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Abstract

Mycetoma is a neglected chronic and granulomatous infection primarily associated with the

fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of

grains. However, the processes leading to grain formation are not known. In this study, we

employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria

mellonella larvae and map the processes leading to grain formation over time. For this, at 1

day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were

extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. myceto-

matis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and

7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular

metabolic processes and numerous enzymes were encountered. G. mellonella proteins

were primarily involved in the nodulation process. The proteins identified were linked to nod-

ulation and grain formation and four steps of grain formation were identified. The results of

this proteomic approach could in the future be used to design novel strategies to interfere

with mycetoma grain formation and to combat this difficult to treat infection.

Author summary

Although grain formation is the hallmark of mycetoma, so far the pathways leading to

grain formation were not studied. Since our hypothesis is that both host and pathogen

play a role in this process, we aimed to study this process in a model system. Grains can be

formed in the invertebrate Galleria mellonella and different stages of grain formation can

be noted within the larvae. We therefore infected G. mellonella with the mycetoma causa-

tive agent Madurella mycetomatis, and monitored grain formation over time. At day 1,

day 3 and day 7 post-inoculation, grains and hemolymph were obtained from infected lar-

vae. Proteins were isolated and identified by label-free mass spectrometry. By analyzing

the proteins found in both host and pathogen on the different time points, we were able to
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develop a grain model over time. This grain model can in the future be used to identify

novel treatments for this difficult to treat infection.

Introduction

Madurella mycetomatis is the dominant causative agent of eumycetoma, a chronic granuloma-

tous type infection which is severely debilitating to its sufferers due to tissue destructions[1].

Mycetoma is endemic in tropical and subtropical regions but the highest prevalence is docu-

mented within the African continent [2]. The disease is of gradual onset, and the symptoms

may take years to develop. Mycetoma is associated with large subcutaneous swellings on the

extremities which hinder the patients in their daily activities and the formation of sinuses that

discharge grains [3]. These grains are considered the key feature of mycetoma and are thought

to be formed as a defence mechanism by the fungus against the host immune system [4].

Although it is currently not known how these grains are formed, we do know that grains con-

sist of melanin, chitin, lipids and proteins [5–9]. Chitin and melanin are present as thick layers

on hyphal walls [6, 7] and proteins were found both on the cells as well as in the cement mate-

rial [8, 9] surrounding the hyphae. Furthermore, zinc, copper and calcium concentrations

were significantly higher in M. mycetomatis infected tissues than in control tissue which could

be contributed to the formation of the grain cement matrix [10]. Grains are only found in vivo,

and animal models are needed to produce these grains [11–13].

Recently, we demonstrated that grains can also be formed in the invertebrate Galleria mello-
nella [11]. The invertebrate G. mellonella is a recognized in vivo system to assess the virulence

of fungal species, assess the toxicity and efficacy of novel anti-fungal drugs and more recently

to study the response of the innate immune response towards an invading fungal pathogen

[14–20]. The wide spread acceptance of this model is due in part to the lack of legal and ethical

considerations associated with larvae, their ease of use (inoculation, low cost, ability to gener-

ate results within 24–48 hours) and the fact that results correlate closely with those obtained

using mice [21]. This is due to the similarities between the insect immune system and the

mammalian innate immune response. Insect hemocytes show many similarities (e.g., phagocy-

tosis, superoxide production) to mammalian phagocytes [22] and many of the receptors (e.g.,

Toll) and response pathways (e.g., coagulation and melanisation) in insects are comparable to

those in mammals [23–25]. Furthermore, these larvae produce a plethora of antimicrobial pep-

tides, which are similar to their equivalents in mammals in response to invasion by human

pathogens [26–29]. Next to M. mycetomatis, larvae have been exploited to study the virulence

of a range of fungal pathogens including Candida albicans [15], Cryptococcus neoformans

[30], Candida auris [31], Aspergillus flavus [32], A. fumigatus [16, 17], Fusarium oxysporum
[33], Paracoccidioides lutzii and Histoplasma capsulatum [34].

The grains formed in G. mellonella are similar to those extracted from human and mamma-

lian biopsies [11]. Also the immune reaction surrounding the grain demonstrated some simi-

larities. The hemocytes around the M. mycetomtatis grain within G. mellonella larvae are

similar to neutrophils surrounding the grains in human. Hemocytes and neutrophils share

similar receptors and transcription factors and both degranulate, form reactive oxygen species

and extracellular nets [22]. However, unlike in human, in the G. mellonella grain model, grain

formation can be followed over time and different grain developmental stages can be noted

[11]. These developmental stages also resembled the developmental stages found in murine

grains [9]. Furthermore, in both G. mellonella larvae and in mice, similar responses to antifun-

gal agents were noted. In mice, grain formation could be prevented by administering
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amphotericin B but not by itraconazole [35], while in larvae prolonged survival was noted with

amphotericin B, but not with itraconazole [36]. This indicates that the M. mycetomatis grain

model in G. mellonella larvae could be a suitable model to unravel the processes leading to

grain formation. This information can be useful to understand the pathology of mycetoma

and to identify novel preventative and therapeutic measurements against mycetoma.

We therefore used the G. mellonella grain model to profile the changes of larval proteome

following infection by M. mycetomatis and to identify proteins secreted by M. mycetomatis
during grain formation in order to understand the biological processes involved in grain for-

mation in vivo. This information will help us in the future to find compounds which specifi-

cally inhibit the processes leading to grain formation.

Materials and methods

Infection of G. mellonella larvae with M. mycetomatis
G. mellonella larvae were obtained from Terra Equipment Voedseldieren (Cuijk, The Nether-

lands) and kept at room temperature on wood shavings in the dark until use. Larvae of approx-

imately 300–500 mg showing no discoloration were used within five days of receipt. Larvae

were infected with M. mycetomatis genome strain mm55 [37] via the last left proleg. To pre-

pare the inoculum for the G. mellonella larvae, M. mycetomatis mycelia obtained from Sabour-

aud Dextrose plates were sonicated for 30 s at 28 micron (Soniprep, Beun de Ronde, The

Netherlands) and added to 500 ml colorless RPMI 1640 medium supplemented with L-gluta-

mine (0.3 g/liter), 20 mM mopholinepropanesulfonic acid (MOPS) and chloramphenicol (100

mg/liter; Oxoid, Basingstoke, United Kingdom). After two weeks incubation at 37˚C, the

mycelia were separated and washed by vacuum filtration (Nalgene, Abcoude, The Nether-

lands). Wet weights of the mycelia were determined and a suspension containing 100 mg wet

weight per ml in phosphate-buffered saline (PBS) was sonicated for 2 min at 28 micron. The

resulting homogenous suspension was washed once in PBS and diluted to a final inoculum

size of 4 mg wet weight per 40 μl PBS corresponding to 600–850 CFU/larvae. Inoculation was

performed by injecting 40 μl of the fungal suspension in the last left pro-leg with an insulin

29G U-100 needle (BD diagnostics, Sparsk, USA). To monitor the course of infection, in a sep-

arate group consisting of 15 larvae, survival was recorded on a daily basis for ten days. Pupa

formed during these then days were left out of the equation. In all experiments, non-infected

larvae were used as control groups.

Burden of infection

At day 1, day 3 and day 7 after inoculation hemolymph and grains were collected from five

larvae per time point. At the same time points an additional five larvae were fixed in 10%

buffered formalin to determine the burden of infection. Since the larval exoskeleton is

impenetrable to most fixative reagents, 100 μl of the 10% buffered formalin was injected into

the larvae [11]. After 24 h fixation, whole larvae were dissected longitudinally into two halves

with a scalpel and fixed in 10% buffered formalin for at least another 48 h. The two halves

were processed for histology. Sections were stained with hematoxylin and eosin (HE) and

Grocott methenamine silver. To assess the number of grains per larvae, the grains were man-

ually counted under a light microscope mounted with a Canon EOS70D camera (Canon

Inc.) by two independent scientists. Grains were magnified 40x and visualized on the com-

puter screen using the supplied EOS Utility software (Canon Inc.) and categorized into large,

medium or small sizes using the enlargement display frame present in the Live View Shoot-

ing mode. Under 40x magnification, the enlargement display frame has a width and height

of approximately 250 μm and 160 μm and sums up to a dimension of 0.04 mm2. Grains that
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were larger than half of the display frame were categorized as large (>0.02 mm2). Grains that

were larger than a quarter of the frame but smaller than half of the frame are categorized as

medium (0.01 ± 0.019 mm2) and those between one-eighth to a quarter of the display frame

(0.005 ± 0.009 mm2) were categorized as small. The sum of all large, medium and small

grains present in larvae was used to represent the total number of grains in the larvae. To

determine the total size of grains in the larvae, the sum of all grains in a larva multiplied by

the minimum size of their respective category (large: 0.02 mm2, medium: 0.01 mm2 and

small: 0.005 mm2) was used.

Proteomic response of G. mellonella larval hemolymph to M. mycetomatis
To determine the proteins present in the larval hemolymph of M. mycetomatis infected larvae,

hemocytes were removed by centrifugation at 10,000 rcf for 10 minutes to obtain cell free

hemolymph. The cell-free hemolymph was diluted in PBS and the proteins were quantified by

the Bradford protein assay. The proteins were then acetone precipitated (75 μg) overnight by

the addition of 3 times the total volume of ice-cold acetone and subjected to label-free quanti-

tative LC-MS/MS.

Analysis of the M. mycetomatis grain proteome over time in G. mellonella
larvae

M. mycetomatis grains were dissected from G. mellonella larvae, washed by centrifugation with

PBS and frozen in PBS (volume = 100 μl) overnight. Grains were washed twice with PBS and

resuspended in lysis buffer (7M Urea, 2M thiourea, 0.1M Tris-HCl supplemented with prote-

ase inhibitors [1 μg/ ml TLCK, Aprotinin, PMSF, leupeptin]), subjected to sonication (three

cycles of 6 x 10 seconds pulses at 20% power) and clarified by centrifugation (10,000 x g for

five minutes). Protein supernatant concentration was determined by Bradford protein assay

and protein was acetone principiated (75 μg) overnight by the addition of three times total vol-

ume of ice-cold acetone. Proteins were subjected to label-free quantitative LC-MS/MS.

Label-free proteomics workflow

Proteins were analyzed by using label-free quantitative LC-MS/MS by standardised protein

purification procedures as described [20]. In summary, 0.75 μg of peptide mix was eluted onto

a Q-Exactive (ThermoFisher Scientific, U.S.A) high resolution accurate mass spectrometer

connected to a Dionex Ultimate 3000 (RSLCnano) chromatography system. Peptides were sep-

arated by an increasing acetonitrile gradient on a Biobasic C18 Picofrit column using a 65 min

reverse-phase gradient at a flow rate of 250 nL /min. A high-resolution MS scan (300–2000

Dalton) was performed using the Orbitrap to select the 15 most intense ions prior to MS/MS.

Protein identification from the MS/MS data was performed using the Andromeda search

engine in MaxQuant (version 1.2.2.5; http://maxquant.org/) to correlate the data against the

proteome of M. mycetomatis (proteins in hemolymph and grains) obtained from Uniport and

the EST contigs of G. mellonella (hemolymph and grain proteins) obtained in house.

Results processing, statistical analyses and graphics generation were conducted using Per-

seus v. 1.5.5.3 as described [20]. Proteins that had non-existent values (indicative of absence or

very low abundance in a sample) were also included in statistical analysis of the total differen-

tially expressed group following imputation of the zero values using a number close to the low-

est value of the range of proteins plus or minus the standard deviation. After data imputation

these proteins were also included in subsequent statistical analysis. The Search Tool for the

Retrieval of INteracting Genes/Proteins (STRING) [38] v10.5 (http://string-db.org/) was used

to map known and predicted protein:protein interactions. UniProt gene lists (extracted from
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Perseus) were inputted and analysed in STRING using the medium confidence (0.5) setting to

produce interactive protein networks for proteins that increased and decreased in abundance.

Statistical analysis

The difference in the number of grains or the size of the grains per time point were determined

using the Mann-Whitney U test. A p-value of� 0.05 was deemed significant.

Results

M. mycetomatis infection in G. mellonella larvae

As described before, when G. mellonella larvae were infected with M. mycetomatis a rapid

decrease in larval survival was noted (Fig 1A)[11]. All larvae infected with 4 mg M. mycetoma-
tis hyphal suspension per larvae died within eight days of infection (Fig 1A). During the course

of infection, the number and the size of the grains within the larva remained constant (Fig 1B

and 1C). No statistical significant differences were noted when day 1 after inoculation was

compared to days 3 or 7 after inoculation (Mann-Whitney, p>0.05). However, the morphol-

ogy of the grains did differ per time point. At day 1, cement material was present within the

grain and individual hemocytes were trapped within this cement material. Hyphal cells were

also clearly seen. At this time point, encapsulation was not noted. At 3 days after inoculation,

Fig 1. M. mycetomatis infection in G. mellonella larvae over time. A: Larval survival of PBS infected (---) and M. mycetomatis infected (———) larvae over 10 days,

each day is represented with a dot. B: The number of M. mycetomatis grains present in the infected G. mellonella larvae at day 1, 3, and 7 after fungal inoculation as

assessed by histology. C: The size of the M. mycetomatis grains present in the infected G. mellonella larvae at day 1, 3, and 7 after fungal inoculation as assessed by

histology. D: Hematoxylin Eosin (HE) staining of a M. mycetomatis grain in a G. mellonella larvae, 1 day after fungal inoculation. Arrows, indicate the presence of

hemocyte within the cement material of the grain. E: HE staining of a M. mycetomatis grain in a G. mellonella larvae, 3 days after fungal inoculation. F: HE staining of

a M. mycetomatis grain in a G. mellonella larvae, 7 days after fungal inoculation.

https://doi.org/10.1371/journal.pntd.0008190.g001
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the cement material was fully formed and no individual hemocytes were found inside the

grains (Fig 1E). Some hemocytes were seen surrounding the grain. Furthermore, the grain

became encapsulated. At 7 days after inoculation most larvae had died (Fig 1A). The surviving

larvae showed grains with many hemocytes surrounding them (Fig 1F). The capsule surround-

ing the grain was also less prominent and it often had started to degrade.

Grain formation over time

To determine which processes were involved in grain formation, the proteome of M. myceto-
matis infected larvae at 1 day, 3 days and 7 days after inoculation was determined.

Over time, different M. mycetomatis proteins were found to be expressed in the grain. The

number of M. mycetomatis proteins inside the grain remained relatively stable over time, with

87 M. mycetomatis proteins identified at 1 day after inoculation, 51 at 3 days after inoculation

and 48 found 7 days after inoculation. However, the nature of these proteins differed. From

the proteins identified, only 22 M. mycetomatis proteins were present on all three time points

tested (Table 1 and S1 Table). These included household proteins such as actin, alpha-tubulin,

histones, ribosomal proteins and the Woronin body (Table 1). Within these first 7 days, the

grain appeared to remain metabolic active as on all time points enolase, ATP synthase and

malate dehydrogenase were identified. This indicated that both glycolysis and the Kreb’s cycle

were functioning. Stress response related proteins such as heat shock protein 60 (Hsp60) and

heat shock protein 70 (Hsp70) were also found. Some of the M. mycetomatis proteins were not

only contained in the grain but also found to be secreted in hemolymph. Of these proteins

three were found to be secreted in all time points, two only at 3 and 7 days and the other 75

only in a single time point. The three M. mycetomatis proteins found in hemolymph at all

Table 1. 22 M. mycetomatis proteins found in grain on all time points.

Protein Protein ID

Actin A0A175W1E5

Alpha-Tubulin chain A0A175W8P0

Heat shock protein 70 A0A175WDC7

Histone H4 A0A175VRA2

Histone H2A A0A175VTM6

Malate dehydrogenase A0A175VPT8

Uncharacterized protein A0A175VXZ6

Uncharacterized protein A0A175WCN7

Heat shock protein 60 A0A175WCI9

ATP synthase subunit alpha A0A175VRU2

Heat shock protein 70 A0A175WA11

Heat shock protein 90 A0A175VT02

Mitochondrial outer membrane protein porin A0A175VWW7

GTP-binding protein ypt1 A0A175WGS8

Cell division control protein 48 A0A175VYV0

Uncharacterised protein A0A175W2C0

Ribosomal protein A0A175VN17

Uncharacterized protein A0A175VY99

Putative pyruidoxal 5—phosphate synthase subunit pdx-1 A0A175WCW2

Enolase A0A175W3F4

Protein Ecm33 A0A175WE26

Woronin body major protein A0A175VPL2

https://doi.org/10.1371/journal.pntd.0008190.t001
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three time-points were actin, alpha-tubulin and Hsp70 (Fig 2). The two proteins found to be

excreted only at 3 and 7 days were histone H4 and GTP-binding protein ypt1. Also the G. mel-
lonella proteome in hemolymph differed in time (Fig 3). The proteome of infected larvae was

clearly different to that from non-infected larvae.

Proteome at 24h after inoculation

Grains. At 24h after inoculation, a total of 87 M. mycetomatis proteins and 713 G. mello-
nella proteins were found within the M. mycetomatis grain. Among the 87 M. mycetomatis

Fig 2. M. mycetomatis proteins in the grain. The average LFQ intensity of M. mycetomatis actin, alpha-tubulin and

HSP70 obtained from grain samples at day 0, day 1, day 3 and day 7 after fungal inoculation.

https://doi.org/10.1371/journal.pntd.0008190.g002

Fig 3. Shotgun quantitative proteomic analysis of hemolymph proteome following infection with M. mycetomatis. Principal component analysis (PCA)

of control larval hemolymph proteome (0 hour) and infected larval hemolymph proteomes following infection with M. mycetomatis after infection for 24

hour, 72 hour and 7 days with a clear distinction between control and infected larvae.

https://doi.org/10.1371/journal.pntd.0008190.g003
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proteins identified, actin, Hsp70, malate dehydrogenase, heat shock protein 90 (Hsp90), mito-

chondrial outer membrane protein porin, enolase, protein Ecm33, elongation factor 2, histone

H2A, ATP-dependent RNA helicase, histone H2B, nucleoside diphosphate kinase, superoxide

dismutase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, citrate

synthase, transaldolase, 6-phosphogluconate dehydrogenase, fructose-bisphosphate aldolase

(Fba), elongation factor 1, transketolase and peptidyl-prolyl cis-trans isomerase (PPIase) corre-

sponded to proteins also encountered in cell extracts of Aspergillus fumigatus, Aspergillus fla-
vus, Aspergillus terreurs, Aspergillus niger, Aspergillus nidulans, Coccidioides posadasii, Mucor
circinelloides, Saccharomyces cerevisiae, Candida albicans, Candida tropicalis, Candida parapsi-
losis, Candida glabrata and Crytococcus neoformans [39]. These proteins represent common

fungal proteins (S1 Table). A range of proteins associated with virulence (putative fungistatic

metabolite, cyanovirin-N, phospholipase, enolase), nutrient acquisition from hemolymph (tre-

halose-phosphatase, trehalase), detoxification of the immune response (catalase-peroxidase,

flavohemoprotein, superoxide dismutase), allergenic reactions (major allergen Asp f 2) and

cell wall organization/repair (putative beta-glucosidase A, woronin body major protein) made

up the vast majority of proteins within M. mycetomatis grains (Fig 4A). Most of the proteins

were predicted to be within the intracellular components of the cell (Fig 4B). Hydrolases, oxi-

doreductases and transferases were the most enriched enzymes categories amongst proteins

identified in grains produced by M. mycetomatis (Fig 4C and 4D). Proteins identified in the

grain which were associated with the stress response were the 78 kDa glucose-regulated pro-

tein, ATP synthase subunit alpha, histone H2A, catalase-peroxidase, uncharacterized protein

(A0A175VYV0), actin, flavohemoprotein, superoxide dismutase (A0A175W4W0,

A0A175W7X9) and mitochondrial peroxiredoxin PRX1.

Out of the 713 G. mellonella proteins identified, 472 statistically significant differentially

abundant (SSDA) proteins were present in the 1 day grain proteome relative to the 0 hour

hemolymph proteome (S2A and S2B Table). G. mellonella proteins increased in grains at 1

day as compared to hemolymph control proteome were associated with the immune response

(cecropin-D-like peptide (176 fold), gloverin (115 fold), 6tox (47 fold), lysozyme (18 fold), pro-

phenol oxidase subunit 2 (12 fold), gloverin-like protein (11 fold) and macrophage migration

inhibitory factor (7 fold)), protection against cellular stress (heat shock protein (hsp) (810

fold), hsp 90 (144 fold), thioredoxin (128 fold), prophenol oxidase activating enzyme 3 (47

fold), superoxide dismutase (116 fold) and glutathione-S-transferase-like protein (24 fold)),

nodulation (hdd11 (147 fold), hdd1 (26 fold), hdd23 (21 fold), hemolin (19 fold), hdd1-like

protein (19 fold), apolipoprotein D-like Protein (2 fold)) and a range of proteins that are pri-

marily associated with intracellular processes (mitochondria, ribosome, proteasome) (S2A

Table). G. mellonella proteins decreased at day 1 as compared to hemolymph control prote-

ome were hexamerin (310 fold), arylphorin (13 fold), cationic peptide CP8 (5 fold), transferrin

(5 fold) and also apolipophorins (4 fold) and lysozyme-like protein 1 (3 fold), (S2B Table).

Hemolymph. In the hemolymph, in total, 18 M. mycetomatis and 3217 G. mellonella pep-

tides representing 330 proteins were identified. The most prominent M. mycetomatis proteins

were Heat shock 70 kDa protein, Heat shock protein 90, Putative DNA helicase ino80, alpha-

tubulin, Putative flavin-containing monooxygenase 1, Putative sterigmatocystin biosynthesis

P450 monooxygenase stcF, Putative N-acetylglucosamine-6-phosphate deacetylase and TEL2-

interacting protein 1 (S3 Table).

When the 330 G. mellonella proteins were compared to the proteome of uninfected G. mel-
lonella proteins, 110 of the G. mellonella proteins were determined to be SSDA (ANOVA,

p< 0.05) with a fold change of> 1.5 (Table 1). G. mellonella proteins that were increased in

abundance in larval hemolymph at day 1 were transgelin (191 fold), hdd11 (47 fold), cecropin-

D-like peptide (33.5 fold), Hdd1 (28 fold), tropomyosin 2 (25 fold), thioredoxin (15.5 fold),
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hemicentin-like protein 1 (15 fold), prophenol oxidase activating enzyme 3 (11 fold), glutathi-

one-s-transferase-like protein (10 fold), inhibitor of metalloproteinases [IMPI]; (9 fold) and

gloverin (6 fold), (Fig 5A, S4A Table). These proteins were subjected to GO analysis by Blas-

t2GO software tool. A number of GO terms belonging to biological process (small molecule

metabolic process, response to stress, cellular component organization and biosynthetic pro-

cess), molecular function (ion binding, oxidoreductase activity, structural constituent of ribo-

some and organic cyclic compound binding), cellular component (intracellular organelle,

membrane-bounded organelle, intracellular and endomembrane system) were significantly

enriched within the dataset (S5 Table). A number of proteins were decreased in abundance at

day 1 as compared to day 0 hemolymph such as hexamerin (15 fold), beta-1,3-glucan recogni-

tion protein (10 fold), apolipophorin (6 fold), C-type lectin 21 precursor (4 fold) and anionic

antimicrobial peptide 2 (2 fold) (S4B Table).

Fig 4. Bar chart showing changes in a number of proteins given various biological process (A), cellular component(B) [at level 3 ontology], enzyme categories (C) and

molecular functions (D) on various time points. Proteins were assigned groups based on involvement in biological process, molecular functions and cellular

component for the M. mycetomatis proteins identified within grain samples extracted from G. mellonella larvae during infection. Each group was assigned a percentage

proportion of the total proteins found in the proteomic profile of each sample group.

https://doi.org/10.1371/journal.pntd.0008190.g004

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 9 / 23

https://doi.org/10.1371/journal.pntd.0008190.g004
https://doi.org/10.1371/journal.pntd.0008190


Proteome at 3 days after inoculation

Grains. In the grain proteome, a total of 51 M. mycetomatis proteins and 4746 peptides

were detected representing 997 G. mellonella proteins. The M. mycetomatis proteins included

cyanovirin-N, enolase, iron- sulfur cluster assembly protein, protein Ecm33, two-component

system protein A, mitochondrial peroxiredoxin PRX1, heat shock protein 60, heat shock pro-

tein 90, heat shock 70 kDa protein and malate dehydrogenase. Analysis of the M. mycetomatis
grain proteome at day 3 via Blast2GO revealed enrichment of GO terms associated with bio-

logical process (catabolic process, macromolecule localization, oxidation-reduction process

and response to stress), molecular function (hydrolase activity, protein binding and drug bind-

ing), cellular component (non-membrane-bounded organelle, ribonucleoprotein complex and

cell periphery) and enzyme categories (Hydrolases, Transferases and Oxidoreductases) (Fig 4,

S1 Table).

Out of the 997 G. mellonella proteins, 488 SSDA proteins were identified in the 3 day grain

proteome relative to the 1 day grain proteome (S6 Table). Grains from larvae infected with M.

mycetomatis for 3 days [which were compared to grains isolated from 1 day infected larvae]

showed an increase in G. mellonella proteins such as AGAP010145-PA (39 fold), ATP synthase

subunit alpha (13 fold), transferrin (12 fold), hdd11 (4 fold), hemicentin-like protein 2 (3 fold),

as well as a range of proteins associated with the ribosomal (ribosomal protein L7, 40S ribo-

somal protein S16, 60S ribosomal protein L13a, Ribosomal protein S27A, L35, S12, L-37, (S6A

Table). A reduction in the abundance of antimicrobial peptides cobatoxin-like protein (14

fold), cecropin-D-like peptide (5 fold), gloverin (4 fold) and anionic antimicrobial peptide 2 (3

fold) (S6B Table) was seen in the 3 day old grain compared to the 1 day old grain.

Hemolymph. In the hemolymph, in total, 26 M. mycetomatis proteins and 3217 G. mello-
nella peptides representing 330 proteins with two or more peptides were identified. The most

abundant M. mycetomatis proteins were Heat shock 70 kDa protein, Alpha-1,4 glucan phos-

phorylase, 3-dehydroshikimate dehydratase, Trans-aconitate 2-methyltransferase, Small

COPII coat GTPase SAR1, Tricalbin-3, 60S ribosomal protein L27, Clathrin heavy chain, Suc-

cinyl-CoA:3-ketoacid-coenzyme A transferase and malate dehydrogenase (S5 Table).

In terms of G. mellonella proteins 114 of the G. mellonella proteins at day 3 were SSDA as

compared to hemolymph of non-infected larvae (Fig 5B, S7 Table). These included Hdd11

(337 fold), transgelin (223 fold), heat shock-like protein (115 fold), Hdd1 (30 fold), glutathi-

one-s-transferase-like protein (25 fold), hemicentin (24 fold), prophenoloxidase activating

Fig 5. Proteomic responses of G. mellonella larvae following infection by M. mycetomatis mycelium after 24 hour (A), 72 hour (B) and 7 days (C) post infection. Volcano

plots represent protein intensity difference (− log2 mean intensity difference) and significance in differences (− log P-value) based on a two-sided t-test. Proteins above

the line are considered statistically significant (p value< 0.05) and those to the right and left of the vertical lines indicate relative fold changes> 1.5. Annotations are

given for the most differentially abundant proteins identified in hemolymph from larvae infected with M. mycetomatis mycelium after 24 hour, 72 hour and 7 days. These

plots are based upon post imputed data.

https://doi.org/10.1371/journal.pntd.0008190.g005

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 10 / 23

https://doi.org/10.1371/journal.pntd.0008190.g005
https://doi.org/10.1371/journal.pntd.0008190


factor 3 (14 fold) and superoxide dismutase (9 fold), S7A Table. Proteins decreased at day 3 as

compared to day 0 hemolymph were apolipophorin (33 fold), hexamerin (10 fold), cationic

peptide CP8 (4 fold) and 27 kDa hemolymph protein (3.5 fold) (S7B Table, S8 Table).

Proteome at 7 days after inoculation

Grains. In the grain proteome, a total of 4746 peptides were detected representing 18 G.

mellonella proteins and 48 M. mycetomatis proteins. The identified M. mycetomatis proteins

included T-complex protein 1 subunit gamma, Putative voltage-gated potassium channel sub-

unit beta, peroxisomal hydratase-dehydrogenase-epimerase, Ketol-acid reductoisomerase,

mitochondrial and Phosphoenolpyruvate carboxykinase. Interrogation of the 3 day M. myceto-
matis grain proteome via Blast2GO revealed enrichment of GO terms associated with biologi-

cal process (cellular component organization, establishment of localization, cellular

component biogenesis, regulation of cellular process), molecular function (heterocyclic com-

pound binding, organic cyclic compound binding, ion binding, protein binding), cellular

component (endomembrane system, proteasome regulatory particle, supramolecular polymer)

and enzyme categories (Hydrolases) (Fig 4).

In G. mellonella, a total of 96 SSDA proteins were identified in the day 7 grain proteome rel-

ative to the 3 day grain proteome (S9 Table). By 7 days there was a significant decrease in the

number of identified total proteins from grains as compared to the 1 day grain proteome. For

example, lysozyme-like protein 1 (9 fold), hemolymph proteinase 16 (9 fold) and hemicentin-

like protein 2 (9 fold) were increased in abundance (S9A Table) while Heat shock protein 25.4

(358 fold), 27 kDa hemolymph protein (76 fold), apolipophorin (75 fold), hemolin (29 fold)

and hdd11 (9 fold) were decreased in abundance within 7 day grain samples, (S9B Table).

Hemolymph. In the hemolymph, in total 3217 G. mellonella peptides representing 330

proteins with two or more peptides and 36 M. mycetomatis proteins were identified. The most

abundant M. mycetomatis proteins identified were Vegetative incompatibility protein HET-E-

1, actin, Long-chain-fatty-acid—CoA ligase 1, Heat shock 70 kDa protein, Chromodomain

helicase hrp3, alpha-tubulin, Dehydrodolichyl diphosphate synthase complex subunit NUS1,

Peroxisomal long-chain fatty acid import protein 2, Catechol 1,2-dioxygenase, GTP-binding

protein ypt1, Ribosomal protein, Conidiation-specific protein 6, Ras-related protein YPTC6,

and Superoxide dismutase 1 copper chaperone.

Out of the 330 G. mellonella proteins identified, 154 of the G. mellonella proteins were

SSDA when compared to non-infected larvae. At this time point proteins such as Hdd11 (533

fold), heat shock-like protein (250 fold), hemicentin (54 fold), hemolin (44 fold), thioredoxin

(41 fold), hemicentin-like protein 1 (37 fold), glutathione-S-transferase-like protein (21 fold),

cecropin-A (12 fold), 6tox (3 fold), ferritin (3 fold) and apolipoprotein D-like Protein (3 fold)

were increased in abundance (Fig 5C and S10A Table). At the same time point, hexamerin

(64 fold), putative hydroxypyruvate isomerase (50 fold), apolipophorin (18 fold), 27 kDa

hemolymph protein (9 fold), cationic peptide CP8 (6 fold) and beta-glucan binding protein (3

fold) were all decreased in abundance relative to the 0 day proteome (S10B Table). A range of

these proteins play an important role in the antimicrobial response and immune-regulation.

Discussion

Here, M. mycetomatis grain formation in G. mellonella larvae over time was followed by utilis-

ing a label-free proteomics approach. Three time points were studied: day 1, day 3 and day 7

after fungal inoculation. On all time points, both M. mycetomatis as well as G. mellonella pro-

teins were identified. However, the total number of M. mycetomatis proteins was lower than

expected, possibly due to the high abundance of G. mellonella proteins relative to M.
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mycetomatis proteins present in the grain samples. Furthermore, proteins previously demon-

strated to be part of the grain cement material, such as the translationally controlled tumour

protein were not identified [9]. Other proteins previously demonstrated to be present in

human M. mycetomatis grains such as fructose biphosphate aldolase (Fba1) were identified in

our experiment [8]. The amorphous cement-material present in the grain could hamper the

recovery of all protein sequences, furthermore the high frequency of G. mellonella proteins in

grain samples, has possibly over shadowed the majority of the M. mycetomatis proteins as a

higher number of proteins would be expected from this complex sample. Furthermore, since

grain formation is the result of the interplay between host and pathogen it could also be that

differences can occur when grain formation is studied in different hosts. Proteins identified in

human grains might not be present in grains formed in the G. mellonella host, only a proteo-

mic comparison between grains formed in different host can solve this question. Although it is

likely that not all proteins were recovered, from the proteins which were recovered we could

form an idea of the processes involved in mycetoma grain formation.

Step 1: Recognition of pathogen and host

A specific feature of the innate immune system of insects is nodulation where multicellular

hemocytic aggregates are formed that entrap a large number of micro-organisms [40] (Fig 6).

The process of nodulation starts within the first few minutes after hemolymph penetration

[41] with the increase of proteins associated with tissue disruption due to fungal proliferation

and hyphal formation such as muscle 20 like protein, tropomyosin 2, paramyosin, alpha-tubu-

lin, troponin T, calreticulin, CALNUC, actin 3 and calponin. These proteins were increased in

abundance between +2.57 to +190.84 times in the hemolymph of 1 day M. mycetomatis
infected G. mellonella larvae as described previously for C. albicans but not A. fumigatus infec-

tion of larvae [19, 20]. Also proteins able to recognize fungal PAMPs were highly abundant,

such as peptidoglycan recognition like proteins which also bind β-glucan (PG-RPs)[42], the

opsonin lipopolysaccharide binding protein and hemolin. PG-RP LB and PG-RP B were

found to be increased in both the grain (+43.49 and +28.51 fold) as well as in hemolymph

(+16.91 and +12.21 fold) 1 day post infection with M. mycetomatis, while other β-glucan rec-

ognition proteins, such as β-glucan recognition protein and apolipophorin [29] were

decreased in abundance, as also found in other fungal infections [19, 20]. Opsonin lipopolysac-

charide binding protein was decreased in abundance (-4.74 fold) in hemolymph and immuno-

globulin superfamily member hemolin was increased in abundance in the 1 day old grain

(+19.04 fold) while a decreased abundance was noted in the 7 day old grain (-28.51 fold).

In order to form or reshape the forming extracellular matrix within the G. mellonella nod-

ule, M. mycetomatis building blocks are transported through the cell wall into the extracellular

space. In fungal cells, this follows an endoplasmic reticulum-trans-Golgi-plasma membrane

route, where a coordinated network of vesicle transport promotes vesicular fusion with the

plasma membrane and the release of the cargo to the extracellular space [43]. In both the grain

and the hemolymph, many M. mycetomatis proteins in vesicle transport were found. Of these,

Sly1p, tricalbin-3 and small COPII coat GTPase SAR1 are found in the secretory vesicles in the

endoplasmic reticulum [44, 45], while sortilin and clathrin are mainly found in the Golgi appa-

ratus [46–48]. In C. albicans biofilms, the vesicle composition showed a high degree of similar-

ity with the matrix protein and polysaccharide contents, suggesting that extracellular vesicles

may be a major source of matrix material [43, 49]. Furthermore, proteins able to bind extracel-

lular components such as laminin (GAPDH, EF-2, Eno1, Fba1, transaldolase) [50, 51], collagen

(GAPDH)[52], plasminogen (GAPDH, Eno1, Fba1, Asp f2)[53], fibrinogen (beta-glucosidase)

[54] and fibronectin (GAPDH, Ef2, transketolase and 6-phosphogluconate dehydrogenase)
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[50, 51] were found in the 1 day grain proteome. The presence of Fba1 in the mycetoma grain

was confirmed by immunohistochemistry [8]. Laminin and collagen are ancient proteins and

known constituents of basal membranes and these M. mycetomatis proteins could play a role

in the encapsulation of the grain noted by day 3 of the grain formation.

Step 2: Cross-linking of hemocytes and pathogens to form a grain

After recognizing the pathogen, G. mellonella hemocytes begin to agglutinate around the path-

ogen forming an overlapping sheath around it. One of the proteins which plays an essential

role in the crosslinking of hemocytes and pathogens during nodule formation is Noduler, or

the G. mellonella homologue Hdd11 [55]. It binds to yeast β-1,3-glucan and traps micro-

organisms and hemocytes into the nodule. In M. mycetomatis infected G. mellonella larvae,

Hdd11 was increased +147.04 fold in the grain and +47.19 fold in M. mycetomatis infected lar-

val hemolymph. The increase of Hdd11 in hemolymph was comparable to the +49.4 fold

increase of this protein found in hemolymph of C. albicans infected G. mellonella larvae and

Fig 6. Model of grain formation over time with the most important processes of host and pathogen. A. M. mycetomatis is recognized by the G. mellonella host via

pathogen recognition proteins. M. mycetomatis increases vesicle transport and adhesion proteins are displayed on the surface attaching itself to the host. B. Hemocytes

will agglutinate around the fungal hyphae and Hdd11 production is increased resulting in crosslinking of the hemocytes and attaching to the fungus. The fungus itself

will secrete Asp f2, a zincophore to acquire zinc and to cross link the extracellular matrix. C. Hemocyte cytoplasm will be discharge and degranulation occurs which

elevates ROS production and the secretion of AMPs at the granule. The fungus will react by producing SOD and trehalose. D. Melanin will be produced by the host and

by the fungus and a capsule is formed surrounding the grain. E. In the last stage, no hemocytes are found within the grain, they are all lysed and the extracellular matrix

is completely melanised.

https://doi.org/10.1371/journal.pntd.0008190.g006
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was much higher than the +3.66 fold increase observed in A. fumigatus infected G. mellonella
larvae [19, 20]. The Hdd11 concentrations further increased in 3 day old grains compared to 1

day old grains (+4.07 fold) and then decreased in 7 day old grains (-8.68 fold, when compared

to 3 day grain proteome).

Next to Hdd11, other immune-related proteins were also increased in the M. mycetomatis
grain at 1 day after infection. These included Hdd1 (+26.04 fold), Hdd23 (+21.03 fold) and

Hdd1-like protein (+18.62 fold) which have been identified as playing an important role in the

nodulation response. Also in hemolymph Hdd1 was increased by +26.71 fold during M. myce-
tomatis infection. This increase was higher than previously reported for C. albicans infected G.

mellonella larvae (+13.5 fold increase) and A. fumigatus infected G. mellonella larvae (+3.79

fold) at the same time point [19, 20].

Next to G. mellonella, M. mycetomatis itself also seems to play a role in the cross-linking of

the extracellular matrix. In the day 1 grain proteome the Asp2f homologue was found. This

protein and its Candida albicans homologue Pra1 are secreted from the fungal cell to form a

complex with extracellular zinc and are recruited back to the fungal cell [56–58]. Once near

the C. albicans cell, the zinc bound by Pra1 is cross-linked to the amyloid regions of the aspar-

tic proteinase Sap6, resulting in large fungal aggregates with elevated zinc concentrations simi-

lar to biofilms [59]. Although a homologue of Sap6 was not identified in our experiments,

another amylolytic protein was found 3 days post infection, namely alpha/beta-glucosidase

agdC [60]. Strikingly, elevated levels of zinc were noted within mycetoma grains in humans

[10, 61] which could indicate that a similar cross-linking activity of Asp2f also takes place in

the production of the cement material noted in the M. mycetomatis grains.

Step 3: Degranulation of G. mellonella hemocytes and the response to

reactive oxygen species (ROS)

Aggregation of granular cells followed by degranulation is typical for the G. mellonella nodule

formation and leads to the accumulation of coagulogen around the fungus [41]. Discharge of

hemocyte cytoplasm and granule contents is followed by melanisation. Degranulation of the

granular cells induces the synthesis of nitric oxide by NO synthase and ROS. During encapsu-

lation usually a significant increase in ROS and a decrease in enzymatic antioxidant activities

such as superoxide dismutases have been noted. In G. mellonella infected with M. mycetomatis
an increase in the superoxide dismutase activity (+115.62 fold) and peroxidase (+7.92 fold) is

noted in 24 h old grains.

Next to ROS, antimicrobial peptides were also found within the forming grain. Antimicro-

bial proteins such as cecropin-D (+175.74 fold), gloverin (+114.8 fold), 6tox (+47.46 fold),

lysozyme (+17.99 fold), gloverin-like protein (+10.84 fold) and anionic antimicrobial peptide 2

(+1.89 fold) were increased in 24 h grains relative to control hemolymph, while cationic pep-

tide CP8 (-5.44 fold) was decreased in abundance at this time point. Lysozyme was found

highly enriched within M. mycetomatis grains but absent in hemolymph which may confirm

(along with other proteins e.g. apolipophorin and β-glucan recognition proteins) that certain

proteins are shuttled from the hemolymph to the site of infection to act directly at the site of

infection. At the site of infection, lysozyme binds to the fungal cell surface (i.e. membrane or

cell wall) and will cause osmotic imbalance and cell death as reported in C. albicans [62, 63].

Like lysozyme, the α-helical cecropins and pro-peptide gloverins also target the fungal cell sur-

face and induce apoptosis [64–66]. Another class of antimicrobial peptides of G. mellonella
which is highly active against both yeasts and filamentous fungi [67] is the moricins. Moricins

are secreted as pro-peptides and are activated via proteolysis to increase the permeability of

bacterial and fungal membranes. G. mellonella has seven moricin-like peptides in its
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transcriptome and none of them was detected after M. mycetomatis infection. In contrast,

moricin was found to be increased by +20.6 during C. albicans infection and moricin C1 was

increased by +15.84 fold in A. fumigatus infected larvae relative to control larvae [19, 20]. This

may indicate that M. mycetomatis can manipulate the host response to suppress the expression

of moricin AMPs as they were also not detected in M. mycetomatis grains.

The ROS and AMPs generated by G. mellonella will evoke a stress response in M. myceto-
matis. It is therefore to be expected that a range of M. mycetomatis proteins would be detected

in the early grain phase which could protect the fungal cells. Indeed in the 1 day old grains,

SOD, trehalose-phosphatase and trehalase were found to be present, which have been impli-

cated in the protection against stress in other fungal species [68]. During stress, trehalose can

interact with proteins and phospholipids to protect membrane structures and prevent protein

denaturation [69]. Furthermore, trehalose can scavenge free radicals under oxidative stress

conditions and can protect against host defenses [69, 70]. In C. albicans, trehalose levels were

also found in the earliest phases of biofilm formation, while they were decreased in mature bio-

films [71].

Over time, as the infection progresses in G. mellonella, the abundance of AMPs within the

grain proteome decreased. Within the 72 h grain proteome a decreased abundance of AMPs

such as cecropin-D (-4.55 fold), gloverin (-3.97 fold), cationic peptide CP8 (-3.39 fold), anionic

antimicrobial peptide 2 (-2.92 fold), cobatoxin-like protein (-14.39 fold) relative to 24 h grains

was noted. This was also observed at 7 day relative to 72 h grains with anionic antimicrobial

peptide 2 (-53.47 fold), cecropin-D-like peptide (-11.52 fold) all decreased in abundance, with

the exception of lysozyme-like protein 1 (+9.35 fold) which was increased in abundance. Also

a difference in the type of M. mycetomatis proteins present was noted. In the more mature

grain, where the nutrients might be more depleted a metabolic conversion seems to occur in

the 7 day old grains, as at this time point isocitrate lyase and phosphoenolpyruvate carboxyki-

nase were present. These enzymes are normally down-regulated in the presence of glucose,

which suggests that at this time in grain formation the fungal cells are surviving on alternative

carbon sources. They were also linked to the persister cell phenotype in C. albicans biofilms,

where they represent a more dormant state of the fungus [72].

Step 4: Melanisation of the grain

During degranulation of the hemocytes prophenoloxidase (proPO) is released. This starts the

melanisation process of the G. mellonella nodule. Indeed, 1 day after M. mycetomatis inocula-

tion, members of the phenoloxidase cascade [prophenoloxidase activating enzyme 3 (+47.28

fold), prophenoloxidase subunit 2 (+11.51 fold)] were increased in abundance in the grain as

well as in hemolymph (prophenoloxidase activating enzyme 3 (+10.72 fold); prophenoloxidase

activating protease 1 (+5.56 fold)). This elevation was stronger compared to what was reported

for C. albicans (+1.8 fold) and A. fumigatus (+2.44 fold) [19, 20]. Melanisation kills pathogens

by restricting nutrition uptake from the surroundings due to the formation of a thick sur-

rounding layer, very similar to the mammalian complement cascade [73–75]. However, for

many pathogens, melanisation is also a defense mechanism present in their own protective

reponse arsenal. In the M. mycetomatis grain found in human, DHN-melanin is present and

the cement material itself is melanised [7]. In A. fumigatus, the enzymes responsible for DHN-

melanin production are localised in endosomes [76] and these endosomes are transported to

the cell wall. The last steps of melanisation occur at the cell wall. With the high abundance of

M. mycetomatis proteins involved vesicle transport and the natural melanisation of nodules

within G. mellonella larvae, it is highly likely that in G. mellonella, the grain is melanised via

both the G. mellonella proPO pathway and the M. mycetomatis DHN-melanin pathway. In G.
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mellonella high oxidative stress is created during the production of melanin and its intermedi-

ates. This highly oxidative environment is lethal for most pathogens but also to the G. mello-
nella hemocytes itself [73–75]. To prevent excessive tissue damage, the phenoloxidase cascade

is highly regulated. It can be activated by apolipophorin III and inhibited by lyzozyme, anionic

peptide-2 and serpins in G. mellonella [77]. Early in the grain formation a decrease of apolipo-

phorins (-4.71 and -3.43 fold) and Serpin 5 was found inside the grain (-1.83 fold) indicating

that early in the grain formation melanisation was activated. The decrease in apolipphorins

further increased by day 3 (-32.99 fold in hemolymph) and day 7 (-75.17 fold in the grain and

-17.63 fold in hemolymph).

After melanisation, the encapsulation process is often terminated by forming a basement

membrane like layer around the capsule periphery. This was also noted at day 3 after grain for-

mation indicating that the formation of the grain took 3 days in G. mellonella larvae [41]. In

many organisms, encapsulation occurs due to excessive collagen accumulation around the

micro-organism. In the M. mycetomatis grain found in humans, thick collagen capsules are

present which are thought to be produced by the action of matrix metalloproteinases (MMPs)

and tissue inhibitors of matrix metalloproteases (TIMPs). Active MMP-9 was present in the

serum of mycetoma patients and found to be expressed in the tissues surrounding the grain

[78, 79]. Genetic differences in TIMP-1 were associated with mycetoma development [79].

Here, we found that insect metalloproteinase inhibitor (IMPI) was increased by +9.30 fold in

M. mycetomatis infected G. mellonella larvae compared to non-infected larvae and could play a

similar role as TIMP in the formation of a capsule surrounding the M. mycetomatis grain.

In conclusion

In this study we have used a proteomic approach to unravel the processes leading to M. myce-
tomatis grain formation in G. mellonella larvae (Fig 6). Our data indicate that grain formation

occurs in 4 steps and each of these steps could potentially be inhibited to prevent grain forma-

tion. On the pathogen-side inhibiting vesicle transport, zinc-acquisition, trehalose response or

melanisation could be novel ways to interfere with grain synthesis. Indeed, sortins have been

known to inhibit vesicle transport in C. albicans and act synergistically with fluconazole [80],

validamycin A has been known to inhibit the fungal trehalose pathway in Rhizoctonia solani
[81] and M. mycetomatis melanisation was inhibited by tricyclazole [7]. Also interfering with

host processes leading to grain formation might open novel ways to treat mycetoma. Inhibiting

the capsule formation by MMP inhibitors such as doxycycline, minocycline, incyclinide or

anti-MMP antibodies could make the grain more accessible to antifungal agents [82]. Interfer-

ing with the immune system could also be beneficial. Diclofenac can prevent the formation of

brain nodules after infection with Listeria monocytogeneses. Interestingly, diclofenac was also

able to cure mycetoma in a patient. Thus, the insights obtained in this study in the M. myceto-
matis grain formation in G. mellonella larvae can in the future be used to develop novel thera-

peutic strategies for mycetoma.

Supporting information

S1 Table. M. mycetomatis proteins in grains isolated from larvae infected with M. myceto-
matis. In this table proteins identified 1 day, 3 days and 7 days after fungal inoculations

are depicted.

(XLSX)

S2 Table. G. mellonella proteins increased (S2A Table) or decreased (S2B Table) in abundance

in grains isolated from larvae infected with M. mycetomatis for 24 hour as compared to control

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 16 / 23

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s002
https://doi.org/10.1371/journal.pntd.0008190


larval hemolymph proteome.

(XLSX)

S3 Table. M. mycetomatis proteins in hemolymph isolated from larvae infected with M.

mycetomatis.
(XLSX)

S4 Table. G. mellonella proteins increased (S4A Table) or decreased (S4B Table) in abundance

in 24 hour M. mycetomatis infected G. mellonella larval hemolymph as compared to 0 hour

hemolymph.

(XLSX)

S5 Table. Enrichment for GO terms (Biological Process [A], Molecular Function [B] and Cel-

lular Component [C]) from the total SSDA hemolymph proteins from G. mellonella larvae

infected with M. mycetomatis (24 hour relative to 0 hour hemolymph proteome).

(XLSX)

S6 Table. G. mellonella proteins increased (S6A Table) or decreased (S6B Table) in abundance

in grains isolated from larvae infected with M. mycetomatis for 72 hour as compared to grains

extracted from larvae infected with M. mycetomatis for 24 hour.

(XLSX)

S7 Table. G. mellonella proteins increased (S7A Table) or decreased (S7B Table) in abundance

in 72 hour M. mycetomatis infected G. mellonella larval hemolymph as compared to 0 hour

hemolymph.

(XLSX)

S8 Table. Enrichment for GO terms (Biological Process [A], Molecular Function [B] and Cel-

lular Component [C]) from the total SSDA hemolymph proteins from G. mellonella larvae

infected with M. mycetomatis (72 hour relative to 0 hour hemolymph proteome)

(XLSX)

S9 Table. G. mellonella proteins increased (S9A Table) or decreased (S9B Table) in abundance

in grains isolated from larvae infected with M. mycetomatis for 7 days as compared to grains

extracted from larvae infected with M. mycetomatis for 24 hour.

(XLSX)

S10 Table. G. mellonella proteins increased (S10A Table) or decreased (S10B Table) in abun-

dance in 7 days M. mycetomatis infected G. mellonella larval hemolymph as compared to 0

hour hemolymph.

(XLSX)

S11 Table. Enrichment for GO terms (Biological Process [A], Molecular Function [B] and

Cellular Component [C]) from the total SSDA hemolymph proteins from G. mellonella larvae

infected with M. mycetomatis (7 day relative to 0 hour hemolymph proteome)

(XLSX)

Author Contributions

Data curation: Gerard Sheehan, Wendy W. J. van de Sande.

Formal analysis: Gerard Sheehan, Mickey Konings, Wilson Lim, Kevin Kavanagh, Wendy W.

J. van de Sande.

Funding acquisition: Wendy W. J. van de Sande.

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 17 / 23

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s008
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s009
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s010
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0008190.s011
https://doi.org/10.1371/journal.pntd.0008190


Investigation: Gerard Sheehan, Mickey Konings, Wilson Lim, Kevin Kavanagh, Wendy W. J.

van de Sande.

Methodology: Gerard Sheehan, Mickey Konings, Wilson Lim, Kevin Kavanagh, Wendy W. J.

van de Sande.

Project administration: Wendy W. J. van de Sande.

Resources: Ahmed Fahal.

Supervision: Kevin Kavanagh, Wendy W. J. van de Sande.

Validation: Gerard Sheehan.

Visualization: Wendy W. J. van de Sande.

Writing – original draft: Gerard Sheehan, Kevin Kavanagh, Wendy W. J. van de Sande.

Writing – review & editing: Kevin Kavanagh, Wendy W. J. van de Sande.

References
1. Zijlstra EE, van de Sande WW, Welsh O, Mahgoub el S, Goodfellow M, Fahal AH. Mycetoma: a unique

neglected tropical disease. Lancet Infect Dis. 2016; 16(1):100–12. Epub 2016/01/08. S1473-3099(15)

00359-X [pii]. https://doi.org/10.1016/S1473-3099(15)00359-X PMID: 26738840.

2. Van de Sande WWJ. Global burden of human mycetoma: a systematic review and meta-analysis.

PLoS Negl Trop Dis. 2013; 7(11):e2550. https://doi.org/10.1371/journal.pntd.0002550 PMID:

24244780

3. Abbas M, Scolding PS, Yosif AA, El Rahman RF, El-Amin MO, Elbashir MK, et al. The disabling conse-

quences of Mycetoma. PLoS Negl Trop Dis. 2018; 12(12):e0007019. Epub 2018/12/12. https://doi.org/

10.1371/journal.pntd.0007019 PNTD-D-18-01278 [pii]. PMID: 30532253; PubMed Central PMCID:

PMC6312340.

4. Ahmed AO, van Leeuwen W, Fahal A, van de Sande WWJ, Verbrugh H, van Belkum A. Mycetoma

caused by Madurella mycetomatis: a neglected infectious burden. Lancet Infect Dis. 2004; 4(9):566–

74. https://doi.org/10.1016/S1473-3099(04)01131-4 PMID: 15336224.

5. Findlay GH, Vismer HF. Black grain mycetoma. A study of the chemistry, formation and significance of

the tissue grain in Madurella mycetomi infection. Br J Dermatol. 1974; 91(3):297–303. https://doi.org/

10.1111/j.1365-2133.1974.tb12899.x PMID: 4139964.

6. Verwer PE, Notenboom CC, Eadie K, Fahal AH, Verbrugh HA, van de Sande WW. A Polymorphism in

the Chitotriosidase Gene Associated with Risk of Mycetoma Due to Madurella mycetomatis Mycetoma

—A Retrospective Study. PLoS Negl Trop Dis. 2015; 9(9):e0004061. Epub 2015/09/04. https://doi.org/

10.1371/journal.pntd.0004061 [pii]. PMID: 26332238; PubMed Central PMCID: PMC4558086.

7. van de Sande WW, de Kat J, Coppens J, Ahmed AO, Fahal A, Verbrugh H, et al. Melanin biosynthesis

in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes

Infect. 2007; 9(9):1114–23. https://doi.org/10.1016/j.micinf.2007.05.015 PMID: 17644456.

8. de Klerk N, de Vogel C, Fahal A, van Belkum A, van de Sande WW. Fructose-bisphosphate aldolase

and pyruvate kinase, two novel immunogens in Madurella mycetomatis. Med Mycol. 2012; 50(2):143–

51. Epub 2011/07/07. https://doi.org/10.3109/13693786.2011.593005 PMID: 21728753.

9. van de Sande WW, Janse DJ, Hira V, Goedhart H, van der Zee R, Ahmed AO, et al. Translationally con-

trolled tumor protein from Madurella mycetomatis, a marker for tumorous mycetoma progression. J

Immunol. 2006; 177(3):1997–2005. https://doi.org/10.4049/jimmunol.177.3.1997 PMID: 16849514.

10. Ibrahim AI, El Hassan AM, Fahal A, van de Sande WW. A histopathological exploration of the Madurella

mycetomatis grain. PLoS One. 2013; 8(3):e57774. Epub 2013/03/14. https://doi.org/10.1371/journal.

pone.0057774 PMID: 23483927; PubMed Central PMCID: PMC3590280.

11. Kloezen W, van Helvert-van Poppel M, Fahal AH, van de Sande WW. A Madurella mycetomatis Grain

Model in Galleria mellonella Larvae. PLoS Negl Trop Dis. 2015; 9(7):e0003926. Epub 2015/07/15.

https://doi.org/10.1371/journal.pntd.0003926 [pii]. PMID: 26173126; PubMed Central PMCID:

PMC4501544.

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 18 / 23

https://doi.org/10.1016/S1473-3099(15)00359-X
http://www.ncbi.nlm.nih.gov/pubmed/26738840
https://doi.org/10.1371/journal.pntd.0002550
http://www.ncbi.nlm.nih.gov/pubmed/24244780
https://doi.org/10.1371/journal.pntd.0007019
https://doi.org/10.1371/journal.pntd.0007019
http://www.ncbi.nlm.nih.gov/pubmed/30532253
https://doi.org/10.1016/S1473-3099(04)01131-4
http://www.ncbi.nlm.nih.gov/pubmed/15336224
https://doi.org/10.1111/j.1365-2133.1974.tb12899.x
https://doi.org/10.1111/j.1365-2133.1974.tb12899.x
http://www.ncbi.nlm.nih.gov/pubmed/4139964
https://doi.org/10.1371/journal.pntd.0004061
https://doi.org/10.1371/journal.pntd.0004061
http://www.ncbi.nlm.nih.gov/pubmed/26332238
https://doi.org/10.1016/j.micinf.2007.05.015
http://www.ncbi.nlm.nih.gov/pubmed/17644456
https://doi.org/10.3109/13693786.2011.593005
http://www.ncbi.nlm.nih.gov/pubmed/21728753
https://doi.org/10.4049/jimmunol.177.3.1997
http://www.ncbi.nlm.nih.gov/pubmed/16849514
https://doi.org/10.1371/journal.pone.0057774
https://doi.org/10.1371/journal.pone.0057774
http://www.ncbi.nlm.nih.gov/pubmed/23483927
https://doi.org/10.1371/journal.pntd.0003926
http://www.ncbi.nlm.nih.gov/pubmed/26173126
https://doi.org/10.1371/journal.pntd.0008190


12. Ahmed AO, van Vianen W, ten Kate MT, van de Sande WW, van Belkum A, Fahal AH, et al. A murine

model of Madurella mycetomatis eumycetoma. FEMS Immunol Med Microbiol. 2003; 37(1):29–36.

https://doi.org/10.1016/S0928-8244(03)00096-8 PMID: 12770757.

13. Cavanagh LL. Attempts to induce mycetoma in monkeys and mice using Madurella mycetomi. Sabour-

audia. 1974; 12(2):258–62. Epub 1974/07/01. https://doi.org/10.1080/00362177485380331 PMID:

4211819.

14. Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of

yeasts. FEMS Immunol Med Microbiol. 2000; 27(2):163–9. Epub 2000/01/21. S0928-8244(99)00185-6

[pii] https://doi.org/10.1111/j.1574-695X.2000.tb01427.x PMID: 10640612.

15. Brennan M, Thomas DY, Whiteway M, Kavanagh K. Correlation between virulence of Candida albicans

mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol. 2002; 34(2):153–7.

Epub 2002/10/17. S0928824402003747 [pii]. https://doi.org/10.1111/j.1574-695X.2002.tb00617.x

PMID: 12381467.

16. Slater JL, Gregson L, Denning DW, Warn PA. Pathogenicity of Aspergillus fumigatus mutants assessed

in Galleria mellonella matches that in mice. Med Mycol. 2011; 49 Suppl 1:S107–13. Epub 2010/10/19.

https://doi.org/10.3109/13693786.2010.523852 PMID: 20950221.

17. Reeves EP, Messina CG, Doyle S, Kavanagh K. Correlation between gliotoxin production and virulence

of Aspergillus fumigatus in Galleria mellonella. Mycopathologia. 2004; 158(1):73–9. Epub 2004/10/19.

https://doi.org/10.1023/b:myco.0000038434.55764.16 PMID: 15487324.

18. O’Hanlon KA, Cairns T, Stack D, Schrettl M, Bignell EM, Kavanagh K, et al. Targeted disruption of nonri-

bosomal peptide synthetase pes3 augments the virulence of Aspergillus fumigatus. Infect Immun.

2011; 79(10):3978–92. Epub 2011/07/13. IAI.00192-11 [pii] https://doi.org/10.1128/IAI.00192-11 PMID:

21746855; PubMed Central PMCID: PMC3187245.

19. Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of Galleria mellonella lar-

vae to infection by Candida albicans. Virulence. 2018; 9(1):163–72. Epub 2017/09/06. https://doi.org/

10.1080/21505594.2017.1370174 PMID: 28872999; PubMed Central PMCID: PMC5955201.

20. Sheehan G, Clarke G, Kavanagh K. Characterisation of the cellular and proteomic response of Galleria

mellonella larvae to the development of invasive aspergillosis. BMC Microbiol. 2018; 18(1):63. Epub

2018/06/30. https://doi.org/10.1186/s12866-018-1208-6 [pii]. PMID: 29954319; PubMed Central

PMCID: PMC6025711.

21. Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents

against Fungal Species of Medical Interest. J Fungi (Basel). 2018; 4(3). Epub 2018/09/22. jof4030113

[pii] https://doi.org/10.3390/jof4030113 PMID: 30235800; PubMed Central PMCID: PMC6162640.

22. Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect

hemocytes and mammalian phagocytes. Virulence. 2013; 4(7):597–603. Epub 2013/08/08. 25906 [pii]

https://doi.org/10.4161/viru.25906 PMID: 23921374; PubMed Central PMCID: PMC3906293.

23. Kavanagh K, Reeves EP. Exploiting the potential of insects for in vivo pathogenicity testing of microbial

pathogens. FEMS Microbiol Rev. 2004; 28(1):101–12. Epub 2004/02/21. https://doi.org/10.1016/j.

femsre.2003.09.002 S0168644503000792 [pii]. PMID: 14975532.

24. Fuchs BB, Mylonakis E. Using non-mammalian hosts to study fungal virulence and host defense. Curr

Opin Microbiol. 2006; 9(4):346–51. Epub 2006/07/04. S1369-5274(06)00087-7 [pii] https://doi.org/10.

1016/j.mib.2006.06.004 PMID: 16814595.

25. Sheehan G, Garvey A, Croke M, Kavanagh K. Innate humoral immune defences in mammals and

insects: The same, with differences ? Virulence. 2018; 9(1):1625–39. Epub 2018/09/28. https://doi.org/

10.1080/21505594.2018.1526531 PMID: 30257608.

26. Qu Z, Steiner H, Engstrom A, Bennich H, Boman HG. Insect immunity: isolation and structure of cecro-

pins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur J Biochem. 1982; 127

(1):219–24. Epub 1982/09/01. https://doi.org/10.1111/j.1432-1033.1982.tb06858.x PMID: 6754375.

27. Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. A peptidomics study reveals the impressive

antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol. 2009; 39

(11):792–800. Epub 2009/09/30. S0965-1748(09)00134-9 [pii] https://doi.org/10.1016/j.ibmb.2009.09.

004 PMID: 19786100.

28. Mak P, Zdybicka-Barabas A, Cytrynska M. A different repertoire of Galleria mellonella antimicrobial

peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol. 2010; 34(10):1129–36.

Epub 2010/06/19. S0145-305X(10)00131-X [pii] https://doi.org/10.1016/j.dci.2010.06.005 PMID:

20558200.

29. Wojda I. Immunity of the greater wax moth Galleria mellonella. Insect Sci. 2017; 24(3):342–57. https://

doi.org/10.1111/1744-7917.12325 WOS:000402131100001. PMID: 26847724

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 19 / 23

https://doi.org/10.1016/S0928-8244(03)00096-8
http://www.ncbi.nlm.nih.gov/pubmed/12770757
https://doi.org/10.1080/00362177485380331
http://www.ncbi.nlm.nih.gov/pubmed/4211819
https://doi.org/10.1111/j.1574-695X.2000.tb01427.x
http://www.ncbi.nlm.nih.gov/pubmed/10640612
https://doi.org/10.1111/j.1574-695X.2002.tb00617.x
http://www.ncbi.nlm.nih.gov/pubmed/12381467
https://doi.org/10.3109/13693786.2010.523852
http://www.ncbi.nlm.nih.gov/pubmed/20950221
https://doi.org/10.1023/b:myco.0000038434.55764.16
http://www.ncbi.nlm.nih.gov/pubmed/15487324
https://doi.org/10.1128/IAI.00192-11
http://www.ncbi.nlm.nih.gov/pubmed/21746855
https://doi.org/10.1080/21505594.2017.1370174
https://doi.org/10.1080/21505594.2017.1370174
http://www.ncbi.nlm.nih.gov/pubmed/28872999
https://doi.org/10.1186/s12866-018-1208-6
http://www.ncbi.nlm.nih.gov/pubmed/29954319
https://doi.org/10.3390/jof4030113
http://www.ncbi.nlm.nih.gov/pubmed/30235800
https://doi.org/10.4161/viru.25906
http://www.ncbi.nlm.nih.gov/pubmed/23921374
https://doi.org/10.1016/j.femsre.2003.09.002
https://doi.org/10.1016/j.femsre.2003.09.002
http://www.ncbi.nlm.nih.gov/pubmed/14975532
https://doi.org/10.1016/j.mib.2006.06.004
https://doi.org/10.1016/j.mib.2006.06.004
http://www.ncbi.nlm.nih.gov/pubmed/16814595
https://doi.org/10.1080/21505594.2018.1526531
https://doi.org/10.1080/21505594.2018.1526531
http://www.ncbi.nlm.nih.gov/pubmed/30257608
https://doi.org/10.1111/j.1432-1033.1982.tb06858.x
http://www.ncbi.nlm.nih.gov/pubmed/6754375
https://doi.org/10.1016/j.ibmb.2009.09.004
https://doi.org/10.1016/j.ibmb.2009.09.004
http://www.ncbi.nlm.nih.gov/pubmed/19786100
https://doi.org/10.1016/j.dci.2010.06.005
http://www.ncbi.nlm.nih.gov/pubmed/20558200
https://doi.org/10.1111/1744-7917.12325
https://doi.org/10.1111/1744-7917.12325
http://www.ncbi.nlm.nih.gov/pubmed/26847724
https://doi.org/10.1371/journal.pntd.0008190


30. Velagapudi R, Hsueh YP, Geunes-Boyer S, Wright JR, Heitman J. Spores as infectious propagules of

Cryptococcus neoformans. Infect Immun. 2009; 77(10):4345–55. Epub 2009/07/22. IAI.00542-09 [pii]

https://doi.org/10.1128/IAI.00542-09 PMID: 19620339; PubMed Central PMCID: PMC2747963.

31. Borman AM, Szekely A, Johnson EM. Comparative Pathogenicity of United Kingdom Isolates of the

Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species. mSphere. 2016; 1(4).

Epub 2016/08/23. https://doi.org/10.1128/mSphere.00189-16mSphere00189-16 [pii]. PMID:

27547827; PubMed Central PMCID: PMC4990711.

32. St Leger RJ, Screen SE, Shams-Pirzadeh B. Lack of host specialization in Aspergillus flavus. Appl Envi-

ron Microbiol. 2000; 66(1):320–4. Epub 2000/01/05. https://doi.org/10.1128/aem.66.1.320-324.2000

PMID: 10618242; PubMed Central PMCID: PMC91824.

33. Navarro-Velasco GY, Prados-Rosales RC, Ortiz-Urquiza A, Quesada-Moraga E, Di Pietro A. Galleria

mellonella as model host for the trans-kingdom pathogen Fusarium oxysporum. Fungal Genet Biol.

2011; 48(12):1124–9. Epub 2011/09/13. S1087-1845(11)00158-7 [pii] https://doi.org/10.1016/j.fgb.

2011.08.004 PMID: 21907298.

34. Thomaz L, Garcia-Rodas R, Guimaraes AJ, Taborda CP, Zaragoza O, Nosanchuk JD. Galleria mello-

nella as a model host to study Paracoccidioides lutzii and Histoplasma capsulatum. Virulence. 2013; 4

(2):139–46. Epub 2013/01/11. 23047 [pii] https://doi.org/10.4161/viru.23047 PMID: 23302787; PubMed

Central PMCID: PMC3654612.

35. van de Sande WW, van Vianen W, ten Kate M, Fahal A, Bakker-Woudenberg I. Amphotericin B but not

itraconazole is able to prevent grain formation in experimental Madurella mycetomatis mycetoma in

mice. Br J Dermatol. 2015; 173(6):1561–2. Epub 2015/07/08. https://doi.org/10.1111/bjd.14025 PMID:

26150103.

36. Kloezen W, Parel F, Bruggemann R, Asouit K, Helvert-van Poppel M, Fahal A, et al. Amphotericin B

and terbinafine but not the azoles prolong survival in Galleria mellonella larvae infected with Madurella

mycetomatis. Med Mycol. 2018; 56(4):469–78. Epub 2017/10/11. 4158469 [pii] https://doi.org/10.1093/

mmy/myx064 PMID: 28992315.

37. Smit S, Derks MF, Bervoets S, Fahal A, van Leeuwen W, van Belkum A, et al. Genome Sequence of

Madurella mycetomatis mm55, Isolated from a Human Mycetoma Case in Sudan. Genome Announc.

2016; 4(3). Epub 2016/05/28. 4/3/e00418-16 [pii] https://doi.org/10.1128/genomeA.00418-16 PMID:

27231361; PubMed Central PMCID: PMC4882942.

38. Cote RG, Griss J, Dianes JA, Wang R, Wright JC, van den Toorn HW, et al. The PRoteomics IDEntifica-

tion (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data submission to the

PRIDE database and the ProteomeXchange consortium. Mol Cell Proteomics. 2012; 11(12):1682–9.

Epub 2012/09/06. O112.021543 [pii] https://doi.org/10.1074/mcp.O112.021543 PMID: 22949509;

PubMed Central PMCID: PMC3518121.

39. Champer J, Ito JI, Clemons KV, Stevens DA, Kalkum M. Proteomic Analysis of Pathogenic Fungi

Reveals Highly Expressed Conserved Cell Wall Proteins. J Fungi (Basel). 2016; 2(1). Epub 2016/02/16.

https://doi.org/10.3390/jof2010006 PMID: 26878023; PubMed Central PMCID: PMC4747415.

40. Satyavathi VV, Minz A, Nagaraju J. Nodulation: an unexplored cellular defense mechanism in insects.

Cell Signal. 2014; 26(8):1753–63. Epub 2014/04/08. S0898-6568(14)00098-9 [pii] https://doi.org/10.

1016/j.cellsig.2014.02.024 PMID: 24704121.

41. Dubovskiy IM, Kryukova NA, Glupov VV, Ratcliffe NA. Encapsulation and nodulation in insects. Inverte-

brate Survival Journal. 2016; 13(1):229–46.

42. Seitz V, Clermont A, Wedde M, Hummel M, Vilcinskas A, Schlatterer K, et al. Identification of immunore-

levant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev

Comp Immunol. 2003; 27(3):207–15. Epub 2003/02/20. S0145305X02000976 [pii]. https://doi.org/10.

1016/s0145-305x(02)00097-6 PMID: 12590972.

43. Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L. The impact of proteomics on the understanding

of functions and biogenesis of fungal extracellular vesicles. J Proteomics. 2014; 97:177–86. Epub 2013/

04/16. S1874-3919(13)00182-6 [pii] https://doi.org/10.1016/j.jprot.2013.04.001 PMID: 23583696;

PubMed Central PMCID: PMC3745587.

44. Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J. Engineering of vesicle trafficking improves heterologous

protein secretion in Saccharomyces cerevisiae. Metab Eng. 2012; 14(2):120–7. Epub 2012/01/24.

S1096-7176(12)00003-1 [pii] https://doi.org/10.1016/j.ymben.2012.01.002 PMID: 22265825.

45. Saheki Y, De Camilli P. The Extended-Synaptotagmins. Biochim Biophys Acta Mol Cell Res. 2017;

1864(9):1490–3. Epub 2017/04/02. S0167-4889(17)30067-8 [pii] https://doi.org/10.1016/j.bbamcr.

2017.03.013 PMID: 28363589; PubMed Central PMCID: PMC5642939.

46. Wilson CM, Naves T, Vincent F, Melloni B, Bonnaud F, Lalloue F, et al. Sortilin mediates the release

and transfer of exosomes in concert with two tyrosine kinase receptors. J Cell Sci. 2014; 127(Pt

18):3983–97. Epub 2014/07/20. jcs.149336 [pii] https://doi.org/10.1242/jcs.149336 PMID: 25037567.

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 20 / 23

https://doi.org/10.1128/IAI.00542-09
http://www.ncbi.nlm.nih.gov/pubmed/19620339
https://doi.org/10.1128/mSphere.00189-16mSphere00189-16
http://www.ncbi.nlm.nih.gov/pubmed/27547827
https://doi.org/10.1128/aem.66.1.320-324.2000
http://www.ncbi.nlm.nih.gov/pubmed/10618242
https://doi.org/10.1016/j.fgb.2011.08.004
https://doi.org/10.1016/j.fgb.2011.08.004
http://www.ncbi.nlm.nih.gov/pubmed/21907298
https://doi.org/10.4161/viru.23047
http://www.ncbi.nlm.nih.gov/pubmed/23302787
https://doi.org/10.1111/bjd.14025
http://www.ncbi.nlm.nih.gov/pubmed/26150103
https://doi.org/10.1093/mmy/myx064
https://doi.org/10.1093/mmy/myx064
http://www.ncbi.nlm.nih.gov/pubmed/28992315
https://doi.org/10.1128/genomeA.00418-16
http://www.ncbi.nlm.nih.gov/pubmed/27231361
https://doi.org/10.1074/mcp.O112.021543
http://www.ncbi.nlm.nih.gov/pubmed/22949509
https://doi.org/10.3390/jof2010006
http://www.ncbi.nlm.nih.gov/pubmed/26878023
https://doi.org/10.1016/j.cellsig.2014.02.024
https://doi.org/10.1016/j.cellsig.2014.02.024
http://www.ncbi.nlm.nih.gov/pubmed/24704121
https://doi.org/10.1016/s0145-305x(02)00097-6
https://doi.org/10.1016/s0145-305x(02)00097-6
http://www.ncbi.nlm.nih.gov/pubmed/12590972
https://doi.org/10.1016/j.jprot.2013.04.001
http://www.ncbi.nlm.nih.gov/pubmed/23583696
https://doi.org/10.1016/j.ymben.2012.01.002
http://www.ncbi.nlm.nih.gov/pubmed/22265825
https://doi.org/10.1016/j.bbamcr.2017.03.013
https://doi.org/10.1016/j.bbamcr.2017.03.013
http://www.ncbi.nlm.nih.gov/pubmed/28363589
https://doi.org/10.1242/jcs.149336
http://www.ncbi.nlm.nih.gov/pubmed/25037567
https://doi.org/10.1371/journal.pntd.0008190


47. Hecht KA, O’Donnell AF, Brodsky JL. The proteolytic landscape of the yeast vacuole. Cell Logist. 2014;

4(1):e28023. Epub 2014/05/21. https://doi.org/10.4161/cl.28023 2013CELLULARLOG0012R1 [pii].

PMID: 24843828; PubMed Central PMCID: PMC4022603.

48. Schultzhaus Z, Johnson TB, Shaw BD. Clathrin localization and dynamics in Aspergillus nidulans. Mol

Microbiol. 2017; 103(2):299–318. Epub 2016/10/16. https://doi.org/10.1111/mmi.13557 PMID:

27741567.

49. Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, et al. Candida albicans

biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol. 2018; 16(10):

e2006872. Epub 2018/10/09. https://doi.org/10.1371/journal.pbio.2006872 pbio.2006872 [pii]. PMID:

30296253; PubMed Central PMCID: PMC6209495.

50. Gozalbo D, Gil-Navarro I, Azorin I, Renau-Piqueras J, Martinez JP, Gil ML. The cell wall-associated

glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin bind-

ing protein. Infect Immun. 1998; 66(5):2052–9. Epub 1998/05/09. PMID: 9573088; PubMed Central

PMCID: PMC108162.

51. Kozik A, Karkowska-Kuleta J, Zajac D, Bochenska O, Kedracka-Krok S, Jankowska U, et al. Fibronec-

tin-, vitronectin- and laminin-binding proteins at the cell walls of Candida parapsilosis and Candida tropi-

calis pathogenic yeasts. BMC Microbiol. 2015; 15:197. Epub 2015/10/07. https://doi.org/10.1186/

s12866-015-0531-4 [pii]. PMID: 26438063; PubMed Central PMCID: PMC4595241.

52. Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins

laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev. 2012; 36(6):1122–80.

Epub 2012/04/28. https://doi.org/10.1111/j.1574-6976.2012.00340.x PMID: 22537156.

53. Marin E, Parra-Giraldo CM, Hernandez-Haro C, Hernaez ML, Nombela C, Monteoliva L, et al. Candida

albicans Shaving to Profile Human Serum Proteins on Hyphal Surface. Front Microbiol. 2015; 6:1343.

Epub 2015/12/24. https://doi.org/10.3389/fmicb.2015.01343 PMID: 26696967; PubMed Central

PMCID: PMC4672057.

54. Upadhyay SK, Gautam P, Pandit H, Singh Y, Basir SF, Madan T. Identification of fibrinogen-binding

proteins of Aspergillus fumigatus using proteomic approach. Mycopathologia. 2012; 173(2–3):73–82.

Epub 2011/08/27. https://doi.org/10.1007/s11046-011-9465-z PMID: 21870122.

55. Gandhe AS, John SH, Nagaraju J. Noduler, a novel immune up-regulated protein mediates nodulation

response in insects. J Immunol. 2007; 179(10):6943–51. Epub 2007/11/06. 179/10/6943 [pii] https://

doi.org/10.4049/jimmunol.179.10.6943 PMID: 17982085.

56. Viudes A, Perea S, Lopez-Ribot JL. Identification of continuous B-cell epitopes on the protein moiety of

the 58-kiloDalton cell wall mannoprotein of Candida albicans belonging to a family of immunodominant

fungal antigens. Infect Immun. 2001; 69(5):2909–19. Epub 2001/04/09. https://doi.org/10.1128/IAI.69.

5.2909-2919.2001 PMID: 11292706; PubMed Central PMCID: PMC98242.

57. Segurado M, Lopez-Aragon R, Calera JA, Fernandez-Abalos JM, Leal F. Zinc-regulated biosynthesis

of immunodominant antigens from Aspergillus spp. Infect Immun. 1999; 67(5):2377–82. Epub 1999/05/

04. PMID: 10225898; PubMed Central PMCID: PMC115981.

58. Amich J, Vicentefranqueira R, Leal F, Calera JA. Aspergillus fumigatus survival in alkaline and extreme

zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC

and aspf2 genes. Eukaryot Cell. 2010; 9(3):424–37. Epub 2009/12/30. EC.00348-09 [pii] https://doi.

org/10.1128/EC.00348-09 PMID: 20038606; PubMed Central PMCID: PMC2837988.

59. Kumar R, Breindel C, Saraswat D, Cullen PJ, Edgerton M. Candida albicans Sap6 amyloid regions

function in cellular aggregation and zinc binding, and contribute to zinc acquisition. Sci Rep. 2017; 7

(1):2908. Epub 2017/06/08. https://doi.org/10.1038/s41598-017-03082-4 [pii]. PMID: 28588252;

PubMed Central PMCID: PMC5460171.

60. Nakamura T, Maeda Y, Tanoue N, Makita T, Kato M, Kobayashi T. Expression profile of amylolytic

genes in Aspergillus nidulans. Biosci Biotechnol Biochem. 2006; 70(10):2363–70. Epub 2006/10/13.

JST.JSTAGE/bbb/50694 [pii] https://doi.org/10.1271/bbb.50694 PMID: 17031028.

61. Findlay GH, Vismer HF. Black grain mycetoma. Atomic absorption and spark source mass spectropho-

tometry of the tissue grain in Madurella mycetomi infection. Br J Dermatol. 1977; 97(5):497–9. https://

doi.org/10.1111/j.1365-2133.1977.tb14125.x PMID: 588463.

62. Woods CM, Hooper DN, Ooi EH, Tan LW, Carney AS. Human lysozyme has fungicidal activity against

nasal fungi. Am J Rhinol Allergy. 2011; 25(4):236–40. Epub 2011/06/07. 3631 [pii] https://doi.org/10.

2500/ajra.2011.25.3631 PMID: 21639997.

63. Wu T, Samaranayake LP, Leung WK, Sullivan PA. Inhibition of growth and secreted aspartyl proteinase

production in Candida albicans by lysozyme. J Med Microbiol. 1999; 48(8):721–30. Epub 1999/08/18.

https://doi.org/10.1099/00222615-48-8-721 PMID: 10450995.

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 21 / 23

https://doi.org/10.4161/cl.28023
http://www.ncbi.nlm.nih.gov/pubmed/24843828
https://doi.org/10.1111/mmi.13557
http://www.ncbi.nlm.nih.gov/pubmed/27741567
https://doi.org/10.1371/journal.pbio.2006872
http://www.ncbi.nlm.nih.gov/pubmed/30296253
http://www.ncbi.nlm.nih.gov/pubmed/9573088
https://doi.org/10.1186/s12866-015-0531-4
https://doi.org/10.1186/s12866-015-0531-4
http://www.ncbi.nlm.nih.gov/pubmed/26438063
https://doi.org/10.1111/j.1574-6976.2012.00340.x
http://www.ncbi.nlm.nih.gov/pubmed/22537156
https://doi.org/10.3389/fmicb.2015.01343
http://www.ncbi.nlm.nih.gov/pubmed/26696967
https://doi.org/10.1007/s11046-011-9465-z
http://www.ncbi.nlm.nih.gov/pubmed/21870122
https://doi.org/10.4049/jimmunol.179.10.6943
https://doi.org/10.4049/jimmunol.179.10.6943
http://www.ncbi.nlm.nih.gov/pubmed/17982085
https://doi.org/10.1128/IAI.69.5.2909-2919.2001
https://doi.org/10.1128/IAI.69.5.2909-2919.2001
http://www.ncbi.nlm.nih.gov/pubmed/11292706
http://www.ncbi.nlm.nih.gov/pubmed/10225898
https://doi.org/10.1128/EC.00348-09
https://doi.org/10.1128/EC.00348-09
http://www.ncbi.nlm.nih.gov/pubmed/20038606
https://doi.org/10.1038/s41598-017-03082-4
http://www.ncbi.nlm.nih.gov/pubmed/28588252
https://doi.org/10.1271/bbb.50694
http://www.ncbi.nlm.nih.gov/pubmed/17031028
https://doi.org/10.1111/j.1365-2133.1977.tb14125.x
https://doi.org/10.1111/j.1365-2133.1977.tb14125.x
http://www.ncbi.nlm.nih.gov/pubmed/588463
https://doi.org/10.2500/ajra.2011.25.3631
https://doi.org/10.2500/ajra.2011.25.3631
http://www.ncbi.nlm.nih.gov/pubmed/21639997
https://doi.org/10.1099/00222615-48-8-721
http://www.ncbi.nlm.nih.gov/pubmed/10450995
https://doi.org/10.1371/journal.pntd.0008190


64. Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant

system in Candida albicans. IUBMB Life. 2016; 68(8):652–62. Epub 2016/06/25. https://doi.org/10.

1002/iub.1527 PMID: 27338801.

65. Lee E, Shin A, Kim Y. Anti-inflammatory activities of cecropin A and its mechanism of action. Arch Insect

Biochem Physiol. 2015; 88(1):31–44. Epub 2014/10/17. https://doi.org/10.1002/arch.21193 PMID:

25319409.

66. Yi HY, Deng XJ, Yang WY, Zhou CZ, Cao Y, Yu XQ. Gloverins of the silkworm Bombyx mori: structural

and binding properties and activities. Insect Biochem Mol Biol. 2013; 43(7):612–25. Epub 2013/04/10.

S0965-1748(13)00056-8 [pii] https://doi.org/10.1016/j.ibmb.2013.03.013 PMID: 23567591; PubMed

Central PMCID: PMC3760519.

67. Brown SE, Howard A, Kasprzak AB, Gordon KH, East PD. The discovery and analysis of a diverged

family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella. Insect Biochem Mol

Biol. 2008; 38(2):201–12. Epub 2008/01/22. S0965-1748(07)00252-4 [pii] https://doi.org/10.1016/j.

ibmb.2007.10.009 PMID: 18207081.

68. Perfect JR. Reply to Arguelles. Virulence. 2017; 8(2):239. Epub 2016/08/06. https://doi.org/10.1080/

21505594.2016.1221249 PMID: 27494147; PubMed Central PMCID: PMC5354156.

69. Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeu-

wenhoek. 1990; 58(3):209–17. Epub 1990/10/01. https://doi.org/10.1007/bf00548935 PMID: 2256682.

70. Lewis JG, Learmonth RP, Watson K. Induction of heat, freezing and salt tolerance by heat and salt

shock in Saccharomyces cerevisiae. Microbiology. 1995; 141 (Pt 3):687–94. Epub 1995/03/01. https://

doi.org/10.1099/13500872-141-3-687 PMID: 7711907.

71. Tournu H, Fiori A, Van Dijck P. Relevance of trehalose in pathogenicity: some general rules, yet many

exceptions. PLoS Pathog. 2013; 9(8):e1003447. Epub 2013/08/24. https://doi.org/10.1371/journal.

ppat.1003447 PPATHOGENS-D-13-00868 [pii]. PMID: 23966851; PubMed Central PMCID:

PMC3744402.

72. Wuyts J, Van Dijck P, Holtappels M. Fungal persister cells: The basis for recalcitrant infections? PLoS

Pathog. 2018; 14(10):e1007301. Epub 2018/10/20. https://doi.org/10.1371/journal.ppat.1007301

PPATHOGENS-D-18-01261 [pii]. PMID: 30335865; PubMed Central PMCID: PMC6193731.

73. Zhao P, Li J, Wang Y, Jiang H. Broad-spectrum antimicrobial activity of the reactive compounds gener-

ated in vitro by Manduca sexta phenoloxidase. Insect Biochem Mol Biol. 2007; 37(9):952–9. Epub

2007/08/08. S0965-1748(07)00102-6 [pii] https://doi.org/10.1016/j.ibmb.2007.05.001 PMID: 17681234;

PubMed Central PMCID: PMC2047599.

74. Lu A, Zhang Q, Zhang J, Yang B, Wu K, Xie W, et al. Insect prophenoloxidase: the view beyond immu-

nity. Front Physiol. 2014; 5:252. Epub 2014/07/30. https://doi.org/10.3389/fphys.2014.00252 PMID:

25071597; PubMed Central PMCID: PMC4092376.

75. Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, et al. Mosquito Innate Immunity.

Insects. 2018; 9(3). Epub 2018/08/12. insects9030095 [pii] https://doi.org/10.3390/insects9030095

PMID: 30096752; PubMed Central PMCID: PMC6165528.

76. Upadhyay S, Xu X, Lowry D, Jackson JC, Roberson RW, Lin X. Subcellular Compartmentalization and

Trafficking of the Biosynthetic Machinery for Fungal Melanin. Cell Rep. 2016; 14(11):2511–8. Epub

2016/03/15. S2211-1247(16)30180-2 [pii] https://doi.org/10.1016/j.celrep.2016.02.059 PMID:

26972005; PubMed Central PMCID: PMC4805463.

77. Park CS, Kim J, Montone KT. Detection of Aspergillus ribosomal RNA using biotinylated oligonucleotide

probes. Diagn Mol Pathol. 1997; 6(5):255–60. Epub 1998/02/12. https://doi.org/10.1097/00019606-

199710000-00002 PMID: 9458383.

78. Siddig EE, Mohammed Edris AM, Bakhiet SM, van de Sande WWJ, Fahal AH. Interleukin-17 and matrix

metalloprotease-9 expression in the mycetoma granuloma. PLoS Negl Trop Dis. 2019; 13(7):

e0007351. Epub 2019/07/12. https://doi.org/10.1371/journal.pntd.0007351 PNTD-D-18-01901 [pii].

PMID: 31295246; PubMed Central PMCID: PMC6622479.

79. Geneugelijk K, Kloezen W, Fahal AH, van de Sande WW. Active matrix metalloprotease-9 is associated

with the collagen capsule surrounding the Madurella mycetomatis grain in mycetoma. PLoS Negl Trop

Dis. 2014; 8(3):e2754. Epub 2014/03/29. https://doi.org/10.1371/journal.pntd.0002754 PNTD-D-13-

01396 [pii]. PMID: 24675764; PubMed Central PMCID: PMC3967957.

80. Demuyser L, Van Dyck K, Timmermans B, Van Dijck P. Inhibition of Vesicular Transport Influences

Fungal Susceptibility to Fluconazole. Antimicrob Agents Chemother. 2019; 63(5). Epub 2019/02/21.

AAC.01998-18 [pii] https://doi.org/10.1128/AAC.01998-18 PMID: 30782993; PubMed Central PMCID:

PMC6496062.

81. Wu Q, Zhang L, Xia H, Yu C, Dou K, Li Y, et al. Omics for understanding synergistic action of validamy-

cin A and Trichoderma asperellum GDFS1009 against maize sheath blight pathogen. Sci Rep. 2017;

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 22 / 23

https://doi.org/10.1002/iub.1527
https://doi.org/10.1002/iub.1527
http://www.ncbi.nlm.nih.gov/pubmed/27338801
https://doi.org/10.1002/arch.21193
http://www.ncbi.nlm.nih.gov/pubmed/25319409
https://doi.org/10.1016/j.ibmb.2013.03.013
http://www.ncbi.nlm.nih.gov/pubmed/23567591
https://doi.org/10.1016/j.ibmb.2007.10.009
https://doi.org/10.1016/j.ibmb.2007.10.009
http://www.ncbi.nlm.nih.gov/pubmed/18207081
https://doi.org/10.1080/21505594.2016.1221249
https://doi.org/10.1080/21505594.2016.1221249
http://www.ncbi.nlm.nih.gov/pubmed/27494147
https://doi.org/10.1007/bf00548935
http://www.ncbi.nlm.nih.gov/pubmed/2256682
https://doi.org/10.1099/13500872-141-3-687
https://doi.org/10.1099/13500872-141-3-687
http://www.ncbi.nlm.nih.gov/pubmed/7711907
https://doi.org/10.1371/journal.ppat.1003447
https://doi.org/10.1371/journal.ppat.1003447
http://www.ncbi.nlm.nih.gov/pubmed/23966851
https://doi.org/10.1371/journal.ppat.1007301
http://www.ncbi.nlm.nih.gov/pubmed/30335865
https://doi.org/10.1016/j.ibmb.2007.05.001
http://www.ncbi.nlm.nih.gov/pubmed/17681234
https://doi.org/10.3389/fphys.2014.00252
http://www.ncbi.nlm.nih.gov/pubmed/25071597
https://doi.org/10.3390/insects9030095
http://www.ncbi.nlm.nih.gov/pubmed/30096752
https://doi.org/10.1016/j.celrep.2016.02.059
http://www.ncbi.nlm.nih.gov/pubmed/26972005
https://doi.org/10.1097/00019606-199710000-00002
https://doi.org/10.1097/00019606-199710000-00002
http://www.ncbi.nlm.nih.gov/pubmed/9458383
https://doi.org/10.1371/journal.pntd.0007351
http://www.ncbi.nlm.nih.gov/pubmed/31295246
https://doi.org/10.1371/journal.pntd.0002754
http://www.ncbi.nlm.nih.gov/pubmed/24675764
https://doi.org/10.1128/AAC.01998-18
http://www.ncbi.nlm.nih.gov/pubmed/30782993
https://doi.org/10.1371/journal.pntd.0008190


7:40140. Epub 2017/01/07. srep40140 [pii] https://doi.org/10.1038/srep40140 PMID: 28057927;

PubMed Central PMCID: PMC5216365.

82. Fields GB. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells. 2019;

8(9). Epub 2019/08/30. cells8090984 [pii] https://doi.org/10.3390/cells8090984 PMID: 31461880.

PLOS NEGLECTED TROPICAL DISEASES Infection of Galleria with Madurella mycetomatis

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008190 April 8, 2020 23 / 23

https://doi.org/10.1038/srep40140
http://www.ncbi.nlm.nih.gov/pubmed/28057927
https://doi.org/10.3390/cells8090984
http://www.ncbi.nlm.nih.gov/pubmed/31461880
https://doi.org/10.1371/journal.pntd.0008190

