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Abstract—Bolometric integrating cavities have been used with
great success in previous far-infrared space missions, and are
planned for extensive use in future missions where ever increasing
sensitivity is required. It is critical for the purposes of design and
the interpretation of results that these systems are thoroughly
understood and optically characterised fully. Such systems, for
manufacturing and mechanical reasons, may contain free space
gaps between the feed horn antenna and the integrating cavity,
and so it is necessary to include the effect of these waveguide
openings in simulations. Since these pixels are electrically large,
it is more feasible to model them by using the computationally
efficient mode-matching approach. In this paper we discuss the
elements required to model such pixels within the mode-matching
approach and apply it to a typical pixel containing a free space
gap, based on an experimental Transition Edge Sensor (TES)
cavity waveguide pixel at SRON Groningen.

Index Terms—multi-moded, mode matching, free space,
bolometer, integrating cavity, Transition Edge Sensor.

I. INTRODUCTION

In future far-infrared space based systems, an increase in
sensitivity is required. This will be achieved by using a greater
number of detectors packed densely in a focal plane area.
Such pixels can also be multi-moded across the bandwidth
of interest, resulting in increased throughput to the detectors.
An example of such a system is the SAFARI instrument
onboard the proposed SPICA mission. Future Cosmic Mi-
crowave Background (CMB) missions will also require a large
number of detectors and will potentially use a superconducting
bolometer in a waveguide structure. Pixels for missions of this
type may typically consist of a multi-moded horn antenna
that feeds an integrating cavity that contains an absorbing
superconducting layer which is used, in the case of SAFARI,
with a Transition Edge Sensor (TES) coupled bolometer in
order to measure the absorbed power. For mechanical reasons,
a gap exists in such systems between the horn antenna and
the cavity containing the detector to mechanically allow the
separate manufacture of the horn and cavity arrays. This is
because the horn antennas forming the input to the detector
array are wire cut from a solid metal block, and the detector
array is manufactured on silicon wafer. Since these two

sections cannot be pressed together, and since the absorber
must sit slightly outside the cavity, there is a gap. The gap
in such systems serves a second purpose, namely to introduce
sufficient separation between the horns and cavities/detectors
so that the vibrations induced at launch do not result in them
contacting each other and causing damage.

In order to be able to design and optimise pixels such as
these for use in future missions, it is necessary to include them
in the design process so as the full performance of each pixel
can be assessed, including power leakage. Full electromagnetic
solvers such as Computer Simulation Technology Microwave
Studio (CST MWS) and COMSOL are capable of predicting
the performance of such structures, however pixels such as
the ones under consideration are electrically large. Given the
computing resources typically available, simulations in these
packages often cause the available memory to be exceeded or
take several days to complete. Reliable modelling techniques
must be available to design and improve such pixels (perhaps
by using an optimisation algorithm), so it is clear that a more
efficient technique must be used. The mode matching tech-
nique offers a significantly more efficient approach. allowing
a complete description of the horn and cavity structures that
are used, along with the absorber which is modelled as an
ohmic sheet. In order to fully implement such a pixel using
this technique, it is necessary to account for the effects of the
free space gap and the resulting metal face presented by the
block that the horn antennas are cut from, as in figure 1. As
a first approximation it is possible to include the gap as a
section of waveguide of large radius, however the number of
waveguide modes necessary to do this (see section II) would be
computationally prohibitive. In this paper, these elements will
be integrated with the standard mode matching technique in
order to completely model such pixels. The performance of the
technique will be verified using a commercial electromagnetic
solver and then applied to a system based on an experimental
test bed at Space Research Organisation of the Netherlands
(SRON) Groningen, which includes a gap that approximates
to free space.
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Fig. 1. Schematic of an example of the pixels in question

II. IMPLEMENTING THE GAP

The geometry of the pixels in question is assumed to
by cylindrical. Software developed at Maynooth University,
known as SCATTER, is capable of modelling such structures
by means of the mode matching technique [1]. This technique
functions by expressing a waveguide structure such as horn
antenna or a cavity as a series of sections, where the radius
of each section is different to that of the sections either
side. By expressing the field in each section using a suitable
number of transverse electric (TE) and transverse magnetic
(TM) waveguide modes, a set of scattering matrices can be
found that govern the behaviour of that section in terms of bi-
directional transmission and reflection. These matrices trans-
form the coefficients of each mode at the input of that section
to the output, accounting for the affect of the section. By
calculating the scattering matrices associated with each section
and cascading them sequentially, a set of scattering matrices
can be found which relate the input of the overall system to
the output. In order to incorporate additional elements within
SCATTER (such as those shown in figure 1, for example
the elements required to implement the free space gap), a
set of scattering matrices must be found that describe such
elements. These scattering matrices can then be included at
the appropriate points in the calculation in order to include the
effect of the additional sections. In this section, the required
scattering matrices will be discussed and derived.

A. Transition from Waveguide Modes to Free Space Modes

In SCATTER, the electric and magnetic field components in
each waveguide section are represented by sums of Transverse
Electric (TE) and Transverse Magnetic (TM) modes, [1], with
the field at the exit interface to free space of the structure
therefore represented in terms of these modes. The mathe-
matical form of these modes is presented in [3]. In order to
propagate the field from the exit aperture through free space
to some plane of interest, it is necessary to transform the field
at the aperture so as it is represented using a basis set that is
representative of free space fields. Assuming a cylindrically
symmetric system geometry, the most natural mode set to
select is the Associated Laguerre Gaussian (LG) mode set,
[2]. This mode set is the solution to the Helmholtz equation
in the paraxial limit, with the LG modes of order m and degree

α given by(
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where Lαm (x) are the Associated Laguerre polynomials of
order m and degree α. W , R and φm,α are the width, phase
radius of curvature and the phase slippage of each mode, each
being a function of the distance propagated from the beam
waist, the point at which the beam has minimum width. These
parameters are defined fully in [2]. This allows the expression
of any cylindrical field E in terms of this mode set according
to

E (r, φ, z) =

N∑
α,m

Aα,mΨα cos
m (W,R, r, φ, z) +

N∑
α,m

Bα,mΨα sin
m (W,R, r, φ, z) , (2)

where Aα,m and Bα,m are the coefficients of each mode,
found by carrying out an overlap between each mode and E
in the plane where the transition between the mode sets is
occurring.

As outlined in [3], it is possible to take a field represented
by waveguide modes and couple it to the free space modes.
For waveguide modes of azimuthal order n, only coupling
to LG modes of degree n ± 1 need be considered. Where
n = 0, only coupling to LG modes of degree 1 is necessary,
as negative degrees are physically meaningless. Thus, for
a given azimuthal order, a scattering matrix T (n) can be
generated which relates each of the waveguide modes in that
azimuthal order to the LG modes that are being coupled to.
The entries in each of these matrices are found by carrying
out an overlap integral between the waveguide modes and the
free space modes. It should be noted that in systems which
include the orthogonal polarisations of the waveguide modes,
the coupling of these modes is the same and so does not need
to be calculated separately. In order to couple back into the
waveguide modes from free space, a similar process is carried
out, with the waveguide modes now being conjugated in the
overlap integral, as these are the modes being coupled into.
This calculation can be eliminated by noting that the conjugate
transpose of the transmission matrix T , gives the coupling of
the free space modes back into the waveguide modes across
the same transition aperture. This matrix is known as R, with
R

(n)
i,j = T

(n)∗
i,j / |Z|, where |Z| ≈ Z0, and Z0 is the impedance

of free space. The factor of Z appears in order to keep the
normalisation consistent between the mode sets, as SCATTER
assumes normalisation with respect to complex power. In this
way, the set of scattering matrices governing any section that
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Fig. 2. Free space loss truncating section, simulating power loss beyond
pixel extent

acts as an interface between free space and waveguide modes
can be calculated such that Si,j21 = Ti,j , S

i,j
12 = Ri,j , S

i,j
11 = 0

and Si,j22 = 0.

B. Propagation Through Free Space

The field at the plane that interfaces between the mode sets,
in terms of free space modes, can be written as

Ein =
∑
n

AnΨn (Win, Rin, φin) , (3)

assuming n free space modes. The field at some output plane
a distance z away can be computed by applying the ABCD
matrix technique, [2], in order to calculate the values of
the previously outlined beam parameters at the output plane,
namely Wout, Rout and φout. This allows the field at the
output plane to be reconstructed according to

Eout =
∑

AnΨn (Wout, Rout, φout) , (4)

where the mode coefficients, An, remain unchanged.

C. Free Space Loss Truncating Section

Power is conserved within the mode matching technique, so
a power loss mechanism must be introduced across the free
space gap. As a free space beam propagates, it increases in
off-axis extent due to diffraction. For a given pixel radius, rp,
it is possible that the beam associated with certain free space
modes may extend beyond this value. This power is lost from
the pixel, and so should be quantified as when arrays are used
it could result in crosstalk. To do this, it is necessary to truncate
the free space modes beyond the spatial extent of the pixel.
Figure 2 illustrates the method used to implement this, which
is by means of a circularly symmetric sheet which is infinitely
thin and perfectly absorbing, with a pupil of radius rp centred
on the optical axis of the system. The free space modes can
travel either forward or backwards, where in figure 2, left to
right is taken as the forward direction. Applying the mode

matching technique [1] to this system, and assuming a total
of N free space modes, the scattering matrices for this section
are found to be

S11 = 0

S12 = P2

S21 = P1

S22 = 0,

(5)

where

P1 =

rp∫
0

e+n · e+n 2πrdr, (6)

and
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0

e−n exp

(
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)
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The Pn integrals represent the coupling of each through the
pupil. As such, they represent the transmission of each mode
through the truncating section. Since the reflection scattering
matrices evaluate to zero, the balance of the power is consid-
ered to be lost from the pixel through the gap.

D. Horn Array Reflective Plate

Figure 1 shows a schematic of the overall pixel being
simulated. The pixel will ultimately be a part of an array,
with the horn for each pixel being drilled into one large
plate of metal (this study is based on a single pixel prototype
and so one pixel is considered in isolation). It is clear from
the schematic that the pixel encompasses a part of this plate
which behaves as a reflective surface whose impact must be
accounted for in simulations. To implement this plate within
the mode matching framework, it is assumed that the gap is
being fed by a waveguide aperture of radius a, as in figure
3. In the limit that δ → 0, the reflective plate is in contact
with the waveguide, as in the pixel. In this case, no radiation
incident upon the sheet from the left exists beyond a distance
a off-axis, so [A] and [B] exist only in the region r < a.
To implement the reflective plate, the waveguide modes at the
waveguide aperture are transformed into free space modes,
and these modes are immediately applied to the plate. If the
plate is assumed to be infinitely thin, then this process results
in the modes propagating a zero distance in free space, with
the plate effectively truncating the free space field. Using these
assumptions and applying the mode matching technique yields
the following scattering matrices for the plate,

S11 = 0

S12 = P2

S21 = P1

S22 = −Q2,

(8)

where the Pn integrals are as before, and Q2 =
∞∫
rp

e−n exp
(
jkr2

2R

)
· e+n 2πrdr, represents the reflection coeffi-

cients on the free space side of the plate.
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Fig. 3. Reflective plate section in the mode matching technique

III. VERIFICATION AND APPLICATION TO A TEST PIXEL

By implementing an electrically small single-moded waveg-
uide (r=1.535 mm) fed cavity structure (r=2 mm) in CST, it
was possible to verify the correct performance of the elements
described above. At a frequency of 70 GHz, this structure was
simulated for varying values of the gap between the waveguide
and the cavity, with the power leaking from the structure
recorded using a field monitor. The same system was imple-
mented in SCATTER, with the leaked power being monitored
by performing a singular value decomposition (SVD) on the
S11 matrix of the system. Since this is the only port for power
to enter/exit the system, and the only loss mechanism is the
gap, then any power that does not return to port 1 must have
been lost to the gap. The leaked power was thus evaluated
according to

Pleaked =

β∑
1

i−
β∑
i

σ2
i . (9)

where σi is the singular value of the ith mode supported by
the system and i = 1 for a single-moded system.

Figure 4 compares the leaked power predicted by both
methods. For a given frequency, larger gaps result in more
power being lost due to each mode diffracting to a larger
degree. The disagreement for lower gap lengths is expected.
For small distances the system is in the reactive nearfield,
whose affects are not accounted for in the mode matching
technique. This work is focussed on pixels in which the
wavelength varies from 35 to 70 µm with a gap of length
50 µm. This corresponds to gap lengths (in terms of λ) of
≈ 0.71 − 1.42 λ. Figure 4 shows excellent agreement when
the length of the gap is of this order, and so the SCATTER
approach can be applied with confidence to such pixels. The
CST simulations took several hours to run, with SCATTER
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Fig. 4. Comparison of leaked power as a function of free space gap length
(expressed in terms of wavelength (λ = 4.28275mm)) found using CST and
SCATTER

TABLE I
DETAILS OF THE VARIOUS PIXEL CONFIGURATIONS SIMULATED

Configuration DBB [mm] LBB [mm]
1 13.00 26.10
2 0.90 10.77
3 0.50 10.20
4 1.40 10.20

taking less than an hour. This shows the improved efficiency
that is obtained using the mode matching technique.

The pixel design that will be analysed is based on an
experimental arrangement of a pixel at SRON Groningen,
which is a prototype of a SAFARI pixel. The prototype pixel is
of cylindrical geometry, with a smooth-walled conical horn of
throat radius 23 µm feeding a hemispherical backshort cavity
containing a TES device with an entrance aperture radius
of 250µm via a gap of 50µm. In the measurement setup, a
conical radiator is used to illuminate the pixel. The radiator
illuminates a pinhole aperture of radius DBB with the pixel
entrance aperture located a distance LBB from this. The pixel
was illuminated using this source for various combinations
of DBB and LBB , as shown in table I. By simulating the
pixel in SCATTER and performing a SVD on the S11 matrix,
the modes supported by the system can be identified. These
modes are then coupled to the conical radiator, modelled as
blackbody source, and the amount of each mode that actually
gets excited in the pixel is recovered as a percentage of the
amount of power that was available to that mode. Thus, the
figure returned for lost power is the power lost as a percentage
of the power that was available to couple to the pixel.

Three pixel models were considered for each configuration,
a closed pixel (no gap) with just an ohmic sheet to model
the bolometer absorber, an open pixel (gap included) with no
absorber and an open pixel with an absorber, i.e. the full pixel.
The total lost power as a fraction of the total power available
to the pixel was calculated across the band from 35-70 µm
in 53 steps for each configuration, with the results shown in
figure 5. Configuration 1 corresponds to a pinhole aperture
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Fig. 5. Comparison of the integrated fractional power lost for each
configuration for three pixel models

that is sufficiently large to be invisible to the pixel, thus the
pixel sees the blackbody source directly. Since this is highly
non-directional, the coupling of the pixel to this source is
low, hence the low value for efficiency. The results for the
other configurations, which yield usable source beams, show
that for a closed cavity with an absorber the highest amount
of power is lost. The least amount of power is lost when
an empty, open pixel is considered. When both mechanisms
are combined, the figure obtained is slightly higher than the
empty, open pixel, but less than the closed pixel with the
absorber. The result of combining both mechanisms should
not be expected to be a linear combination of the losses
due to both mechanisms individually, as the electromagnetic
system in question is fundamentally different, so this result is
expected.

The reduced fraction of lost power that is observed when
both mechanisms are combined (relative to the closed pixel)
can be considered by examining the farfields of the open and
closed pixels (both with absorbers). A comparison between the
two for λ =50 µm is shown in figure 6, with a similar situation
occurring across the band. Due to increased reflections and
back scattering introduced by the free space gap, more modes
are supported by the open pixel than the closed pixel at a
given wavelength. This results in the farfield beam pattern
of the open pixel containing a higher percentage of off-axis
power than the corresponding closed pixel. This reduces the
directivity of the beam, and since the source being coupled
to is aligned with the optical axis of the pixel, the coupling
reduces, resulting in less leaked power. This analysis was
previously not possible to carry out using CST (owing to mem-
ory requirements), and so the mode matching technique has
allowed additional insight to be gained into the performance
of the pixel.

IV. CONCLUSION

The gap present in the SAFARI pixel for mechanical
reasons was modelled as a free space gap, and the elements

-60 -40 -20 0 20 40 60
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Off-axis angle [deg]

Po
w

er
[d

B
]

Open

Closed

Fig. 6. Farfield beam patterns for open and closed pixels at λ =50 µm

required to model this gap as an integrated part of the mode
matching technique were presented and implemented. The
resulting model was tested against a waveguide fed cavity
using CST MWS, with excellent agreement being observed
for sufficiently large values of the gap in terms of wavelength,
once the reactive nearfield was exited. The range of effective
gap values giving good agreement coincides with the effective
gap lengths encountered in the systems of interest in this
work. A pixel, as implemented at SRON Groningen, was then
modelled with the gap included, and the results obtained were
compared to a closed pixel and an open pixel with no absorber,
in order to illustrate the effect of including the gap. The results
were found to be consistent with the expected behaviour of
the system and showed that including the gap has a small but
visible impact on the total power removed from the pixel by
the combination of the gap and the absorbing sheet in the
cavity associated with the measurement system. It was noted
during the various simulations that the run time required when
using the mode matching technique was significantly less than
when CST was used (less than an hour versus several hours),
and no memory issues were encountered, allowing an analysis
of the full pixel, including the free space gap.
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