
Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the
cover sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for
material quoted and referenced as text passages. Authors acknowledge that they are willing to transfer
the copyright of the abstract and the completed paper to the SDR Forum for purposes of publication in
the SDR Forum Conference Proceedings, on associated CD ROMS, on SDR Forum Web pages, and
compilations and derivative works related to this conference, should the paper be accepted for the
conference. Authors are permitted to reproduce their work, and to reuse material in whole or in part from
their work; for derivative works, however, such authors may not grant third party requests for reprints or
republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed
under a U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the
author's work for official U.S. Government purposes.

SOFTWARE ENGINE DEVELOPMENT FOR SDR

Magdalena Sánchez Mora (CTVR, IMWS, NUI Maynooth, Kildare, Ireland,

msanchez@eeng.nuim.ie); Ignacio Ruiz (CTVR, IMWS, NUI Maynooth, Co. Kildare,
Ireland, iruiz@eeng.nuim.ie); Gerard Baldwin (CTVR, IMWS, NUI Maynooth, Co.

Kildare, Ireland, gbaldwin@eeng.nuim.ie); Ronan Farrell (CTVR, IMWS, NUI
Maynooth, Co. Kildare, Ireland, rfarrell@eeng.nuim.ie)

1. ABSTRACT

This paper focuses on the development of the software
engine for an SDR hardware platform [1][2]. This SDR
hardware system operates across the frequency band from
1.6GHz to 2.5GHz with the capability to support the
GSM1800, PCS 1900, UMTS-FDD, UMTS-TDD and
802.11b standards. It consists of TX/RX RF front-ends, data
converters and the USB 2.0 PHY interface.

2. INTRODUCTION

Software Defined Radio gains more interest with the
increasing number of communication standards and the
associated requirements for individual base stations with
specific needs. In traditional wireless devices, most radio
functionality is implemented in hardware. The SDR solution
has the advantage of reconfigurability; the base station can
implement many different standards by software
reconfiguration.
Our software engine for SDR hardware has a maximum
speed of 384Mbps (24 MHz). This performance is much
better than the one obtained by the Universal Software
Radio Peripheral (USRP) created by the GNU Radio
project. The USRP is capable of processing signal up to 16
MHz wide [3].
The software engine can be divided into three main parts
each of them is executed in different software spaces:

1) User space: an application-programming interface
(API) provides the configuration and data transport
interfaces to the SDR hardware platform.

2) Kernel space: the USB driver allows
communication between PC and SDR hardware via
the USB 2.0 interface.

3) Embedded space: the firmware in the Cypress
CY7C68013A chip implements the communication
between the USB device and the external logic.

 The three modules have been written in C language due
to its low-level capabilities, speed and portability between a
wide variety of PCs and operating systems.
 The API integrates all digital signal processing and
recovery functions, such as modulation/demodulation and

carrier/timing recovery, hardware control functions and
communication functions. The SDR hardware is
reconfigured through the hardware control functions. These
control functions communicate with the embedded software
on the hardware platform to implement changes to the ADC
and DAC sampling rates, and to the local oscillator
frequencies and the gain in both the transmitter and receiver.
In this way the performance of the hardware is under
software control from the PC. The communication functions
enable the connection between user-space applications and
the SDR hardware platform. Adding new signal processing
functions or new hardware reconfigurable functions can
easily extend this API.
 The second part of the software engine is the USB
driver, which follows the USB 2.0 specifications and runs as
a kernel-module of the Linux operating system. It
implements the bulk transfer type in high-speed mode,
which ideally has a maximum speed of 480Mbps. Kernel
buffering mechanisms are needed in order to achieve the
highest USB speed. The buffering mechanisms are also
useful for caching data in kernel space, which avoids lost
packets due to USB device 'not ready for next packet' errors.
The kernel buffer implemented on our USB driver follows a
FIFO processing scheme, the packet that comes first is sent
first to the USB host controller. In summary, the
information from the user-space applications is temporarily
stored on the FIFO kernel buffer and sent to the USB host
controller by the USB driver.
 The third part is the firmware which provides a high
speed communication path between USB driver and the rest
of the SDR hardware components, such as data converters
and local oscillator.
 The result is a software engine that hides hardware
specific details and provides a consistent platform to
develop user-space applications for controlling SDR
hardware platforms.

Figure 1. Software engine modules

3. USER SPACE: API

The three parts of the API can be seen on Figure 2. Digital
signal processing/recovery functions and hardware control
functions make use of the data transport functions in order
to communicate with the USB driver at kernel space.

Figure 2. User space block diagram

3.1. Data transport functions

Three basic functions have been implemented to enable
communication with the USB driver from user-space
applications (digital signal processing and hardware control
functions). These are write_sock(), read_sock() and
ioctl_sock() functions. In the Linux operating system the
USB device is treated as a socket, which greatly simplifies
the communication process. Basic socket operations such as
open, write, read and close are enough to interface with the
USB driver.
 By using ioctl_sock(), the user selects the source or
destination endpoint. After that, read_sock() and
write_sock() calls can be made indicating the buffer and
block size of the information to be sent or received.

3.2. Digital signal processing and recovery functions

The FIR (finite impulse response) digital filter along with
the 16QAM modulation scheme, m-power non data aided
carrier recovery functions and early-late gate timing
recovery functions are implemented in C language as part of

a library of digital signal processing functions. The use of
Matlab is quite limited by its low performance at real time
execution speed. Consequently the C programming
language is used instead; hence the bandwidth will not be
limited by the user space applications.

3.3. Hardware control functions

The operating rates of the ADC and DAC, the gain of the
transmitter and the automatic gain control at the receiver are
some of the configurable variables at the SDR hardware
from user space. As we will explain later in section 5, these
configurations are performed using the I²C bus controller.

4. KERNEL SPACE: USB DRIVER

The developed USB driver follows the USB 2.0
specification [4] and is configured for high-speed mode,
maximum speed of 480Mbps. The USB driver is a loadable
kernel module (LKM) which extends the running kernel
capabilities of the Linux operating system to enable
communication with the SDR hardware via the USB device.
It is basically an object file which has been written in the C
language.
 It has the following characteristics:
 - Bulk transfer type: this kind of USB transfer
guarantees delivery of data but does not guarantee
bandwidth or latency. The access to the USB will be on a
bandwidth-available basis. It is mostly suitable for
transferring large amounts of data at highly variable times
and bandwidth.
 - The maximum bandwidth for bulk transfer at high-
speed mode is 53MBps (425Mbps) according to the USB
2.0 specifications.
 - Alternate Settings 0 to 3: these settings define the
endpoint (ep) characteristics. Our USB driver utilizes
alternate setting 1 at high-speed mode, which has ep2 and
ep4 as double bulk-out buffers (512bytesx2), ep6 and ep8 as
double bulk-in buffers (512bytesx2), and ep1out/ep1in as
64 bytes bulk buffers (see Table 1). Notice that in means
source and out destination, so the USB driver writes to ep2-
ep4 and reads from ep6-ep8.
 The functions implemented in this USB driver can be
divided into two groups: control functions and transfer
functions. The control functions allow endpoint selection
from the user application. Therefore, it is possible to select
the source/destination endpoint before doing any
reading/writing operation from the user space.

Table 1. High-speed alternate setting 1

Alternate Setting 1

ep0 64

ep1out 64

ep1in 64

ep2 512 bulk out (2x)

ep4 512 bulk out (2x)

ep6 512 bulk in (2x)

ep8 512 bulk in (2x)

 The transfer functions perform read/write operations
over the endpoints (bulk-in and bulk-out buffers). In order
to communicate between our USB driver and the USB
device, we use USB request blocks (URBs)[5][6]. These are
extremely useful data structures to send/receive data to/from
a USB endpoint. The main advantage of using URBs is that
many of them can be sent to a particular endpoint creating a
queue of URBs, which is continuously processed by the
USB controller improving the achieved data rate. As
opposed to other procedures such as bulk messages, URBs
allow our driver to achieve the highest possible data transfer
speeds.

Figure 3. Queue of URBs on out-ep2

 The size of each URB is limited, therefore the USB
driver needs to split the user message into smaller pieces
and creates a FIFO buffer in kernel space. This feature
avoids packets being missed because they are too big to be
sent on a single URB to the USB controller.

5. EMBEDDED SPACE: FIRMWARE

As mentioned previously, the SDR hardware consists of
TX/RX RF front-ends, data converters and the USB 2.0
PHY. The Cypress EZ-USB FX2LP (CY7C68013A) chip
has been selected to interface between SDR hardware and
USB driver [7]. The main objectives are to provide a high
speed communication path between the USB driver and the
rest of the SDR hardware components, such as data
converters and the local oscillator. In order to implement

this behavior, the firmware software has to be designed and
written for the FX2LP device. The next subsection outlines
its main characteristics.

5.1. USB FX2LP Characteristics

The following figure shows the simplified architecture of
the FX2LP device.

Figure 4. EZ-USB FX2LP diagram (source [7])

A brief explanation of each main part is included below:
 1) USB transceiver and Serial Interface Engine (SIE).
 2) Enhanced 8051 CPU running at up to 48 MHz.
 3) The endpoint and interface FIFOs: double-, triple-
and quad-buffered endpoint FIFOs to achieve the 480 Mbps
USB data rate.
 4) General Programmable Interface (GPIF): a
programmable state machine which provides the highest
possible bandwidth achievable over the physical layer.
 Due to the fact that the standard 8051 CPU runs at 48
MHz and uses four clocks per instruction cycle, it does not
participate in our high speed data path. The GPIF is used
instead in order to achieve the best performance between the
internal FIFOs and the external logic.
 There are no speed requirements for the control
communication path so the programmable I²C bus controller
is utilized. In this case, the 8051 CPU participates in the
communication.

5.2. GPIF: data path

The GPIF [7] is a programmable state machine which
generates up to six control and nine address outputs, and
accepts six external and two internal ready inputs. It is
powerful enough to implement such interface such as the
one between USB and an IDE hard drive. However, its
flexibility comes with added complexity thus a very good
understanding of the GPIF architecture and implementation
is required by the developer. Figure 5 shows the
input/output signals between GPIF and the external logic.

Figure 5. GPIF interfacing with the peripheral

 The GPIF allows the definition of up to four user-
defined waveform descriptors which control the state
machine. In general, one is written for FIFO reads, one for
FIFO writes, one for single reads and one for single writes.
In our case, we have created only two different waveforms:
one for FIFO reads and one for FIFO write. This is mainly
because the low performance obtained by using single
read/write operations.

Figure 6. State diagram for FIFO read operations

 The maximum performance was achieved by different
embedded code versions; one for FIFO reads and one for
FIFO writes. Figure 6 and Figure 7 show the state diagram
for both FIFO operations. Notice that the waveforms never
go to idle state, so the 8051 CPU is never involved in the
communication path.

Figure 7. State diagram for FIFO write operations

 In terms of the GPIF and endpoint configuration is very
important to mention that the GPIF is externally clock and

the endpoints are respectively in AUTOIN and AUTOOUT
mode.

5.3. I²C bus: control path

I²C (Inter-Integrated Circuit) is a serial bus controller
invented by Philips and is one of the communication
systems provided by the EZ-USB FX2LP device. I²C uses
two bidirectional lines: Serial Data (SDA) and Serial Clock
(SCL) [7]. We have selected the I²C standard mode which
has a speed of 100 kbps. The master is configured in master
transmit mode and the slave in slave receive mode. Thus,
the master is in control of the clock and is sending data to a
slave in order to perform the configurations.

Figure 8. Master transmit mode (source [7])

 The transmission starts by sending a start bit followed
by the 7-bit address of the slave device, and a single bit
representing write to or read from the slave device. Each
peripheral device on the I²C has a unique address. After
that, the slave will respond with an acknowledgment bit
(ACK). Consecutive master write operations are followed
by the slave ACK bit.
 The configuration data to be sent across the I²C bus is
obtained from the specification data sheets of each slave
device (slave’s address together with configuration
information). This information will be sent through the
hardware control functions from the user application (see
section 3).
 From the point of view of the embedded code, the
address line, data line and bus configuration are addressed
by writing on the I2CTL, I2CS and I2DAT registers. The
64-byte ep1 is the communication channel between USB
driver and I²C bus. Thus, once EP1 is full, the embedded
code will take (see Figure 9):

- ep1[0] as the slave’s device address
- ep1[1] as the communication mode (S for sending

individual bytes and M for sending blocks of data)
- ep1[2] as the number of bytes to be transmitted
- ep1[3 to 63] as the configuration data itself

After that, the serial communication starts through the I²C
bus.

Figure 9. Enpoint 1 structure

 Due to the I²C bus will be used only for short periods of
time and for too few data, it will not be any speed variation
through the GPIF channel.

6. CONCLUSIONS

This paper shows the description of a software engine for
SDR hardware which achieves a speed of 384Mbps. This
data rate corresponds which the 90% of the highest data rate
that could be obtained using USB bulk transfer type. This
high performance is achieved by a combination of different
techniques at all levels of the software spaces: user, kernel
and firmware. Even higher performance than the current
USRP from GNU Radio is achieved.
 The hardware performance is totally under software
control from the PC side. Therefore, a software engine has
been built that hides hardware specific details and provides
a high speed platform for controlling SDR hardware
platforms.

7. FUTURE WORK

The future work can be divided into the three main software
spaces:
 - The user-space applications, the library of signal
processing and recovery functions will be continuously
extended with more components such as different
modulation schemes.
 - The kernel space: a more flexible and versatile USB
driver version will be developed, which will include
functions such as selection of alternate settings or transfer
types from user space. It is planned to develop a driver for
the Windows operating system as well as an open source
code driver for GNU radio software [3].This will make the
great potential of our USB driver available for the wide
community of GNU radio users.
 - The embedded space: the next generation of the SDR
hardware [8], which includes a FPGA, will be finished in

the near future. Therefore, a more sophisticated state
machine is needed to include the control and ready signals
that interface with the FPGA. In relation to the current SDR
hardware version, an improvement is to combine read and
write operations in the same embedded code maintaining at
least the current speed rate.

8. REFERENCES

[1] G. Baldwin, L. Ruíz, R. Farrell, “Low-Cost Experimental

Software Defined Radio System”, SDR Technical Forum
2007, 5-9 November 2007, Denver, Colorado.

[2] L. Ruíz, G. Baldwin, R. Farrell, “Reconfigurable Radio
Testbed”, Irish Signal and System Conference (ISSC’06),
pp. 237-240, June 28-30, 2006.

[3] www.gnu.org/software/gnuradio/
[4] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and

Philips, Universal Serial Bus Specification, Revision 2.0,
April 27, 2000.

[5] J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device
Drivers, Third Edition, O'Reilly, 2005.

[6] G. Kroah-Hartman, Linux kernel in a nutshell, O'Reilly, 2006.
[7] Cypress Semiconductor Corporation, EZ-USB Technical

Reference Manual, version 1.4, 2000-2006. Cypress
Semiconductor Corporation, EZ-USB® FX2™ GPIF Primer,
2003.

[8] L. Barrandon, G. Corley, G. Baldwin, R. Farrell, “Hardware
implementation of a versatile low-cost mixed-signal platform
for SDR experimentation”, SDR Technical Forum 2007, 5-9
November 2007, Denver, Colorado.

