. To calculate BT, the amount of reflection
recorded in a pixel is converted to a light temperature factor as
a digital number, and it is calculated using the Planck equation
as follows:

BT ¼ K2

Ln
k1
Lγ

þ 1

� � ð1Þ

where BT is the brightness temperature in Kelvin, Lγ is the
spectral radiance (W m−2 steradian−1 μ−1), k1 is the first con-
stant coefficient (3.741775 × 10−22 Wm3 μ−1), and K2 is the
second constant coefficient (0.0143877 m−K).

3.3 Image post processing

After calculating required data including reflectance parame-
ters, emission of thermal bands 31 and 32, NDVI, and BT of
bands 31 and 32, maps of these data were extracted for the

Fig. 1 Location of the case study and synoptic stations
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study areas. Data in which pixels with NAN data presented at
the location of synoptic stations were removed from datasets.

Finally, required input-output datasets were built and fed
into the ANN to simulate the precipitation. Table 1 contains
different inputs considered in our study.

3.4 Rainfall simulation using artificial neural network

ANN is an appropriate solution for modeling nonlinear and
complex phenomena (Noori et al. 2015). One of the most

important parameters in the definition of an ANN is its archi-
tecture (Noori et al. 2011). ANN customary architecture is
composed of three layers of neurons: input layer, hidden layer,
and output layer (Haykin 1994). A neuron response is based
on the weighted sum of all its inputs according to an activation
function (Dehghani et al. 2014). Input neurons, or nodes, re-
ceive values of an instance of the input parameters that are fed
to the network after being scaled into a numeric range that is
efficient for calculations by the neural model. Outcomes to the
output parameters for the instance under consideration are

Simulation of precipitation values using the remote sensing of the images

Remote sensing operation to prepare vector data for simulating precipitation

Download satellite data

Satellite imagery analysis

Image preprocessingImage postprocessing Image processing

Georeferencing imagesExtract reflectance and
emissivity images

NDVI index images
extraction

Collect images in the
form of dataset

Extract reflectance
values

Extract emissivity values

Extract NDVI index
values

BT index images
extraction

Extract BT index
values

Collect and prepare data from MODIS sensor analysis and observation

Simulation of precipitation values by ANN method

Model performance (statistical indicies)

The best model selection

Fig. 2 Proposed flowchart for
preparing data and its relation to
rainfall simulation

M. Bolandakhtar, S. Golian1326



assigned by the output neurons. Hidden neurons connect the
input neurons to the output neurons and provide nonlinearity
to the network. Each neuron is connected to every neuron in
adjacent layers by a connection weight, which determines the
strength of the relationship between two connected neurons
(Din and Smith 2002). Generally, neural networks are divided
into two types, namely, feedforward and backforward. In most
cases, feedforward networks considerably perform satisfacto-
rily. Many researchers in the field of ANNs suggest that it is
usually unnecessary to use more than one hidden layer in a
multilayer feedforward network. A major reason for this is
that intermediate cells not directly connected to output cells
will have very small weight changes and will learn very slow-
ly (Noori et al. 2010). To train neural networks, there are
conventional training algorithms based on the layered
perceptron structure. The most famous of these methods are
the conjugate gradient and Levenberg–Marquette.

In this study, a feedforward neural network was used. Also,
the Levenberg–Marquardt algorithm was utilized to train the
network. The Levenberg–Marquardt algorithm was designed
to approach second-order training speed without having to
compute the Hessian matrix (Noori et al. 2011). First, the
network was trained with a hidden layer, and in case of inap-
propriate performance, the number of layers was added. This
also applies to the number of hidden layer neurons. In the first
instance, the number of neurons was considered low and, if

not converted to the optimal response, we increased them. In
Table 2, the selected artificial neural network models include
the best and worst models in terms of performance and some
other important models, the results of which are debatable,
and the combination of their input data are shown.

3.5 Performance of artificial neural network

In order to evaluate the performance of ANN and select the
most satisfactory models, three statistical criteria, namely, cor-
relation coefficient (R), Nash–Sutcliffe (NS), and root mean
square error (RMSE) were used.

3.5.1 Correlation coefficient

The correlation coefficient, denoted by R, is a measure of the
strength and direction of a linear relationship between the sim-
ulated data and the observational data. The correlation coeffi-
cient can have a value between− 1 and + 1. The closer the value
is to + 1 indicates a strong positive linear relationship between
the simulated data and the observational data (Ratner 2009).

3.5.2 Root mean square error

The root mean square error (RMSE) accumulates the magni-
tudes of the differences between the simulated data and the

Table 1 Data extracted from
images of the MODIS sensor to
simulate rainfall

Row Data Row Data

1 Visible band reflection 1 8 Reflection of infrared band 19

2 Reflection of infrared band 2 9 Reflection of infrared band 26

3 Visible band reflection 3 10 Radiation infrared thermal band 31

4 Visible band reflection 4 11 Radiation infrared thermal band 32

5 Reflection of infrared band 5 12 The brightness temperature of band 31

6 Reflections of infrared band 7 13 The brightness temperature of band 32

7 Reflections of infrared band 18 14 Vegetative variation normalized

Table 2 ANN models with
various combinations of input
variables

Model Input combination

ANN 1 Reflectance bands 1, 2, 3, 4, 5, 7, 18, 19, and 26; emissivity bands 31 and 32; NDVI;
and BT bands 31 and 32

ANN 2 Reflectance bands 1, 2, 3, 4, 5, 7, 18, 19, and 26

ANN 3 BT bands 31 and 32; NDVI; and emissivity bands 31 and 32

ANN 4 NDVI

ANN 5 BT bands 31 and 32

ANN 6 Emissivity bands 31 and 32

ANN 7 Reflectance bands 1, 3, and 4

ANN 8 Reflectance bands 1, 3 and 4; BT bands 31 and 32; NDVI; and emissivity bands 31 and 32

ANN 9 Reflectance bands 18 and 19

ANN 10 Reflectance bands 18 and 19; BT bands 31 and 32; NDVI; and emissivity bands 31 and 32

ANN 11 Reflectance bands 3, 5, 18, and 19

Determining the best combination of MODIS data as input to ANN models for simulation of rainfall 1327



observational data for various times into a single measure of
difference quantity. The value of RMSE is always positive and
when it approaches zero, the efficiency of the model increases.
In general, a lower RMSE is better than a higher one (Katiraie-
Boroujerdy et al. 2017)

3.5.3 Nash–Sutcliffe

The Nash–Sutcliffe efficiency index, denoted by NS, is a
widely used and potentially reliable statistic for assessing the
goodness of fit of hydrologic models (Nash and Sutcliffe
1970). Nash–Sutcliffe efficiency can range from − ∞ to 1.
Based on various studies in this field, including Gusman
et al., the model has a good simulation model if the magnitude
of the Nash–Sutcliffe coefficient is higher than 0.5 (Gassman
et al. 2007).

4 Results and discussion

In this paper, an artificial neural network was used to simulate
rainfall. For this purpose, the data extracted from the process-
ing of MODIS images of the sensor as input and observation
precipitation data as output were fed to the artificial neural
network. In order to evaluate the performance of ANN
models, the correlation coefficient, Nash–Sutcliffe, and root
mean square error are used. Model performances based on
statistical indices are shown in Table 3.

The scatterplots of the observational data against the sim-
ulated data using the artificial neural network for different
models are shown in Fig. 3.

The ANN 1model, which combines all data extracted from
the analysis and processing of MODIS images (VIS and IR
reflection data of 1 to 5, 7, 18, 19, and 26 bands; NDVI; BTof

the TIR bands 31 and 32; and the emission of TIR 31 and 32
bands) as input to the artificial neural network, did not provide
acceptable performance. The ANN 2 model, which used the
reflection data of bands 1, 2, 3, 4, 5, 7, 18, 19, and 26 as input
to the network, improved the network performance compared
with the ANN 1 model, but did not provide satisfactory re-
sults. The ANN 3 model presented the weakest performance
among all the examined models. Also, using NDVI data in the
ANN 4 model, BT of the TIR bands 31 and 32 in the ANN 5
model, and emission of TIR 31 and 32 bands in the ANN 6
model as input data to the artificial neural network improved
the network performance slightly. But the networks still
showed poor performance. The results of the ANN 3, ANN
4, ANN 5, and ANN 6 models, which are based on the com-
bination of emission, BT of 31 and 32 TIR bands, and also
NDVI were not satisfactory and revealed poor model perfor-
mance. By comparing the results of the ANN 1 to ANN 6
models, it is deduced that the emission data of 31 and 32
TIR bands, the BT of 31 and 32 TIR bands, and the NDVI
have led to a decrease in the performance of the ANNmodels.
Reflection data from VIS bands, when applied as input to the
ANN (either individually or in combination with each other),
reduce the performance of the network. Among the models
that used VIS reflection data as input to the network, the
ANN7 model provided the best result. In the ANN 7 model,
only the reflective VIS data of bands 1, 3, and 4 were used as
input to the ANN. Among the IR reflection data (either indi-
vidually or in combination with each other) that were used as
input to the artificial neural network, the ANN 9 model
showed the best performance. This model utilized the reflec-
tion IR data of bands 18 and 19 as input to the artificial neural
network. It is notable that the 18 and 19 bands of MODIS are
known as barrier water absorption bands. Also, the use of the
NDVI, BT of the TIR bands 31 and 32, and emission of TIR
31 and 32 bands data in combination with the VIS reflection
data of bands 1, 3, and 4 in the ANN8 model and the IR
reflection data of bands 18 and 19 in the ANN 10 model as
input to the artificial neural network led to a decrease in net-
work performance compared with the ANN 7 and ANN 9
models. This can be explained by the poor performance
of the NDVI, BT of the TIR bands 31 and 32, and the
emission of TIR 31 and 32 bands data. The combination
of IR reflection data and VIS reflection data significantly
improved the performance of the artificial neural network.
Various combinations of input data were investigated, and
the ANN 11 model was the most efficient artificial neural
network performance, so that among all the models
reviewed in this study, this model presented the best
performance. In this model, the combination of reflection
data of band 3 from the VIS bands and the reflection data
of bands 5, 18, and 19 from the IR portion of the electro-
magnetic spectrum was used as input to the neural network
to simulate rainfall data.

Table 3 ANN performance based on different models of Table 2

Models Nash R RMSE

Train Test Train Test Train Test

ANN 1 0.93 0.44 0.96 0.76 0.76 2.58

ANN 2 0.99 0.54 0.99 0.78 0.78 2.28

ANN 3 0.69 0.44 0.83 0.70 0.70 2.64

ANN 4 0.71 0.59 0.84 0.82 0.82 2.76

ANN 5 0.87 0.47 0.93 0.81 0.81 1.68

ANN 6 0.73 0.45 0.85 0.70 0.70 2.12

ANN 7 0.83 0.54 0.91 0.75 0.75 2.16

ANN 8 0.83 0.46 0.91 0.73 0.73 2.59

ANN 9 0.87 0.68 0.93 0.91 0.91 1.96

ANN 10 0.71 0.54 0.97 0.77 0.77 2.8

ANN 11 0.94 0.81 0.97 0.93 0.93 1.49
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5 Conclusion

The purpose of this study was to simulate precipitation values
using remote sensing data from MODIS images. In order to
achieve a model with acceptable performance, different com-
binations of input data were fed to the ANN model. These

input data include reflection bands of VIS and IR regions of
the electromagnetic spectrum including bands 1 to 5, 7, 18,
19, and 26, TIR emission bands 31 and 32, BT of bands 31
and 32, and NDVI. Also, 6-h observed precipitation data at
synoptic stations of Shahroud, Damghan, and Semnan cities
were used as model output. Finally, considering three

ANN 1 ANN 2

ANN 3 ANN 4

ANN 5 ANN 6

Fig. 3 Scatter plot of simulated vs. observed precipitation for different models
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statistical criteria to assess the performance of ANN, the best
combination of input data was determined to simulate precip-
itation. The most important results are as follow.

In this study, the weakest performance of artificial neural
network is presented as a model that combines the NDVI, BT
of the TIR bands 31 and 32, and TIR emission bands 31 and
32 data as input to the network. These data do not provide an
acceptable performance either individually or in combination

with each other. Also, their use in combination with VIS and
IR reflection data led to degradation in model performance
compared with models that only use VIS and IR reflection
data (either individually or in combination with each other)
as input to the network. With regard to the results of this
research, it is concluded that the NDVI, BT of the TIR bands
31 and 32, and TIR emission bands 31 and 32 data were not
suitable for simulating daily rainfall using the artificial neural

ANN 7 ANN 8

ANN 9 ANN 10

ANN 11

Fig. 3 (continued)
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network and could not provide acceptable results. Also,
models that use VIS reflection data (either individually or in
combination with each other) as input demonstrated poor per-
formance, and simulated rainfall was not reliable. Among the
various combinations of reflective IR data that were used to
simulate rainfall, a model that combines bands 18 and 19 of
the electromagnetic spectrum provided more accurate results.
Reflective IR data in combination with VIS reflection data as
input to the ANN model provided the best performance for
rainfall simulation. Among the data used as input data to the
ANNmodel, the combination of reflective data of band 3 from
the VIS bands and the reflective data of bands 5, 18, and 19
from the IR portion of the electromagnetic spectrum was
found to result in the best performance. This model presents
acceptable performance for both training and test phases and
can introduce reliable results for simulating precipitation over
the study area.
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