Copyright Transfer Agreement: The following Copytig ransfer Agreement must be included on the
cover sheet for the paper (either email or fax)—arothe paper itself.

“The authors represent that the work is original Hrey are the author or authors of the work, eifmap
material quoted and referenced as text passagéso’siacknowledge that they are willing to transfer
the copyright of the abstract and the completeegpapthe SDR Forum for purposes of publication in
the SDR Forum Conference Proceedings, on asso@®ddOMS, on SDR Forum Web pages, and
compilations and derivative works related to troaference, should the paper be accepted for the
conference. Authors are permitted to reproduce theik, and to reuse material in whole or in paoti
their work; for derivative works, however, suchtaurs may not grant third party requests for repront
republishing.”

Government employees whose work is not subjecopyreght should so certify. For work performed
under a U.S. Government contract, the U.S. Govenhimas royalty-free permission to reproduce the
author's work for official U.S. Government purpases



SOFTWARE ENGINE DEVELOPMENT FOR SDR

Magdalena Sanchez Mora (CTVR, IMWS, NUI Maynootiid&re, Ireland,
msanchez@eeng.nuim.ie); Ignacio Ruiz (CTVR, IMWE] NMaynooth, Co. Kildare,
Ireland, iruiz@eeng.nuim.ie); Gerard Baldwin (CTMRIWS, NUI Maynooth, Co.
Kildare, Ireland, gbaldwin@eeng.nuim.ie); Ronanréla(CTVR, IMWS, NUI
Maynooth, Co. Kildare, Ireland, rfarrell@eeng.nuej.

1. ABSTRACT carrier/timing recovery, hardware control functioasd
communication functions. The SDR hardware is

This paper focuses on the development of the softwa reconfigured through the hardware control functiofisese

engine for an SDR hardware platform [1][2]. This BD control functions communicate with the embeddedvwsie

hardware system operates across the frequency fo@amd on the hardware platform to implement changes ¢éoABC
1.6GHz to 2.5GHz with the capability to support theand DAC sampling rates, and to the local oscillator

GSM1800, PCS 1900, UMTS-FDD, UMTS-TDD and frequencies and the gain in both the transmitteirraneiver.
802.11b standards. It consists of TX/RX RF fronirdata In this way the performance of the hardware is unde

converters and the USB 2.0 PHY interface. software control from the PC. The communicationcfions
enable the connection between user-space apptisatind
2. INTRODUCTION the SDR hardware platform. Adding new signal preoes

functions or new hardware reconfigurable functiczan
Software Defined Radio gains more interest with thegasily extend this API.

increasing number of communication standards ard th  The second part of the software engine is the USB
associated requirements for individual base statiath  driver, which follows the USB 2.0 specificationgdamins as
specific needs. In traditional wireless devices,sm@dio a kernel-module of the Linux Operating system. It
functionality is implemented in hardware. The SDfuson imp|ements the bulk transfer type in high-speed enod
has the advantage of reconfigurability; the baaéicst can  which ideally has a maximum speed of 480Mbps. Klerne
implement  many different standards by softwarepyffering mechanisms are needed in order to achikge
reconfiguration. highest USB speed. The buffering mechanisms are als
Our software engine for SDR hardware has a maximumyseful for caching data in kernel space, which dwdost
speed of 384Mbps (24 MHz). This performance is muctpackets due to USB device 'not ready for next piaekeors.
better than the one obtained by the Universal Sofw The kernel buffer implemented on our USB drivetdaks a
Radio Peripheral (USRP) created by the GNU Radigr|IFO processing scheme, the packet that comesidimsnt
project. The USRP is capable of processing sigpabul6 first to the USB host controller. In summary, the

MHz wide [3]. o _ information from the user-space applications isperarily
The software engine can be divided into three np@ns  stored on the FIFO kernel buffer and sent to th& WSst
each of them is executed in different software spac controller by the USB driver.

1) User space: an application-programming interfaceé  The third part is the firmware which provides afhi
(API) provides the configuration and data transportspeed communication path between USB driver andetste

interfaces to the SDR hardware platform. of the SDR hardware components, such as data denser
2) Kernel space: the USB driver allows and local oscillator.

communication between PC and SDR hardware via  The result is a software engine that hides harewar
the USB 2.0 interface. specific details and provides a consistent platformn

3) Embedded space: the firmware in the Cypresgjevelop user-space applications for controling SDR
CY7C68013A chip implements the communication hardware platforms.

between the USB device and the external logic.
The three modules have been written in C langudage
to its low-level capabilities, speed and portapibetween a
wide variety of PCs and operating systems.
The API integrates all digital signal processingda
recovery functions, such as modulation/demodulatiod



User Kernel Embedded a library of digital signal processing functionshelTuse of
Space Space Space Matlab is quite limited by its low performance atl time
Data transport | Read GPIF execution speed. Consequently the C programming
3 functions Operations (data path) language is used instead; hence the bandwidthnetlibe
§ | Digital signal Lo limited by the user space applications.
Q | processing & 0 .
. peratlons
recovery signal .
3.3. Hardwarecontrol functions
< | Hardware Control I’C
S 1 . .
S control Operations (control path) The operating rates of the ADC and DAC, the gairthef
S transmitter and the automatic gain control at #eeiver are
S some of the configurable variables at the SDR hardw

from user space. As we will explain later in sectl these
configurations are performed using th€ bus controller.

Figure 1. Software engine modules

4. KERNEL SPACE: USB DRIVER
3. USER SPACE: API
The developed USB driver follows the USB 2.0

The three parts of the API can be seen on FiguRidltal  specification [4] and is configured for high-spestde,
signal processing/recovery functions and hardwamgrol  maximum speed of 480Mbps. The USB driver is a lbasa
functions make use of the data transport functionsrder  kernel module (LKM) which extends the running kdrne
to communicate with the USB driver at kernel space. capabilities of the Linux operating system to eeabl
communication with the SDR hardware via the USBickv

— It is basically an object file which has been werittin the C
Digital signal
processing & recovery |anguage'
™| Datatransport | ;¢p It has the following characteristics:
Hodwar com— L functions _ - Bulk transfer type: this kind of USB transfer
functions guarantees delivery of data but does not guarantee

bandwidth or latency. The access to the USB willobea

bandwidth-available basis. It is mostly suitabler fo

transferring large amounts of data at highly vdaaimes

and bandwidth.

3.1. Datatransport functions - The maximum bandwidth for bulk transfer at high-
speed mode is 53MBps (425Mbps) according to the USB

Three basic functions have been implemented to lenab?-0 Specifications. .
communication with the USB driver from user-space - Alternate Settings O to 3: these settings detime
applications (digital signal processing and harégwesntrol endpoint (ep_) charact_enstlcs. Our USB ldr|ver il
functions). These arewrite_sock() read_sock() and altérnate setting 1 at high-speed mode, which ppasamd
ioctl_sock() functions. In the Linux operating system the €P4 as double bulk-out buffers (512bytesx2), epbep8 as
USB device is treated as a socket, which greathpiies ~ double bulk-in buffers (512bytesx2), and eploutiems
the communication process. Basic socket operatank as 64 bytes bulk buffers_ (see Table 1). thlce thameans
open, write, read and close are enough to interfatethe ~ Source anaut destination, so the USB driver writes to ep2-
USB driver. ep4 and reads from ep6-ep8.

By using ioctl_sock() the user selects the source or .The .funct|ons implemented in this L_JSB driver can b
destination endpoint.  After that,read_sock() and divided into two groups: control functions and et
write_sock()calls can be made indicating the buffer andfunctions. The control functions allow endpoint estion

Figure 2.User space block diagram

block size of the information to be sent or recdive from the user application. Therefore, it is possitd select
the source/destination endpoint before doing any
3.2. Digital signal processing and recovery functions reading/writing operation from the user space.

The FIR (finite impulse response) digital filteroay with

the 16QAM modulation scheme, m-power non data aided
carrier recovery functions and early-late gate rigni
recovery functions are implemented in C languageaasof



Table 1. High-speed alternate setting 1 this behavior, the firmware software has to be gresil and
written for the FX2LP device. The next subsectialines

Alternate Setting 1 its main characteristics.
ep0 64 -
P 5.1. USB FX2LP Characteristics
eplout 64
eplin 64 The following figure shows the simplified architect of
the FX2LP device.
ep2 512 bulk out (2x)
ep4 512 bulk out (2x)
ep6 512 bulk in (2x) e b B I
. ngine | d.::ﬁ nterface
eps 512 bulk in (2x) N -
Tanseaver s | ‘
The transfer functions perform read/write operaio EZ-USBFX2 - fp‘":
over the endpoints (bulk-in and bulk-out buffers).order oy
to communicate between our USB driver and the USE
device, we use USB request blocks (URBS)[5][6]. Sehare
extremely useful data structures to send/receite tdérom . _
Figure 4. EZ-USB FX2LP diagram (sourdé])

a USB endpoint. The main advantage of using URBkas
many of them can be sent to a particular endpogdtng a
queue of URBs, which is continuously processed hwy t
USB controller improving the achieved data rate. As
opposed to other procedures such as bulk messdg&s
allow our driver to achieve the highest possibladeansfer
speeds.

A brief explanation of each main part is includediov:
1) USB transceiver and Serial Interface Engin&)Sl
2) Enhanced 8051 CPU running at up to 48 MHz.
3) The endpoint and interface FIFOs: double-,ldrip
and quad-buffered endpoint FIFOs to achieve theMBps
USB data rate.

4) General Programmable Interface (GPIF): a
programmable state machine which provides the kighe

USB possible bandwidth achievable over the physicaiday
driver J7| URBN [URBx | | URBy > Due to the fact that the standard 8051 CPU rumt8at
MHz and uses four clocks per instruction cyclejaes not

participate in our high speed data path. The GBIEsed
instead in order to achieve the best performantedam the
Figure 3. Queue of URBs on out-ep2 internal FIFOs and the external logic.
There are no speed requirements for the control
The size of each URB is limited, therefore the USBcommunication path so the programmaB(@ bus controller

driver needs to split the user message into smplkges is utilized. In this case, the 8051 CPU participaite the
and creates a FIFO buffer in kernel space. Thisufea communication.
avoids packets being missed because they are ¢oto e
sent on a single URB to the USB controller. 5.2. GPIF: data path

5. EMBEDDED SPACE: FIRMWARE The GPIF [7] is a programmable state machine which
generates up to six control and nine address aytund

As mentioned previously, the SDR hardware considts accepts six external and two internal ready inpiitss
TX/RX RF front-ends, data converters and the USB 2. powerful enough to implement such interface suctihas
PHY. The Cypress EZ-USB FX2LP (CY7C68013A) chip one between USB and an IDE hard drive. However, its
has been selected to interface between SDR hardavate flexibility comes with added complexity thus a veggod
USB driver [7]. The main objectives are to proviadigh understanding of the GPIF architecture and impldatim
speed communication path between the USB drivertlaad is required by the developer. Figure 5 shows the
rest of the SDR hardware components, such as dataput/output signals between GPIF and the extdoggd.
converters and the local oscillator. In order tglement



the endpoints are respectively in AUTOIN and AUTODU

GPIF External Logic mode.
) IFCLK - 5.3. 12C bus: control path
EZ-USB i
FX2LP FD[15:0] Peripheral I12C (Inter-Integrated Circuit) is a serial bus cotiéo
Master Mode | i . invented by Philips and is one of the communication

systems provided by the EZ-USB FX2LP devi&E Uses
two bidirectional lines: Serial Data (SDA) and &é&Clock
Figure 5.GPIF interfacing with the peripheral (SCL) [7]. We have selected th&Cl standard mode which
has a speed of 100 kbps. The master is configarethster
The GPIF allows the definition of up to four user-transmit modeand the slave islave receive moderhus,
defined waveform descriptors which control the estat the master is in control of the clock and is segdiata to a
maChine. In general, one iS Written for FIFO I’ez’:[ﬂ’EE fOI’ slave in order to perform the Configurations_
FIFO writes, one for single reads and one for singftites.
In our case, we have created only two different ef@nms: periphera chips Dircton oMo
one for FIFO reads and one for FIFO write. Thisniginly start
because the low performance obtained by using esingl
read/write operations.

—

SDA saz | osa2 Y osar Y osao Y paz Y par Y pao [ RW o7 Y b6

xR
SCL 1 [2 3 4 5 6 7 8 9 10 1

The states of the device's
address pins

Launch FIFO Function
Read Waveform Sample the : :
FIFODataBus and Figure 8.Master transmit mode (source [7])

store the data o .
The transmission starts by sending a start bibvieid
by the 7-bit address of the slave device, and glesibit

representing write to or read from the slave devieach
peripheral device on theé@ has a unique address. After
that, the slave will respond with an acknowledgmbitt
Unconditional (ACK). Consecutive master write operations areofotd
branch to S1 by the slave ACK bit.

The configuration data to be sent across #ebus is
obtained from the specification data sheets of eslakie
gevice (slave’'s address together with configuration
information). This information will be sent througthe
hardware control functions from the user applicat{see
section 3).

From the point of view of the embedded code, the
address line, data line and bus configuration ddressed
by writing on the 12CTL, I2CS and I12DAT registershe

Figure 6.State diagram for FIFO read operations

The maximum performance was achieved by differen
embedded code versions; one for FIFO reads andfarne
FIFO writes. Figure 6 and Figure 7 show the stagrdm
for both FIFO operations. Notice that the wavefommayer
go to idle state, so the 8051 CPU is never involwvethe
communication path.

Launch FIFO Function 64-byte epl is the communication channel betweeB US
Write Waveform Drive the , driver and #C bus. Thus, once EP1 is full, the embedded
FIFODataBus with . .
the output data code will take (see Figure 9):
- epl]0] as the slave’s device address
- epl[1] as the communication mods® for sending

individual bytes and/ for sending blocks of data)
- epl]2] as the number of bytes to be transmitted
- epl]3to 63] as the configuration data itself

Unconditional After that, the serial communication starts throulgé PC
branch to S1 bus

Figure 7.State diagram for FIFO write operations

In terms of the GPIF and endpoint configuratiomesy
important to mention that the GPIF is externallgol and



the near future. Therefore, a more sophisticateate st
machine is needed to include the control and resgiyals
that interface with the FPGA. In relation to theremt SDR
Configuration data hardware version, an improvement is to combine readi
; 1 write operations in the same embedded code maingaat
least the current speed rate.

0 1 2 3| 64
l 8. REFERENCES

# of bytes to be transferred
[1] G. Baldwin, L. Ruiz, R. Farrell, “Low-Cost Experintel
Software Defined Radio System3DR Technical Forum
2007 5-9 November 2007, Denver, Colorado.
[2]L. Ruiz, G. Baldwin, R. Farrell, Reconfigurable Radio
Figure 9.Enpoint 1 structure Testbed, Irish Signal and System Conference (ISSC’06),
pp. 237-240, June 28-30, 2006.
Due to the 4C bus will be used only for short periods of [3] www.gnu.org/software/gnuradio/
time and for too few data, it will not be any speediation [4] compag, Hewlett-Packard, Intel, Lucent, MicrosbfEC and
through the GPIF channel. Philips, Universal Serial Bus SpecificatiorRevision 2.0,
April 27, 2000.
6. CONCLUSIONS [5]3. Corbet, A. Rubini, G. Kroah-Hartmarkinux Device
) o ] Drivers, Third Edition, O'Reilly, 2005.
This paper shows _the descrlptlon of a software rendor [6] G. Kroah-Hartmanl.inux kernel in a nutshelO'Reilly, 2006.
SDR hardware which achleves a speed of 384Mbp$ Th'[7] Cypress Semiconductor CorporatioZ-USB Technical
data rate corresponds which the 90% of the higthetst rate Reference Manual version 1.4, 2000-2006. Cypress
that could be obtained using USB bulk transfer typeis Semiconductor CorporatioEZ-USB® FX2™ GPIF Primer
high performance is achieved by a combination Gédint 2003.

techni_ques at all Ievelg of the software spacest, dernel [8] L. Barrandon, G. Corley, G. Baldwin, R. Farreldrdware
and firmware. Even higher performance than the erurr implementation of a versatile low-cost mixed-sigpiatform

USRP from GNU Radio is aChIeve_d. for SDR experimentatiSn SDR Technical Forum 2005-9
The hardware performance is totally under software  \ovember 2007, Denver, Colorado.

control from the PC side. Therefore, a softwareimndas

been built that hides hardware specific details prmyides

a high speed platform for controling SDR hardware

platforms.

The communication mode

The slave's device address

7. FUTURE WORK

The future work can be divided into the three nsftiware
spaces:

- The user-space applications, the library of aign
processing and recovery functions will be contirglpu
extended with more components such as different
modulation schemes.

- The kernel space: a more flexible and versaiitB
driver version will be developed, which will incled
functions such as selection of alternate settinggamsfer
types from user space. It is planned to developivedfor
the Windows operating system as well as an opencsou
code driver for GNU radio software [3].This will ke the
great potential of our USB driver available for théde
community of GNU radio users.

- The embedded space: the next generation of Eie S
hardware [8], which includes a FPGA, will be fingshin



