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ABSTRACT

Discovering a representation which allows auditory data to
be parsimoniously represented is useful for many machine
learning and signal processing tasks. Such a representation
can be constructed by Non-negative Matrix Factorisation
(NMF), a method for finding parts-based representations of
non-negative data. We present an extension to NMF that is
convolutive and includes a sparseness constraint. In com-
bination with a spectral magnitude transform, this method
discovers auditory objects and their associated sparse acti-
vation patterns.

1. INTRODUCTION

A preliminary step in many data analysis tasks is to find a
suitable representation of the data. Typically, methods ex-
ploit the latent structure in the data. For example, ICA [1]
reduces the redundancy of the data by projecting the data
onto its independent components, which can be discovered
by maximising a statistical measure such as independence
[2] or non-Gaussianity [3].

Non-negative Matrix Factorisation (NMF) approximately
decomposes a non-negative matrix V into a product of two
non-negative matrices W and H [4, 5]. NMF is a parts-
based approach that does not make a statistical assumption
about the data. Instead, it assumes that for the domain at
hand, negative numbers would be physically meaningless.
The lack of statistical assumptions makes it difficult to prove
that NMF will give correct decompositions, although it has
been shown geometrically that NMF provides a correct de-
composition for some classes of images [6].

Data that contains negative components, for example
audio, must be transformed into a non-negative form before
NMF can be applied. Here, we use a magnitude spectro-
gram. Spectrograms have been used in audio analysis for
many years [7] and in combination with NMF have been
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applied to a variety of problems such as speech separation
[8-10] and automatic transcription of music [11].

In this paper we combine a previous convolutive exten-
sion of NMF [10] that is able to identify auditory objects
with time-varying spectra with a sparseness constraint [12]
and apply the resulting algorithm to the analysis of audio
data. The paper is structured as follows. Section 2 presents
NMF and discusses its performance using experiments on
synthetic data. Convolutive NMF and its advantages over
conventional NMF are discussed in Section 3. In Section 4
we add an additional sparseness constraint to the convolu-
tive NMF objective and discuss an experiment on musical
data.

2. NON-NEGATIVE MATRIX FACTORISATION

NMF is a linear non-negative approximate factorisation, and
is formulated as follows. Given a non-negative M x N
matrix V C R>O.MN the goal is to approximate V as a
product of two non-negative matrices W C R>O,M R and
He O,RxN

V W.H (1)
where R < M, such that the reconstruction error is min-
imised. Two NMF algorithms were introduced by Lee and
Seung [5, 13], each optimising its own measure of the qual-
ity of the approximation. The first cost function presented
is the Euclidean distance between V and WH, the second
is a generalised version of the Kullback-Leibler divergence.
We will use the latter

D(VIIW,H) = V logv V+W*H (2)
W*H

where X denotes an element-wise (also known as Hadamard
or Schur product) multiplication, and division is also element-
wise. NMF can now be written as an optimisation problem.

min D(V IW,H)W,H
W,H >0

The above objective is convex inW and H individually but
not together. Therefore algorithms usually alternate updates
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ofW and H. The objective can be minimised using a diag-
onally rescaled gradient descent algorithm [5], which leads
to multiplicative updates

WT. V

H=HO WH

WT. 1

V .HT
1 HT

(3) 4 6 8 10 12 14
Time (seconds)

Column 1 of W Column 2 of W

where 1 is an M x N matrix with all its elements equal to
unity. As the algorithm iterates, the factors converge to a

local optimum of Eq. 2.
The parameter R, which is the number of columns in

W and rows in H, specifies the rank of the approximation.
If R < M then W is under-determined and NMF reveals
low-rank features of the data. The columns of W will con-

tain the basis for the data while the rows of H will contain
activation patterns for each basis. The selection of an ap-

propriate value for R usually requires prior knowledge, and
is important to obtaining a satisfactory decomposition.

2.1. NMF applied on audio spectra

To illustrate the application of NMF on audio data consider
the example shown in Figure 1. The signal under consid-
eration is composed of two band-limited noise bursts with
magnitude spectra constant over time. The first burst is cen-

tred around 2 kHz and occurs four times, while the second
burst is centred around 6 kHz and occurs three times. The
signal's spectrogram is an M x N matrix V with magni-
tude information forM frequency bins at N time intervals.
NMF is applied to V with R = 2 and the resultant factors
shown. In this example both the frequency spectra of the
bursts (columns of W) and their activations in time (rows
of H) have been identified. Therefore, this decomposition
has successfully revealed the structure ofV by correctly de-
scribing its constituent elements in both the frequency and
time domains.

Now consider the example presented in Figure 2. Here,
the signal under consideration is composed of two auditory
objects that have differing frequency sweeps over time. The
first object is centred around 2 kHz and the second object
is centred around 6 kHz, each occurring four times. NMF
is applied to the data with the same parameters as above
and the factors are shown. It is evident from the columns of
W that the identified spectra contain frequency components
that are centred around both 2 kHz and 6 kHz. Thus, NMF
fails to identify the spectra of each object and instead dis-
covers objects that are a combination of both. The reasons

for this are that the spectra of the auditory objects evolve
over time and that NMF is not expressive enough to reveal
this temporal structure. Therefore, in order to reveal a cor-

rect decomposition, the expressive properties of NMF need
to be extended to consider the evolution of each object's
spectrum.

cDE
C-)

6 8
Time (seconds)

10[121410 12 14

Fig. 1. Spectrogram of a signal composed of band-limited
noise bursts, and its factors obtained by NMF.
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Fig. 2. Spectrogram of a signal composed of auditory ob-
jects with time-varying spectra, and its factors obtained by
NMF.

3. CONVOLUTIVE NMF

Typically, the temporal relationship between multiple obser-
vations over nearby intervals of time are discovered using a

convolutive generative model. Such a model has previously
been used to extend ICA [14] and NMF [10], the latter con-
stituting the algorithm we review in this section. In con-

ventional NMF each object is described by its spectrum and
corresponding activation in time, while in convolutive NMF
each object has a sequence of successive spectra and corre-

sponding activation pattern across time. The model of Eq. 1
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is extended to the convolutive case

T-1t

V ~7fWt.w
t=O

where V C R>O,M N is the input to be decomposed, Wt C
R>O,MR and H C R>° R N are its two factors, and T is
the length of each spectrum sequence. The i-th column of
Wt describes the spectrum of the i-th object t time steps

1-4~

after the object has begun. The (.) denotes a column shift
operator that moves its argument i places to the right; as
each column is shifted off to the right the leftmost columns

are zero filled. Conversely, the (.) operator shifts columns
off to the left, with zero filling on the right.

Using the previously presented framework for NMF, the
new cost function for the convolutive generative model is

- 8

o 4.
v7 2.

oI

6 8
Time (seconds)

Object 1 Object 2

- 6

o21

2 02
Time Time

Rows of H

E
0 1

6 8
Time (seconds)

10 12 14

D(VIIA)= V log -V+AA

where A is the approximation to V and is defined as

T-1 t-

At= E Wt H
t=O

This new cost function can be viewed as a set of T con-
ventional NMF operations that are summed to produce the
final result. Consequently, as opposed to updating two ma-
trices (W and H) as in conventional NMF, T + 1 matrices
require an update (W0,..., WT-1 and H). The resultant
convolutive NMF update equations are

WT.[XIt
V-H

t1.
1 H

where H is updated to the average result of its updates for
all t. When T = 1 this reduces to conventional NMF
(Eq. 3).

3.1. Convolutive NMF applied on audio spectra

We have shown that conventional NMF reveals a correct de-
composition for auditory objects with constant spectra, but
fails for objects that exhibit time-varying spectra. Let us
now consider the application of convolutive NMF to this
example. The performance of the algorithm now depends
on two parameters R and T, where T must be larger than
the temporal extent of each object. Convolutive NMF is
applied to the data with R = 2 and T = 2 seconds, and
the resultant factors are presented in Figure 3. It is evident
from the spectral sequences obtained (i-th column of Wt,
fort = 0, 1, ... , T-1) that the time-varying spectra of each

Fig. 3. Spectrogram of a signal composed of auditory ob-
(4) jects with time-varying spectra, and its factors obtained by

convolutive NMF.

object has been revealed and that the rows of H identify the
start of each object. Therefore, the decomposition has suc-
cessfully revealed the structure ofV by correctly describing
the spectral evolution of each object and its position in time.

4. CONVOLUTIVE NMF WITH ADDITIONAL
CONSTRAINTS

For some tasks it may be advantageous to perform NMF
with additional constraints placed on eitherW or H. One
increasingly popular and powerful constraint is that the rows
of H have a parsimonious activation pattern for the basis
contained in the columns ofW [12]. This is the so called
Sparseness Constraint [15, 16]. A signal is said to be sparse
when it is zero or nearly zero more than might be expected
from its variance. Such a signal has a probability density
function or distribution of values with a sharper peak at
zero and fatter tails than a Gaussian. A standard sparse dis-
tribution is the Laplacian distribution (p(c) oc exp-I c).
The advantage of a sparse signal representation is that the
probability of two or more activation patterns being active
simultaneously is low. Thus, sparse representations lend
themselves to good separability [17]. Although convolutive
NMF produces activation patterns that tend to be sparse, the
addition of the sparseness constraint on H provides a means
of trading off the sparseness of the representation against
accurate reconstruction.

The most widely used method for multi-objective opti-
misation is the weighted sum method. This method creates
an aggregate objective function by multiplying each con-
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stituent cost function by a weighting factor and summing the
weighted costs. Combining our reconstruction cost function
(Eq. 4) with a sparseness constraint on H results in the fol-
lowing objective function

G(VIIA) = D(VIIA) + A Hij
ij

(6)

The left term of the objective function corresponds to con-

volutive NMF, while the right term is an additional con-

straint on H that enforces sparsity by minimising the L1-
norm of its elements [18]. The parameter A controls the
trade off between sparseness and accurate reconstruction.

This objective creates a new problem: the right term is
a strictly increasing function of the absolute value of its
argument, so it is possible that the objective can be de-
creased by scaling Wt up and H down (Wt H-* avWt and
H * (1/a)H, with a > 1). This situation does not al-
ter the left term in the objective function, but will cause

the right term to decrease, resulting in the elements of Wt
growing without bound and H tending toward zero. Con-
sequently, the solution arrived at by the optimisation algo-
rithm is not influenced by the right term of the objective
function and the resultant H matrix is not sparse. Therefore
another constraint needs to be introduced. This is achieved
by fixing the L2-norm of the i-th object of Wt to unity,
over all t = O, 1, , T -1. This appropriately constrains
the scale of the elements in Wt and H.

4.1. New update rules

The classic NMF update rules [5] implement gradient de-
scent and our new updates will also follow this approach.
First we consider the gradient descent update for H,
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Fig. 4. Spectrogram of a signal composed of an over-

complete basis, and its factors obtained by convolutive
NMF.

where the gradient of Eq. 6 with respect to Wt is

V tTV7wG(VIIA)= H
t1H

1 H

The additional unit norm constraint on Wt complicates the
update rule and impedes the discovery of a suitable form
for T1w that would result in a multiplicative update [12],
resulting in the following additive update

V tt-J tl-.j

Wt = Wt + T1w H -1 H (8)

H =H+ TJHVHG(VIA)

Taking the gradient of Eq. 6 with respect to H gives

<-t

7HG(VIA) = wtT. [X WT 1 + A 1

Diagonally rescaling the variables [5, 12] and setting the
learning rate to

H
HWT * 1 + A * 1

gives the new multiplicative update rule for H

WT. [VI
H=HO (7)

t

Similarly, we derive a new update for the Wt

Wt = Wt + Tw7wtG(VIIA)

After this update, any negative values in Wt are set to zero

(non-negativity constraint), and each object in Wt is rescaled
to unit L2-norm, over all t = O, 1, , T- 1. As long as

T1w and T/H are sufficiently small these updates should re-

duce Eq. 6.

4.2. Sparse Convolutive NMF applied on audio spectra

An interesting property of the sparseness constraint is that
it enables the discovery of an over-complete basis, i.e., a

basis that contains more basis functions than are necessary

to span the projection space.

To illustrate the performance of convolutive NMF on

data generated from an over-complete basis consider the ex-

ample presented in Figure 4. The signal under consideration
is composed of three auditory objects each occurring twice,
where the first object is an exponentially decreasing then
increasing frequency sweep centred around 4 kHz, the sec-

ond object is the reverse of the first, and the third object is
a combination of the first two. Convolutive NMF is applied
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Input Signal
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Fig. 6. Music waveform and its associated spectrogram along with its factors obtained by sparse convolutive NMF (rows 3
& 4) and conventional convolutive NMF (rows 5 & 6).

to the data with R = 3 and T = 2 seconds, and the resul-
tant factors are presented. It is evident from the results that
only the first two auditory objects are identified. This is be-
cause the third object can be expressed in terms of the first
two and the signal can be described by using just the first
two objects. Thus, convolutive NMF achieves its optimum
with just the first two linearly independent objects without
the need for an over-complete representation.

When the sparseness constraint is included, the exis-
tence of an over-complete representation helps minimise the
objective, allowing for a sparser description of the signal.
Sparse convolutive NMF applied to the same signal (Fig-
ure 5) identifies all three objects and their associated activa-
tion patterns, successfully revealing the over-complete basis
used to generate the signal.

4.3. Sparse Convolutive NMF applied on music

We now compare these algorithms on a simple music exam-
ple. For illustrative clarity the music is composed of rudi-
mentary synthesised guitar notes, where each note produces
only its fundamental frequency. The arrangement is simple,
composed of three sections: the six notes of a G chord are
played individually in descending order; all six notes of the

chord are played simultaneously; and each note is played in
reverse order. Each note is played for one second, and the
frequencies of the notes are 98.00 Hz (G), 123.47 Hz (B),
146.83 Hz (D), 196.00 Hz (G), 246.94 Hz (B) and 392.00 Hz (G).

Both sparse convolutive NMF and convolutive NMF are
applied to the music and the resultant factors are presented
in Figure 6. It is evident from the spectrogram that the mu-
sic can be represented by an over-complete representation
consisting of each individual note and the chord. Convo-
lutive NMF is applied with R = 7, T = 1 seconds and
the resultant factors are presented in rows 5 & 6. As can
be seen from the activation pattern, the algorithm has failed
to represent the chord as an individual auditory object and
instead represents it as a combination of notes. Sparse con-
volutive NMF is applied with the same parameters, where
the additional parameter A is selected on an ad hoc basis.
The resultant factors are presented in rows 3 & 4. Here, it is
evident that an over-complete representation is discovered
in which the chord is represented as an individual auditory
object.
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Fig. 5. Spectrogram of a signal composed of an over-
complete basis, and its factors obtained by sparse convo-
lutive NMF.

5. CONCLUSIONS

In this paper we have presented a sparse convolutive ver-
sion of NMF that effectively discovers a sparse parts-based
representation for non-negative data. This method extends
the convolutive NMF objective by including a sparseness
constraint on the activation patterns, enabling the discovery
of over-complete representations. We have reviewed how
the expressive properties ofNMF can be improved by refor-
mulation of the problem in a convolutive framework, and
shown that the addition of a sparseness constraint can lead
to the discovery of appropriate over-complete representa-
tions in music.
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