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The Laguerre–Gaussian (LG) beam expansion is described as a numerical and physical model of paraxial ultra-
short pulse diffraction in the time domain. An overview of the dynamics of higher-order ultrashort planar LG
modes is given through numerical simulations, and the finite width of these beams is shown to induce a disper-
sive-like axial broadening of the fields, which creates related variations in the on-axis amplitude of such pulses.
The propagation of a pulsed plane wave scattered at an aperture is then illustrated as a finite weighted sum of
individual planar LG pulses, which allows for intuitive illustration of the convergence of this expansion techni-
que. By applying such an expansion to diffraction at a hard aperture, the planar pulsed LG beams are described as
the paraxial analogs of the Bessel boundary waves typically observed in such situations, with both exhibiting
superluminal group velocities along the optical axis. Numerical results of pulse diffraction at an aperture highlight
the suitability of the LG expansion method for efficient and practical simulation of ultrashort fields in the paraxial
regime. © 2013 Optical Society of America

OCIS codes: 320.5550, 050.1940, 050.5080, 260.1960, 260.2030.

1. INTRODUCTION
While the study of ultrashort pulse dynamics is a comparatively
recent addition to the field of optics, massive experimental ad-
vancements have beenmade in the last decade or so, with elec-
tromagnetic fields now being generated with durations on
attosecond timescales [1,2]. In applied optics, the numerical
techniques used to predict the temporal behavior of ultrashort
signals are naturally derived from the models of continuous
wave (CW) propagation, and methods vary from computation-
ally intensive full-wave solutions of Maxwell’s equations such
as the finite-difference time-domain (FDTD) algorithm [3–6] to,
with more relevance to large optical systems, the diffraction
integral approach [7–13]. To introduce in this paper the dy-
namics involved in pulse diffraction, a generic illustration of
the near-field propagation of an ultrashort plane wave pulse
truncated at a narrow aperture is shown in Fig. 1.

In this paper we describe a pulse diffracted at an aperture
as a superposition of a multitude of component Laguerre–
Gaussian (LG) “pulselets” and relate the propagation of such
fields to the observed features of the total diffracted field. In
particular, we give a description of how the propagation of
these LG modes relates to the fundamental description of
pulse diffraction presented by Horváth and co-workers in
[14,15]. Those works described the diffraction of a short pulse
at an aperture in terms of two separate wave components.
With the incidence of a plane wave pulse upon an aperture,
as in Fig. 1, a GW propagates parallel to the optical axis with
the same transverse extent as the aperture, while BWs origi-
nate as spherical wavelets at the aperture edge. These two
forms of waves can be considered to propagate independently
of each other but interfere to form the total observed field.
Although this concept of diffraction dates back to the work
of Thomas Young in the 19th Century, Horváth et al.’s seminal
application of this theory in the modern analysis of pulses

allows for a physically intuitive description of the propagation
of such fields and is of current interest, with the theory being
applied as an accurate and efficient method for the simulation
of optical pulse diffraction [16–20]. The physical appearance
of the BWs in ultrashort pulse diffraction has been described
as being analogous to the Poisson/Arago spot, exhibited
recently with high-resolution experimental measurements of
femtosecond fields in the time domain using interferometric
methods [16–18].

For our description of pulse diffraction at an aperture, the
obvious structural similarity of the LG and Bessel functions is
addressed. The formation of the observed BWs, with similar
propagation characteristics to the Bessel X-waves [16,21], is
described in the paraxial regime through the application of
an LG expansion in which the expansion coefficients of an
aperture function imply the propagation of specific individual
planar LG pulses as the paraxial analogs of the BWs, which to
our knowledge is an original interpretation. This analysis
connects in a simple manner the propagation features of
such BWs with the diffraction characteristics of planar
Gaussian pulses, illustrating the generality of superluminal ax-
ial velocities in the propagation of fields with finite sources, as
suggested in [22].

From numerical simulations of the propagation of planar
LG pulses with large indices we identify a variation of the
on-axis temporal duration of such pulses, which we attribute
to the influence of the Gouy phase shift as an analogous free-
space refractive index. In reference to this explanation, the
group velocity effects identified in a previous work represent
the first-order influence of a free-space Gouy dispersion [22],
while the features of axial broadening illustrated here are
related to second-order characteristics, conventionally asso-
ciated with the “stretching” of pulses observed in dispersive
media.
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2. LAGUERRE–GAUSSIAN FINITE SERIES
EXPANSION
A standard scheme by which the diffraction of a pulse is
calculated is through transformation of a field’s amplitude ex-
citation signal s�t� from the time domain into a Fourier repre-
sentation in angular frequency space S�ω�. The diffracted
fields of each frequency component ω can be calculated sepa-
rately and then integrated with weighting S�ω� over all fre-
quencies to derive the total scalar electric field of the pulse
through the inverse Fourier transform, i.e.,

E�r; z; t� � 1������
2π

p
Z

∞

−∞

S�ω�ECW�ω; r; z� exp�−iωt�dω; (1)

where ECW can represent a diffracted CW field with angular
frequency ω, generally regardless of the diffraction method
applied, be it analytical or numerical, paraxial or complete.
Here, we apply the very well known but, in general, rarely ap-
plied technique for the computation of paraxial diffraction
effects given by the orthogonal LG beam expansion [23–29].

The symmetrical LG functions are given in normalized
form as

ψm�r0� �
���������
2

πw2
0

s
Lm

�
2
r20
w2

0

�
exp

�
−
r20
w2

0

�
; (2)

where r0 is the radial coordinate at a reference plane (aper-
ture), Lm is the Laguerre polynomial of index m, the real po-
sitive number w0 is the width parameter, and the square root
term is a normalization factor. The value ofw0 as an argument

of the Laguerre polynomial also influences the periodicity of
the modes, but this maintains the same relation to the overall
width of the function. The application of these functions in
optics is based on their existence as solutions to the cylind-
rical paraxial wave equation, analogous to the Bessel beam
solutions derived from the complete wave equation [30].

The LG functions have an effective radius defined as [31]

ρm � w0

����������������
2m� 1

p
: (3)

The Fourier–Bessel transform of the LG function in Eq. (2)
can be described with Eq. 7.421.1 of [32] as a similar LG func-
tion in frequency kr space. Just as w0 defines a width param-
eter of the LG functions in Eq. (2), a corresponding value of
K � 2∕w0 defines an equivalent parameter for the LG spectral
description of Eq. (2). A radius, in kr space, can then be at-
tributed to the LG spectrum in the same manner as Eq. (3),
and making the intuitive assumption, based on [33], that this
represents the maximum frequency at the center of the mode
where the LG functions are obviously more oscillatory, a
useful estimation of the transverse frequency at r � 0 is
predicted as

κm ≅ K
����������������
2m� 1

p
; (4)

which can be verified through comparison of ψm�r0� with the
Bessel function J0�κmr0� (see Fig. 2).

The Hermite–Gaussian and LG functions are orthogonal in
the Cartesian and cylindrical coordinate systems, respec-
tively, and an exact synthesis of a function E0�r0� can be re-
presented mathematically as an infinite sum of such functions
weighted according to the expansion coefficients Am. In this
paper we will deal solely with cylindrically symmetric re-
gimes, but the work has direct relevance to the application
of the Hermite–Gaussian expansion in Cartesian systems. For
practical applications of such expansions, a suitable choice of
width parameter w0 can allow the expansion to strongly con-
verge to a function of finite radial extent using a truncated
finite series of M � 1 LG terms [23],

Fig. 1. FDTD simulation of the general behavior of a 1D ultrashort
plane wave pulse, propagating from left to right, scattered at a narrow
aperture. The propagation of the generated boundary waves (BWs)
and geometric wave (GW) is indicated. The field is shown as the
absolute value of the electric field and clipped to enhance the BWs.

Fig. 2. Structure of the cylindrically symmetric LG function ψ10�r0�,
from Eq. (2) without the normalization factor, compared with the
Bessel function J0�κ10r0�. The correlation between the Bessel and
LG functions increases with larger values of m.
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E0�r0� ≅
XM
m�0

Amψm�r0�; (5)

where the expansion coefficient Am of a function E0 is calcu-
lated by the integral

Am �
���������
2

πw2
0

s Z
a

0
E0�r0�Lm

�
2
r20
w2

0

�
exp

�
−
r20
w2

0

�
2πr0dr0: (6)

A finite-term expansion of a function with radius a is pos-
sible with any real positive value of w0, but with varying qual-
ity in the reconstruction. Borghi et al. showed that for a given
value of M the most accurate synthesis of a circular aperture
function is obtained with [23]

w0 � a∕
�����
M

p
: (7)

With an odd value of M , Eq. (7) imposes a width w0 on the
LG modes that creates exact equality between the radius of
the aperture and the extent ρm of the mode with the assumed
median integer index m � �M − 1�∕2 as given by Eq. (3). A
similar relation exists for an even value of M when the value
of ρm for the median integer indexm � M∕2 corresponds, but
not exactly, with a. Referring to the median index as m � μ
for generality, application of Eq. (7) divides the finite mode set
equally between modes that are not significantly truncated at
r0 � awithm ≤ μ, i.e., ρm ≤ a, and those withm > μ (ρm > a),
with the latter responsible for reconstruction of potential high
frequency features around r0 � a caused by a discontinuity at
that point. Examples of the variation of Am in syntheses are
shown in Fig. 3 withM � 49 for a circular aperture of radius a,
an annular aperture with a central circular obscuration of
radius a∕2, and a hemispherical function �a2 − r20�1∕2. The val-
ues of the coefficients generally alternate in sign according to
�−1�m, which is eliminated here for clarity of the trend Am, and
to generalize the value of the aperture radius a, the values are
related to w0�2π�1∕2.

A CW LG beam propagates in the paraxial regime according
to [24,25]

ψm�ω; r; z� �
���������������������

2
πw2�ω; z�

s
Lm

�
2r2

w2�ω; z�

�

× exp
�
−

r2

w2�ω; z�

�
exp

�
i
ω

c

�
z� r2

2R�ω; z�

��

× exp
�
−i�2m� 1�tan−1

�
2cz
ωw2

0

��
; (8)

with the sign of the phase terms adapted for consistency with
related work in [22]. Diffractive spreading of the Gaussian
modes is represented by an increase in the value of the beam
width parameter w with propagation distance z, described by

w�ω; z� � w0

����������������������������
1�

�
2cz
ωw2

0

�
2

s
(9)

with w0 now representing the width parameter at the source
plane (defined here to be at z � 0). The width parameter
w�ω; z� in Eq. (9) can also be applied, with Eqs. (3) and (4)
giving ρm�ω; z� and κm�ω; z�, identifying the mode’s width
and axial transverse frequency at any z plane. The term
R�ω; z� defines the radius of curvature of the diverging para-
bolic wavefront,

R�ω; z� � z
�
1�

�
ωw2

0

2cz

�2�
; (10)

which has an infinite value (flat phase front) at z � 0 and be-
yond the confocal range z0 � ωw2

0∕�2c� converges to
R�z� → z. Using the above relations, a monochromatic field
diffracted at an aperture can be approximated as a sum of
LG beams weighted by the coefficients Am, i.e.,

EM�ω; r; z� �
XM
m�0

Amψm�ω; r; z�; (11)

thus representing an asymptotic calculation of the Fresnel
diffraction integral (FDI) [24,25].

Generally, however, illustration of the expansion for CWs is
not presented with a clear explanation of the contributions
made by each individual mode to the total calculated field,
which can be difficult to identify in a CWmodel [23–29]. In the
simulation of pulses as discussed here, the correlation be-
tween the LG basis functions and the expanded field is easier
to illustrate, as distinct components of the diffracted fields are
separated in time and space, allowing the contribution of each
LG component to be identified, and subsequently it is shown
how convergence to the FDI results is achieved through the
propagation behavior of the individual modes. In our opinion,
given the increased computational complexity in the practical
simulation of pulse diffraction using the standard spectral
method as given by Eq. (1), the application of such useful
and efficient expansions is deserving of illustration in this field
of study.

Fig. 3. Expansion coefficients for syntheses of a circular aperture,
an annular aperture with inner radius a∕2, and a hemispherical
function �a2 − r20�1∕2. Calculated from Eq. (6) with M � 49 and
w0 � a∕M1∕2.
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3. LAGUERRE–GAUSSIAN EXPANSION OF
CIRCULARLY SYMMETRIC PULSED FIELDS
The reduction of the FDI to an equivalent calculation as a fi-
nite sum of orthogonal modes with Eq. (11) can be used to
greatly accelerate simulations of polychromatic fields. For
paraxial calculation of pulsed fields, we can substitute the
LG formulation given by Eq. (11) into Eq. (1), and an ultra-
short field diffracted by an aperture can then be written as

EM�r;z;t��
1������
2π

p
Z

∞

−∞

S�ω�
�XM
m�0

Am�ω�ψm�ω;r;z�
�
exp�−iωt�dω:

(12)

For application of Eq. (12) in the simulation of pulse mod-
ulation by dispersive lenses, for example, calculation of the
mode coefficients is required for each individual frequency,
which can be time consuming [34]. Nevertheless, once the
coefficients have been determined, the field can then be effi-
ciently determined as a finite sum, in contrast to the require-
ment of repeated integration over a highly sampled aperture
function, as is required for the numerical solution of the FDI.
In this report we assume the transmittance E0�r0� to be am-
plitude modulating only, such as a basic circular or annular
aperture, with the description of the aperture remaining con-
stant at each frequency across the pulse’s spectrum. The val-
ues of Am will then be equal for all frequency components, and
we can then interchange the sum and integral in Eq. (12) to
describe the pulsed field as

EM�r; z; t� �
XM
m�0

AmΨm�ω; r; z; t�; (13)

where now the constituent basis terms Ψm of the total field
have the form of planar pulsed LG beams, described by

Ψm�r; z; t� �
1������
2π

p
Z

∞

−∞

S�ω�ψm�ω; r; z� exp�−iωt�dω: (14)

Thus, instead of an integration of diffracted monochro-
matic fields, as in Eqs. (1), (13) represents the diffracted field
of a pulse by a superposition of individual and independently
propagating LG “pulselets”—a term we use to distinguish the
LG fields in Eq. (14) as basis components of the total dif-
fracted pulse. A recent work applied a similar description to
Eq. (13) with a small number of terms in a study of LG pulses
with helical phase variations [35].

The type of LG pulse to be discussed in Section 3.A, i.e.,
Eq. (14), represents a short temporal excitation of an electric
field with an amplitude defined by Eq. (2), generating a spec-
trum of individual monochromatic fields of different frequen-
cies, each with the same transverse field profile at the plane
z � 0 (i.e., a constant value of w0 for all frequency compo-
nents). A distinction must be made between these planar

pulsed fields [22] and the form of higher-order Gaussian
pulses described in [36,37], which are the “isodiffracting”

form of Gaussian pulses corresponding to the structures gen-
erated, for example, by the propagation of polychromatic
fields within a mode-locked laser cavity. In the latter case,
each chromatic Gaussian mode has a waist at z � 0, but with
different values of the waist parameter, i.e., w0�ω� �
�2cz0∕ω�1∕2, thus creating a constant confocal distance for

each spectral component. Such fields are not directly com-
parable to the Gaussian pulses discussed here. Isodiffracting
Hermite–Gaussian pulses have previously been discussed by
Heyman and Beracha as basis modes in the expansion of
“well-collimated” diffraction at an aperture [36]. However,
the physical effects of the planar Gaussian pulses that we will
discuss, e.g., the specific variations in group velocity and axial
superluminal effects [22], do not relate to the distinct isodif-
fracting Gaussian modes, and the application of those fields as
a basis set in [36] should not be confused as being an equiva-
lent description to the procedure presented here.

We will illustrate the LG expansion technique for pulse pro-
pagation using the description given by Eq. (13), and in doing
so wewill describe the physical properties of individual planar
Gaussian pulselets, exhibiting their role in the expansion of
the total diffracted field. This, we suggest, gives a more intui-
tive description of the convergence of the LG expansion tech-
nique in the time domain. However, the reader should note
that examples of the LG expansion to be given in Section 3.B
are determined with significantly less computation time by the
integration of CW fields, as in Eq. (12), representative of the
general scheme outlined by Eq. (1). In the custom software
used here, the LG functions are determined using the recur-
rence relation Lm�1�r� � ��2m� 1 − r�Lm�r� −mLm−1�r��∕
m� 1; with L0�r� � 1 and L1�r� � 1 − r. Simulating the pro-
pagation of each individual LG pulselet with an index of m�
1 can generate a significant amount of redundant data relating
to LG functions of lower indices, 0 to m, that could alterna-
tively be applied in a calculation involving Eq. (12), and with
that saving considerable calculation time. For an increased
efficiency in this method, analytical evaluation of Eq. (14)
would allow for extremely swift evaluation of the expansion
of pulsed fields, eliminating numerical integration in Eq. (14).
Ziolkowski and Judkins, for example, established expressions
for the propagation of ultrashort Gaussian beams [38]. Follow-
ing the procedures in that report, it may be possible to derive
similar expressions for the evaluation of the higher-order LG
pulses in Eq. (14). Here, we will illustrate the propagation of
the LG pulses through numerical calculations.

A. Diffraction of Ultrashort Laguerre–Gaussian Beam
Modes
Toward a description of the propagation of an arbitrary ultra-
short field as a superposition of LG pulselets, we first discuss
the dynamics of the basis fields as independent optical struc-
tures. The behavior of both CW and pulsed Gaussian beams is
prescribed by the well-known Gouy phase shift [33], which
has been discussed in terms of its influence on the behavior
of Gaussian and focused pulses [39–43]. Porras et al. have de-
scribed the propagation of the fundamental (m � 0) planar
Gaussian pulse and showed that at planes beyond the confo-
cal distance of the central frequency, z0 � ω0w2

0∕�2c�, such
fields exhibit a group velocity greater than the vacuum speed
of light c [22]. Similar phenomena observed in the propagation
of higher-order (m > 0) Gaussian pulses are directly related to
those reported in [22], but the magnitudes of these propaga-
tion effects, such as a variation of group velocities and asso-
ciated temporal delays, are increased in accordance with the
larger value of the index m within the Gouy phase term, as-
sociated with the wider transverse source fields. These phe-
nomena will have importance in our modal description of a
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pulse diffracted by an aperture and the interpretation of each
LG pulselet’s role in such an expansion.

We describe the propagation of pulses with a conventional
temporal Gaussian signal given as

s�t� � exp
�
− ln 2

�t − t0�2
τ20

�
exp�−iω0t�; (15)

where ω0 is the central angular frequency and κ0 is the half-
width at half-maximum (HWHM) of the Gaussian signal. The
angular frequency spectrum of the signal in Eq. (15) is ob-
tained by Fourier transformation and given by

S�ω� � τ0�������������
2 ln 2

p exp
�
−τ20

�ω − ω0�2
4 ln 2

�
: (16)

To generalize the signal for arbitrary frequencies, the frac-
tional bandwidth of a pulse is given by γ � Δω∕ω0, where
Δω � 4 ln 2∕τ0 is the full width at half-maximum of the
Gaussian frequency spectrum S�ω�.

Figure 4 shows the propagation of a pulsed LG beam
mode at various planes, as computed from Eq. (14). Note
the structures of the fields near the axis in Figs. 4(c) and 4(d),
which bear obvious similarities to the pulsed form of
Bessel beams, or “X-waves” [21]. In these plots, the axial

extents are shown in relation to the mode’s spot radius for
the central frequency at each plane ρm�ω0; z�, while the tem-
poral (vertical) axis is related to the detection time (z∕c) of an
ideal plane wave pulse of equal duration, and in terms of the
defined HWHM τ0 of the signal. For this paraxial description,
the width of the field at z � 0 is defined to be large in relation
to the central wavelength λ0. An analysis of the influence of
diffraction on the spectral characteristics of the LG pulses is
described in detail in [44].

While the plots of Fig. 4 show the general structure of the
LG pulses with a significantly large bandwidth, such fields ex-
hibit temporal dynamics that are not immediately apparent in
Fig. 4. These effects, relating to a changing pulse velocity and
associated time delays, are more distinct in the axial propaga-
tion of pulselets with higher indices, as shown in Fig. 5, which
displays the on-axis temporal amplitude structure of a pulsed
LG beam at various planes. Modes with large values ofm such
as those shown in Fig. 5, and much higher, can be required for
an LG series description of diffraction at a hard aperture, par-
ticularly in the near field, where propagation can involve
significantly large spatial frequencies.

From the suggestion of Porras et al. [22], and with rele-
vance to the propagation features observed in Fig. 5, such
as the varying velocities and the observed pulse broadening,

Fig. 4. Propagation of the m � 15 planar Laguerre–Gaussian pulse
jΨ15�r; z; t�j2 from the numerical solution of Eq. (14). Calculated with
w0 � 600λ0 and a large bandwidth of γ � 0.6 at the planes z � (a) 0,
(b) z0∕2, (c) z0, and (d) 2z0. The fields are displayed as a decibel scale
representation of their normalized intensity between −35 and 0 dB.

Fig. 5. Time-domain simulations for the on-axis temporal amplitude
of the m � 30 (gray) and m � 100 pulsed LG modes RefΨm�r �
0; z; t�g as simulated from Eq. (14). The fields are predicted at z �
(a) 0, (b) z0∕4, (c) z0∕2, (d) z0, (e) 2z0, (f) 8z0, with w0 � 300λ0
and γ � 0.3.
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an alternative description for the on-axis phase behavior of a
pulsed LG beam is the analogy of a plane wave propagating
through a hypothetical dispersive medium with a longitudin-
ally varying refractive index nG�ω; z�, causing a phase varia-
tion equal to that created by the Gouy phase shift. A study of
pulsed Bessel beams referred to a similar “spatially induced”
dispersion [45], and this description is also parallel to the dis-
persion relation of waveguide modes that has been discussed
in reference to pulse diffraction at an aperture [3] and in
Young’s double slit experiment [6]. For the axial (r � 0) var-
iation of the fields, the phase ϕ of a monochromatic LG beam
is given by

ϕ�ω; z� � ω

c
z − �2m� 1�tan−1

�
2cz

ωw2
0

�
; (17)

and we can write the local [46] on-axis longitudinal wavenum-
ber as

kz�ω; z� �
∂ϕ�ω; z�

∂z
� ω

c
−

2c�2m� 1�
ωw2

0

�
1� 4c2z2

ω2w4
0

� : (18)

For a monochromatic Gaussian beam the axial longitudinal
phase velocity can be determined from ω∕kz. For polychro-
matic pulses an effective Gouy “refractive” index nG�ω; z�
can be represented as a multiplicative factor on the wavenum-
ber ω∕c, i.e., nG�ω; z�ω∕c � kz�ω; z�, and a dispersion relation
for the axial Gouy phase shift may then be written as

nG�ω; z� � 1 −
2c2�2m� 1�

ω2w2
0

�
1� 4 c2z2

ω2w4
0

� : (19)

Combining Eq. (19) with the common formula for group
velocity in dispersive media [47],

v�z� � c

nG�ω0; z� � ω0
∂nG�ω;z�

∂ω

��
ω�ω0

; (20)

the on-axis group velocity can then be expressed for an LG
pulse with γ ≪ 1 as

vm�z� � c
�
1 −

�
m� 1

2

�
w2

0

�z2 − z20�
�z2 � z20�2

�
−1

; (21)

which with m � 0 is equivalent to Eq. (6) in [22]. Figure 6
illustrates the axial group velocity of the LG pulse modes from
Eq. (21).

On the optical axis, the time delay of an LG pulsed mode in
relation to a plane wave pulse, Tm�z�, can be determined at a
plane z by accounting for the variation of the group velocity of
the LG field at each previous plane, z0 < z, i.e.,

Tm�z� �
	Z

z

0

dz0

vm�z0�



−
z
c
� �2m� 1� 2czw2

0

4c2z2 �w4
0ω

2
0

: (22)

Yang et al. have derived an equivalent expression to
Eq. (22) for off-axis points and describe the variation in the
axial carrier envelope phase of the LG pulses [42], while
the associated spatial shift is described in [43]. The variation

of Tm�z� is shown in Fig. 7, with a maximum delay occurring
at the confocal range z0 with a magnitude of

Tm�z0� � �m� 1∕2�∕ω0: (23)

Analytical descriptions for the effects of dispersion are
conventionally derived through a Taylor series representation
of the wavenumber ωn�ω�∕c. For example, the expression of
group velocity given by Eq. (20) is related to the inverse of the
first two terms of such a series expansion, while the second-
order terms can be applied to account for pulse broadening
attained in a dispersive medium [47–49]. Here, we identify
from numerical calculations the second-order effects of a
free-space Gouy dispersion, which are clearly observable in
Fig. 5 with an increased axial duration of the pulses, most ob-
vious in the case of m � 100. This free-space broadening is
physically related to a similar effect observed in the diffrac-
tion of a pulse at a finite circular aperture [19], which in that
case is shown to occur due to the axial interference of the BW

Fig. 6. Group velocity, vm�z�, of the planar Laguerre–Gaussian
pulses of different indices, with γ � 0.1 and w0 � 300λ0.

Fig. 7. Axial time delay, Tm�z�, of the temporal amplitude envelope
of the pulsed Laguerre–Gaussian modes jΨm�r � 0; z; t�j in relation to
the half-duration of the pulse τ0, with w0 � 300λ0 and γ � 0.1.
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and GW features. The increased axial duration of a pulse at a
plane z > 0 can be accounted for by the longer time required
for a field source at r0 > 0 to arrive at an axial point than a
source at r0 � 0. In the case of diffraction at a hard aperture,
the axial broadening of a pulse involves a splitting of the axial
field into boundary and geometric features due to the abrupt
discontinuity at the aperture edge (c.f. Figs. 2–4 of [19]). This
is in contrast to the related effects shown in Fig. 5, where the
axial pulse structure remains within a single envelope, attri-
butable to the continuity of the LG source along r0. From nu-
merical evaluation of Eq. (14), Fig. 8 quantifies the free-space
broadening in the variation of the temporal HWHM, τ�z�, of
the axial LG pulse envelope jΨm�r � 0; z; t�j in relation to the
HWHM τ0 of the Gaussian time signal at z � 0. Although such
a temporal broadening is faintly visible in the m � 0 planar
Gaussian pulse, as shown in Fig. 4 of [22], the authors of this
paper are not aware of any previous analysis of this axial
broadening in planar Laguerre–Gaussian pulses. As is evident
in the magnitude of the broadening as presented in Fig. 8, the
effect is not an obvious feature in such fields of lower indices
as studied in [22,42,43,48], which did not address this subtle
characteristic of planar LG pulse propagation.

It can be seen that the axial duration of the planar Gaussian
pulses is not a constant in free space but broadens to a max-
imum value and at greater distances decreases toward a value
slightly greater than τ0, which we assume to be related to the
convergence of the Gouy phase shift in z > z0. From numer-
ical data as in Fig. 8, with increasing values of m the plane
at which a maximum axial duration τm�z� occurs is found
to converge to

z � z0∕
���
3

p
: (24)

This is compared to the plane of the maximum value of the
group velocity vm at z � p

3z0 [22], which is independent of
the indexm. Although we do not give an analytical description
of these broadening effects here, the plane identified by
Eq. (24) can be shown to correspond to that at which an
analogous Gouy group velocity dispersion (GVD; see, e.g.,
[47–49]) alternates from a negative to a positive value. The

phenomena shown in Fig. 8 may perhaps be quantified analy-
tically in future work using the description of the Gouy shift in
Eq. (19) alongside conventional expressions relating to
second-order effects of dispersion. It may also be worth point-
ing out that in Fig. 5 the on-axis LG pulses show the formation
of a negative chirp in free space within z < z0∕

p
3 due to a

negative value of a Gouy GVD, which is in contrast to the ef-
fects conventionally observed with normal material disper-
sion [48,49]. The chirp structure in Fig. 5 is also a feature
of pulse diffraction at an aperture with a finite width and
depth that introduces spatial dispersion [3]. We must empha-
size that in Fig. 8, although τ�z� is illustrated in relation to the
HWHM of the Gaussian envelope, τ0, the temporal field on the
axis does not retain an ideal Gaussian envelope in the near
field with an obvious asymmetry introduced in a similar man-
ner to effects imposed by material dispersion [47–49].

The free-space Gouy dispersion also influences the axial
amplitude of the Gaussian pulses. Normalized to its value
at z � 0, the on-axis amplitude of a CW LG beam exhibits a
variation described byw0∕w�ω; z�, independently of the mode
index. For pulsed LG modes, there is a variation in this de-
scription related to the axial broadening of the pulselets as
shown in Fig. 8. The deviation of the amplitude falloff is
depicted in Fig. 9, which describes the maximum amplitude
of the pulse envelope at each z plane. This is again a small
variation with lower indexed pulselets; thus, to emphasize the
effect, the propagation of planar LG pulse modes with large
indices and a significant bandwidth was computed.

Figures 8 and 9 highlight the restriction of these diffraction
effects to the confocal region, with the pulselets attaining a
more “standard” behavior at planes beyond z0.

B. Numerical Results for the LG Expansion of Diffracted
Optical Pulses
Following the LG expansion for continuous fields as outlined
by Eq. (11), we can simulate paraxial diffraction of a pulse by
superimposing a series of LG pulselets in a similar manner, as
in Eq. (13), and illustrate the relation of the physical behavior
of the LG pulselets to the convergence of the expansion. The

Fig. 8. Variation in the HWHM τ�z� of the on-axis temporal field
jΨm�r � 0; z; t�j at each plane z related to the half-duration τ0 of
the source signal defined at z � 0. w0 � 300λ0 and γ � 0.1.

Fig. 9. Maximum value of jΨm�r � 0; z; t�j at each plane z, with
γ � 0.3 and w0 � 300λ0. The on-axis amplitude of the m � 0 pulsed
LG mode varies negligibly on this axis scale from w0∕w�ω0; z�.
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effects of the axial group velocity of each mode vm�z� and the
associated time delays Tm�z� are important issues in this con-
text. To illustrate the expansion, we describe the method in
simulation of the diffraction of a plane wave pulse at a circular
aperture of radius a. Despite its simplistic form, such an aper-
ture can be a difficult structure to represent mathematically
with a finite convergent series technique due to the disconti-
nuity at the aperture boundary [23,28] (recall Gibb’s phenom-
enon in Fourier theory). Figures 10(a)–10(c) show the
predicted field amplitudes RefEM�r � 0; z; t�g from an LG ex-
pansion at the optical axis for mode sets of various sizes,
while Figs. 10(d)–10(f) show the same expansions in two di-
mensions as jEM�r; z; t�j2. It should be recalled throughout
this section that the width parameter w0 is adapted according
to Eq. (7) for each M � 1 term expansion.

On the optical axis, acceptable reconstruction of the de-
sired field is obtained only with mode sets that contain pulse
modes for which the associated Gouy dispersion effect cre-
ates a temporal delay that approaches or exceeds that of the
predicted axial BW, i.e., greater values of M . In Fig. 10(b) the
truncation of the series expansion to a finite number of terms
can be seen to cause the pulse mode with m � M to become
significantly more obvious, in that case with TM ≈ 5τ0 and in
Fig. 10(c) with TM ≈ 10τ0. Only with higher values ofM do the
location and magnitude of such a deviation from the FDI re-
sult become less intrusive in the region of interest due to a
greater delay TM and a smaller value of the coefficient AM .

Illustrations of the convergence of the LG expansion of a
circular aperture function can be found in [23], and a similar
description relating to the Hermite–Gaussian expansion is gi-
ven in [28]. However, those examples apply only to the synth-
eses of the aperture functions and do not exhibit the
convergence of the expansion in relation to the diffracted field
beyond the aperture. To offer a simple exhibition of axial con-
vergence in the LG expansion of pulses, we can compare the
results with the equivalent FDI calculation for a circular

aperture, EF , through calculation of the normalized mean
square error (NMSE):

NMSE � 100 ×

R
t jRefEF �0; z; t�g − RefEM�0; z; t�gj2dtR

t jRefEF �0; z; t�gj2dt
: (25)

Figure 11 shows the variation of the NMSE at four planes
z � a2∕�N0λ0�, where N0 is the Fresnel number.

In Fig. 11 the errors calculated with N0 � 15, 10, and 5
show a suitable convergence to the FDI result with smaller
values of M than in the case of N0 � 20. This is obviously due
to the smaller time separation between the GW and BWs on
the axis at distances farther from the aperture where the les-
ser delay Tm of LG modes with smaller indices can be suffi-
cient to accurately represent the features of the on-axis BW.
The calculated errors of around 50% shown in the data repre-
sent suitable syntheses of the on-axis GW only, which has ap-
proximately equal energy to that of the axial BW feature at the
planes described.

Now, to make a correlation between the propagation of the
individual LG pulselets and the field that they expand, we can
useEq. (4) to imply the contributions of specific LGpulselets to
the structure of the total diffracted field. This is not a consid-
eration in previous studies of the orthogonal expansions for
CW simulation [23–29], and here, with pulsed fields, the invol-
vement of the individual LG modes in the field expansion can
be visualized more clearly, specifically in the formation of
the BWs.

It was explained in [14,15] that in a cylindrically symmetric
system, close to the optical axis, the BW can be represented
by zeroth order Bessel pulses, related to X-waves [16,21]. The
spherical and parabolic/paraxial waves generated at the
boundary of an aperture at r0 � a are detected on the optical
axis at a plane z, in relation to a plane wave pulse, at the
respective retarded times [14,19]

Fig. 10. (a)–(c) Axial convergence of an LG pulse expansion (solid curve) toward the result obtained with the conventional FDI (dashed curve) for
a pulse diffracted at a circular aperture withM � (a) 2, (b) 50, (c) 100. (d)–(f) A two-dimensional �1� 1D� intensity representation jEM �r; z; t�j2 of
the respective data in (a)–(c) within −40 and 0 dB. The fields are predicted with a fractional bandwidth of γ � 0.3 at z � a2∕�25λ0�.
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Ts�z� �
����������������
a2 � z2

p
c

−
z
c

and Tp�z� � a2

2cz
; (26a)

and from �d�T�z� � z∕c�∕dz�−1 the associated on-axis veloci-
ties are

vs�z� � c
����������������
a2 � z2

p
z

and vp�z� � −
2cz2

a2 − 2z2
; (26b)

where the superscripts s and p denote the respective spherical
and parabolic/paraxial representations. The BW has a trans-
verse frequency at r � 0 of

ksr�z� �
k0a����������������
a2 � z2

p and kpr �z� � k0a
z

; (26c)

where k0 � ω0∕c is the central wavenumber. The normalized
transverse intensity profile of the BW close to the axis then
approaches the function jJ0�krr�j2, with greater correlation
found for longer pulses with γ → 0 [14]. In an LG expansion
with a large value of M , in the propagation of the μth mode at
greater distances from the aperture plane, depending on M
and subsequently w0, the group velocity vμ, Eq. (21), time de-
lay Tμ, Eq. (22), and on-axis transverse frequency κμ�ω0; z�,
from Eq. (4) with K�ω0; z� � 2∕w�ω0; z�, converge upon the
corresponding values of those parameters for the BWs as gi-
ven by Eqs. (26). For example, the far-field divergence angle
of a Gaussian beam in relation to an optical axis is given by
θ � 2∕�k0w0�, and an asymptotic value of w�ω0; z ≫ z0� is
then w�ω0; z� � zθ, with the conventional paraxial approxi-
mation of θ ≈ tan θ. Assuming an odd value of M , the value
of κμ�ω0; z� from Eq. (4) with μ � �M − 1�∕2 is then given as

κμ�ω0; z� �
k0w0

z

�������������������������������
2
�
M − 1
2

�
� 1

s
� k0a

z
; for z ≫ z0 (27)

after substitution of w0 from Eq. (7), equating the axial trans-
verse frequency of them � μmode to that of the paraxial BW
in (26c). Thus, applying the LG expansion in paraxial regions,

the m � μ pulselet dominates the representation of the phys-
ical Bessel BW structure (although it is the interference of the
pulselets with indices surroundingm � μ that creates the pro-
minence of the BW feature). Equation (27) is specifically a cal-
culation for monochromatic beams, but the valid assumption
is made here that the transverse frequency of the LG pulselets
at r � 0 will vary negligibly with γ ≪ 1 from that of the CW
mode with angular frequency ω0. The correspondence be-
tween the LG pulse modes and the BWs is also more evident
in expansions with larger values of M , which allows for accu-
rate reconstruction closer to the aperture plane, where BWs
are more obvious with greater separation from the GW.

To graphically highlight this relationship between the BWs
and the LG pulselets in an expansion, we show the diffraction
of a plane wave pulse at a simple binary grating described by

E0�r0� � f1� sgn�cos�2.5πr0∕a��g∕2; (28)

which has two transparent regions within r0 � f0; 0.2ag and
f0.6a; ag, and an opaque intermediate region. Figure 12 shows
the distribution of Am∕�−1�m for the LG expansion of this
function with M � 499. With three dislocations across the
aperture function in Eq. (28), the distribution of the coeffi-
cients Am is correspondingly truncated at three values of
m, as indicated in Fig. 12. The indices withm � 9, 90, and 249
are identified, with the radii ρm of the LG functions ψm�r0�
corresponding to the discontinuities of the aperture (exactly
in the case of m � 249 with ρ249 � a). For these specified va-
lues of m, the associated LG pulselets are then seen in an ex-
pansion to become more pronounced than those with indices
of a similar value but smaller values of Am, and they subse-
quently form the Bessel BWs related to those points.

In Fig. 13 the pseudocolor plot shows the predicted struc-
ture of a plane wave pulse diffracted at the aperture defined in
Eq. (28), and the overlaid contour lines show the locations and
general structures of the component m � 0, 9, 90, and 249��
μ� LG pulse modes. For the regions shown in Fig. 13(b), NMSE
errors of 19.39%, 3.41%, and 0.33% were found between the
LG expansions with respective values of M � 20, 50, and
100 in comparison with results of the FDI. For Fig. 13(a)

Fig. 11. Normalized mean square error (NMSE) between the LG ex-
pansion RefEM �r � 0; z; t�g and the corresponding FDI calculation of
the on-axis field of a γ � 0.3 plane wave pulse diffracted by a circular
aperture with various values of the Fresnel numberN0. For the case of
M � 0, we assumed a value of w0 � a.

Fig. 12. LG expansion coefficients for the grating structure defined
by Eq. (28), with M � 499. Recall that the mode indices have discrete
integer values only.
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the corresponding NMSE errors are 0.08%, 0.003%, and
0.00014%, which proved to be very efficient when using
Eq. (12), which was actually applied in Fig. 13 for greater ef-
ficiency in generating such high resolution plots of 751 × 1001
points.

The intuitive description given by Fig. 13 of the formation of
a diffracted field with a clear illustration of the role of the
individual modes cannot be so easily interpreted from the ap-
plication of an LG expansion in CW simulations.

4. CONCLUSION
We have illustrated the application and convergence of the LG
expansion in relation to optical pulses. In practice, the scheme
by which we have discussed the LG expansion, i.e., Eq. (13), is
not the most computationally efficient procedure, but it was
used to intuitively explain the convergence of the series ex-
pansion in the time domain through a description of individual
LG pulses. In relation to this, application of analytical expres-
sions for the propagation of such planar pulses, as derived
for the fundamental Gaussian beam in [38], may allow for
an extremely efficient computational procedure, removing
the requirement of numerical integration in Eq. (14).

The diffraction of higher-order Gaussian pulses has been
simulated numerically and shows properties such as super-
luminal group velocities and related delays, which are in-
creased from the same effects of the m � 0 Gaussian pulse
studied previously [22]. The second-order effects of a spatial
Gouy dispersion, i.e., an axial pulse broadening, have been
identified through simulations. A variation in the axial ampli-
tude of pulsed Gaussian beams imposed by the dispersion

effect has been described and shows a deviation from the
axial amplitude of the CW LG beams. These features have
greater significance for LG pulses with larger indices and
bandwidths.

Based on their physical characteristics, the structure of
higher-order LG pulses has been shown in an expansion to
represent the paraxial form of the BWs typically observed
in pulse diffraction at an aperture, allowing for an alternative
interpretation of the physical effects shown in [14].

Calculation of paraxial diffraction effects using series
techniques such as the LG method discussed here, the Wen–
Breazeale method [50,51], and similar expansions presented
recently by Zamboni-Rached et al. [52,53] has an advantage
over direct solution of the FDI (using a numerical sum or tra-
pezoidal rule method) when the number of required series ex-
pansion terms (modes) is less than the number of aperture
samples needed for convergence of the FDI, which can be very
large for complicated apertures. As was said of similar finite
series expansions in [52], “One can get in a few seconds, or
minutes, high-precision results that could otherwise require
lengthy numerical simulation.” An important practical aspect
of the series expansion techniques, in contrast to direct solu-
tion of the FDI, is that they can take advantage of efficient ma-
trix andvector techniques available in numerical software such
as Python’s Numpy module, MATLAB, Octave, and R, for ex-
ample. Using vectorization, the field atmultiple points at a con-
stant plane can be calculated without an extremely significant
increase in computation time from a similar operation at an in-
dividual point (obviously depending on the array dimensions).

With such series expansions, the diffractive influence of
an aperture is represented in the variation of the expansion

Fig. 13. Paraxial LG expansion calculation, with M � 499, of a plane wave pulse with a γ � 0.4 Gaussian spectrum diffracted by the annular
aperture structure defined by Eq. (28). The fields are calculated with the Fresnel number N0 � (a) 1, (b) 5, (c) 10, (d) 20. The −30 dB contours
of the m � 0 (dotted curve), m � 9 (dash-dotted curve), m � 90 (dashed curve), and m � 249 (solid curve) component LG pulselets are super-
imposed and are shown on alternating sides of r � 0 for clarity of the total field. The intensity data is shown on a normalized logarithmic dB scale
between −40 and 0 dB, except in (a), which has a lower limit of −50 dB.
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coefficients. For a simple increase in efficiency for the simu-
lation of CWs, the two-dimensional �r; z� form of the propagat-
ing modes can be predefined in digital memory without
reference to any aperture function and used with different var-
iations of Am for repeated analyses of small variations in aper-
ture structures, for example. Any difference in the aperture
radius can be accounted for by adapting w0 according to
Eq. (7) and appropriately scaling the transverse and longitu-
dinal ranges of the predefined modes with respect to w0

and z0.
The FDI is one of the most widely applied techniques in

Optics beyond the geometrical regime. However, its direct
solution remains computationally intensive, which is greatly
augmented in the simulation of optical pulses, particularly
in generating two-dimensional representations of fields.
Despite the fact that they are common knowledge in optics,
we believe that finite series techniques such as the Hermite–
Gaussian and LG expansions have not reached their full po-
tential in the field. The efficiency offered by these methods is
suggested to be extremely beneficial to any researcher fre-
quently requiring diffractive analyses of arbitrary apertures
and lenses.
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