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trans-Cinnamaldehyde is amajor component of Cinnamomumcassia and has been reported to give rise to antimi-
crobial properties in cinnamon spice. In order to better understand the relationship between the structure of
trans-cinnamaldehyde and its antimicrobial role, fifteen structurally different trans-cinnamaldehyde derivatives
were selected for study based on their predicted electrophilicities. Both synthesized and commercial trans-
cinnamaldehyde derivatives were evaluated for their antibacterial activity, with modest mM activity levels
found against both E. coli and S. aureus. An initial mechanism of action study, suggesting that the electrophilicity
of the trans-cinnamaldehydes affects the antibacterial activity, was conducted as well as an exploration of their
ability to alter bacterial cell wall integrity. In addition, in vivo toxicity levels were determined using the larvae
of the greater wax moth, Galleria mellonella, with all derivatives tested showing low toxicity.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The use of natural substances as food additives, rather than synthetic
substances or traditional preservation techniques, has gained consumer
popularity in recent years due to perceived nutritional and safety qual-
ities [1–3]. trans-Cinnamaldehyde (TC) (Fig. 1, structure 1) is a major
component of Cinnamomum cassia and gives rise to much of the re-
ported antimicrobial properties of this spice [4]. Isolated TC has been
shown to effectively inhibit the growth of an array of microorganisms
such as bacteria, moulds, and yeasts [2–5]. In human dermatological
studies, the No-Observed-Adverse-Effect-Level (NOAEL) for
cinnamaldehyde sensitization has been set at 0.5% [6], with the mecha-
nism of skin sensitization of cinnamaldehyde having been attributed to
its Michael acceptor properties [7]. However, there are no restrictions
on the use of TC as a flavour additive [7], and is Generally Recognized
as Safe (GRAS) by the FDA [8]. Related cinnamaldehyde derivatives
have been reported as having potential to be cost-effective, food-
compatible, broad-spectrum antimicrobial additives that could be
used against an array of pathogenic micro-organisms [8]. Other reports
describe their potential as antitumour, anticancer, and anti-
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inflammatory agents [6,9–15].We are interested in the study of antimi-
crobial agents and microbial metabolite biosynthesis [16–19], with a
particular focus in naturally occurring compounds and their derivatives
with respect to their antibacterial activity against Staphylococcus aureus
(S. aureus) and Escherichia coli (E. coli) [20]. Staphylococci can be found
in commercial food products of animal origin or those that are handled
by humans [21], is attributed to medically-relevant biofilm formation
[22,23], and can also develop multidrug resistance [22,24]. E. coli is
also a major food-borne pathogen, whose sources are extensive [25],
and where infection can lead to severe symptoms and may even be
followed by life-threatening complications [26].

2. Results and discussion

2.1. Synthesis

TC has been described in the literature as both an antimicrobial
agent and as a Michael acceptor [2–5,8,10,27–34], although, to the
best of our knowledge, a systematic study exploring how chemical
structure and electrophilicity relates to antimicrobial activity has not
been reported. Herein, we report the synthesis, antibacterial evaluation,
and an initial mechanism of action study for a family of trans-
cinnamaldehydes. The trans-cinnamaldehydes were selected based on
their predicted electrophilicities in order to better understand how
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rechem.2019.100013&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.rechem.2019.100013
mailto:john.stephens@mu.ie
Journal logo
https://doi.org/10.1016/j.rechem.2019.100013
http://creativecommons.org/licenses/by/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/22117156
www.elsevier.com/locate/rechem


Fig. 1. Global electrophilicities for various cinnamaldehyde derivatives computed by the
IP/EA method (orange bars) or by frontier orbital method (blue bars).
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this might affect their antimicrobial activities. Several synthetic
methods have been reported for the generation of cinnamaldehydes, in-
cluding oxidative enamine catalysis [35,36], the use of a palladium-
catalyzed Heck-Saegusa reaction [37], and Dess-Martin oxidation of al-
cohols [38]. For our study, the majority of the 15 cinnamaldehydes
were synthesized, and in all but one case thiswas achieved using amod-
ified Wittig procedure, Scheme 1 and Scheme 2 [39]. The remaining
cinnamaldehydes were purchased from commercial sources.

When the Wittig procedure was applied to the synthesis of p-
methylcinnamaldehyde (Fig. 1, structure 10), a complex mixture re-
sulted. An alternative synthetic strategy was therefore required,
Scheme 2 [40,41]. This involved Fischer esterification of the starting car-
boxylic acid, followed by reduction using DIBAL-H. The final oxidation
by manganese dioxide furnished the desired p-methylcinnamaldehyde
in an overall yield of 79% over the three steps.

2.2. Calculated electrophilicities

The quantification of electrophilic and nucleophilic organic pro-
cesses by means of electronic structure calculations has been greatly fa-
cilitated by the introduction of global and local reactivity scales. The
global electrophilicity indexω introduced by Parr et al. has been exten-
sively employed on a wide range of organic compounds, including di-
enes, dienophiles [42], carbenes [43], α,β-unsaturated carbonyls [44],
and reactants involved in 1,3-dipolar cycloadditions [45], returning in-
formation about their reactivity towards nucleophiles and expected
regio- and chemoselectivities. The global electrophilicity index ω
Scheme 1. (i) Arylaldehyde (0.628 mmol, 1 eq.), (triphenylphosphoranylid
provides a measure for the ability of a molecule to accept electrons
from its environment. Information about the intramolecular selectivity
within the samemolecule is obtainedby invoking a local electrophilicity
index ωk

+, which allows for identification of the most electrophilic site
in a molecule. The global electrophilicity indices for the trans-
cinnamaldehyde derivatives considered in this study were evaluated
in terms of the frontier orbital energies and also the IPs/EAs at the
ground state of the molecules using the B3LYP/6-31G(d,p) level of the-
ory (see ESI). Qualitatively similar results were obtainedwith either ap-
proach (Fig. 1). The ranking of the molecules according to their
electrophilicity (top to bottom) can be rationalized in terms of substitu-
ent effects induced by electron-withdrawing and electron-donating
substituents that result in electrophilic activation or deactivation of, re-
spectively. Taking TC as the reference, the introduction of electron-
donating groups such as (–OCH3, –CH3, –N(CH3)2) (Fig. 1, structures 2,
5, 10 and 6) into the para- or ortho-position of the phenyl ring causes
ω and therefore the electrophilicity to decrease. In contrast, halide or
electron-withdrawing residues attached to the phenyl ring cause mod-
erate (\\Br,\\Cl) (Fig. 1, structures 8, 11, 12 and 3) or large (–NO2, –CN,
–CO2CH3) (Fig. 1, structures 4, 7 and 9) electrophilic activation, as seen
from the increase in ω. For the series of halide derivatives the exact lo-
cation of the –X substituent at either the o-, p- orm-position of the phe-
nyl ring only has a very small influence on the degree of activation, and
these compounds share very similar ω values. Replacement of the phe-
nyl ring in the parent TC compound by polycyclic or heterocyclic sub-
stituents leads to relatively moderate electrophilic activation in all
cases.

2.3. Biological evaluation

TC and the cinnamaldehyde derivatives were assessed for their
in vitro antibacterial activity using a standard broth microdilution
method (see ESI) [46]. The bacterial strains tested were S. aureus and
E. coli (both clinical isolates, see ESI). The antibacterial results have
been separated into three tables. Table 1: para-substituted trans-
cinnamaldehydes; Table 2: where the importance of substituent posi-
tion on the phenyl ring is explored; Table 3: where the affect replace-
ment of the phenyl ring with another hetero- or carbocycle is explored.

Although the activity levels are modest (most active derivative giv-
ing an MIC50 of ~0.5 mM), one can see a relationship in Table 1 for
S. aureus, where all trans-cinnamaldehydes that are more electrophilic
than TC are also more biologically active. For example, p-
bromocinnamaldehyde (Fig. 1, structure 8) is nearly five timesmore ac-
tive than TC, with the less electrophilic p-methoxycinnamaldehyde
(Fig. 1, structure 2) almost 17 times less active than TC, and p-
dimethylaminocinnamaldehyde (Fig. 1, structure 6) showing no anti-
bacterial activity. However, the most electrophilic derivatives p-
nitro (Fig. 1, structure 4) and p-cyanocinnamaldehyde (Fig. 1, structure
7), while more active than TC, were not the most active derivatives
tested. This may be due to differences in their cellular uptake or other
ene) acetaldehyde (0.690 mmol, 1.1 eq), toluene (5 mL), 80 °C, 24 h.

Image of Fig. 1
Image of Scheme 1


Scheme 2. (i) H2SO4, MeOH, 4 h, reflux (ii) DIBAL-H, toluene, 0 °C, (iii) MnO2, DCM, 35 °C, 7 h.
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cellular processes. A similar overall effect can be seen in E.coli, where p-
bromocinnamaldehyde again proved to be the most active derivative,
although here both p-Cl (Fig. 1, structure 3) and p-CO2CH3 (Fig. 1, struc-
ture 9) are less active than TC even though they are more electrophilic.
We suggest that differences in activity for the p-Cl versus the p-Br deriv-
atives may be as a result of differences in cellular uptake. E.coli is Gram-
negative, where the bacterial cell wall is more complex than that of
S. aureus, and consists of a thin layer of peptidoglycan that is surrounded
by an outer membrane [29]. S. aureus is a Gram-positive bacteria where
the cell wall consists largely of peptidoglycan andmore easily facilitates
the access of hydrophobic molecules to both the cell wall and the cyto-
plasm within [29].

Table 2 examines the position of the substituent on the phenyl ring.
While p-bromocinnamaldehyde and o-bromocinnamaldehyde (Fig. 1,
structure 11) have very similar electronic properties, the bacterial inhi-
bition observed varied greatly, with o-bromocinnamaldehyde proving
to be 10 times less active that the para derivative. Although a limited
number of ortho andmeta substituted derivatives were studied, this re-
sult suggests that stericsmay also play an important role. The associated
steric bulk of the bromo substituent at the ortho-position could be
expected to block the electrophilic β-carbon site, preventing nucleo-
philic attack and thus hindering the reactivity of the cinnamaldehyde.
Thus, the observed antimicrobial activity against both S. aureus and
E. coli, with respect to the bromo-substituted cinnamaldehydes,
decreased from para- to meta- (Fig. 1, structure 12) to ortho-
substituted, Table 2, as steric hindrance increased. This same steric ef-
fect is observed with respect to p-methoxycinnamaldehyde, where the
o-methoxycinnamaldehyde (Fig. 1, structure 5) was less active against
both S. aureus and E. coli, Table 2.

To further probe the ability of TC derivatives to act as electrophilic
agents, we utilized a cysteamine based NMR assay system to identify
thiol-trapping agents and drugs, as described by Appendino and co-
workers [47]. The same group also reported using this assay system to
Table 1
MIC50 (mM) against S. aureus and E.coli, and calculated global electrophilicities.

Structure number R1 S. aureus MIC50 (mM)

8 p-Br 0.51
7 p-CN 0.938
9 p-CO2CH3 1.75
3 p-Cl 1.83
4 p-NO2 1.84
1 H 2.32
10 p-CH3 3.14
2 p-OCH3 8.57
6 p-N(CH3)2 No inhibition observed

Commercial antibiotics ampicillin trihydrate, tetracycline and streptomycin sulfate were used
a Global Electrophilicity Index calculated via ϵHOMO and ϵLUMO.
b Global Electrophilicity Index calculated via IP and EA.
establish TC as a thiol-trapping agent, where TC reacted with cyste-
amine at theβ carbon and at the carbonyl carbon [48]. In our hands, em-
ployment of the cysteamine assay system on TC produced the same
results to that obtained by the Appendino group, i.e. complete con-
sumption of TC in under 5 min at room temperature. Its application to
p-bromocinnamaldehyde and p-nitrocinnamaldehyde also showed
complete consumption of the cinnamaldehyde.

The effect of replacement of the phenyl ring with an alternative
hetero- or carbocycle was also examined, where the new derivatives
were shown to be much less active against S. aureus than those deriva-
tives with a phenyl ring, Table 3. Here, only the 2-pyridine derivative
(Fig. 1, structure 15) exhibited superior activity than TC, in that case
against E. coli.

An in vivo toxicity study was carried out using the larvae of the
greater wax moth, Galleria mellonella (G. mellonella), as described by
Rowan et al. (Fig. S33 in ESI) [49]. The larvae of G. mellonella, have
been used as an in vivo model in a number of studies to investigate
the virulence of human pathogens, due to the similarities between the
innate immune system of insects and mammals [50,51]. G. mellonella
larvae have also been used in studies that evaluated the therapeutic
effect of current and novel antimicrobial agents, as well as the in vivo
tolerance of novel antimicrobial agents [52–53,54]. Three test
concentrations (1 mM, 10 mM, 25 MM) were used for each of TC, p-
bromocinnamaldehyde, m-bromocinnamaldehyde, and o-
bromocinnamaldehyde. After injection, the larvae were incubated at
37 °C, for three days, and monitored for survival and melanisation at
24-hour intervals. High survival rates were observed in all cases (see
Table S2a in the ESI), indicating the low toxicity of TC and the bromode-
rivatives, and that the enhanced activity of p-bromocinnamaldehyde
relative to TC is not due to a toxic effect.

Multiple mechanisms of action have been reported for TC in the lit-
erature [60], including binding to FtsZ [55], lowering the uptake or use
of glucose [23], and altering bacterial cell membrane integrity and
E. coli MIC50 (mM) ω
(eV)a

ω
(eV)b

0.511 2.32 1.27
0.970 2.86 1.58
2.05 2.54 1.43
3.16 2.32 1.26
1.18 3.31 1.81
1.93 2.10 1.15
3.31 2.01 1.10
4.86 1.87 1.00
No inhibition above 12% 1.59 0.82

as controls (see ESI). MIC50 in mg/mL are given in the ESI.

Image of Scheme 2
Unlabelled image


Table 2
MIC50 (mM) against S. aureus and E.coli, and calculated global electrophilicities.

Structure
number

R1 S. aureus MIC50
(mM)

E. coli MIC50
(mM)

ω
(eV)a

ω
(eV)b

8 p-Br 0.51 0.511 2.32 1.27
12 m-Br 0.57 1.51 2.34 1.29
11 o-Br 6.59 5.64 2.24 1.25
2 p-OCH3 8.57 4.86 1.87 1.00
5 o-OCH3 9.63 7.26 1.85 1.01

MIC50 in mg/mL are given in the ESI.
a Global Electrophilicity Index calculated via ϵHOMO and ϵLUMO.
b Global Electrophilicity Index calculated via IP and EA.
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permeability [56]. On the basis that TC has an established ability to
permeabilize bacterial cell membranes [56], this mechanism of action
was probed further and expanded to include p-bromocinnamaldehyde
(most active derivative) and p-methoxycinnamldehyde (one of the
least active derivatives). The effect of the derivatives on the cell wall/
membrane after being added to a S. aureus or E. coli culture, was moni-
tored after 2-, 4- and 6-hours incubation, with results expressed in
terms of protein and amino acid leakage (see Figs. S31 & S32 in ESI).
Much higher leakage was observed, in terms of both proteins and
amino acids, for the Gram-negative E. coli compared to the Gram-
positive S. aureus (Figs. S31 & S32 in ESI), something which has been
noted previously in the literature [57]. This leaked material may be
composed of constituents of the membrane itself or cell wall-related
material. Proteomic analysis would be required to identify the leaked
material and determine the extent to which the bacteria cell is
disrupted. The amount of leakage observed was very different across
the three cinnamaldehydes examined. For both bacteria, TC caused the
highest leakage of amino acids and proteins. It is interesting that while
p-bromocinnamaldehyde exhibited the greatest inhibition of all fifteen
cinnamaldehydes evaluated it did not correlate to an ability to induce
leakage, generating less leakage than TC. This may indicate that while
this compound is capable of interacting with the cell wall of both bacte-
ria it is not the primary mechanism of action. These observations coin-
cide with previous reports regarding the multiple possible modes of
action of TC [5,29,58].

3. Conclusion

In conclusion, a range of trans-cinnamaldehydes were synthesized
and their antibacterial activity against S. aureus and E. coli
assessed and compared to naturally occurring antibacterial trans-
cinnamaldehyde. The cinnamaldehydes generated only low mM levels
of activity, with the p-Br phenyl derivative showing a 4.5 fold increase
in activity compared to that of the parent trans-cinnamaldehyde.
However, based on the cinnamaldehyde structures evaluated in this
study, a relationship could be observed between electrophilicity and
Table 3
MIC50 (mM) against S. aureus and E.coli, and calculated global electrophilicities.

Structure number R2 S. aureus MIC50 (mM

14 1-Napthalene 3.55
15 2-Pyridine No inhibition above 49
13 2-Thiophene No inhibition above 25

MIC50 in mg/mL are given in the ESI.
a Global Electrophilicity Index calculated via ϵHOMO and ϵLUMO.
b Global Electrophilicity Index calculated via IP and EA.
bacteriostatic activity, where trans-cinnamaldehydes that are more
electrophilic than TC tend to be more biologically active. Calculated
electrophilicity values for the cinnamaldehyde derivatives were re-
ported and the use of a known NMR spectroscopic assay for the identi-
fication of thiol trapping drug molecules was also described. The
positive results from this assay, along with the relationship between
electrophilicity and antibacterial activity, gave some further insight
into a possible antimicrobial mechanism of action for trans-
cinnamaldehydes at a molecular level, where cinnamaldehydes could
act as electrophilic species. Some trans-cinnamaldehyde derivatives
were also assessed for their ability to permeabilize the bacterial cell
wall in vitro, which suggested that while some compounds were capa-
ble of interactingwith the cell wall of both bacteria, it is not the primary
mechanism of action of the cinnamaldehyde derivatives. Future work
would entail identifying some of the proteins released, aswell as the or-
igin of these proteins [59]. The in vivo toxicity of some derivatives were
also evaluated using the larvae of the greater wax moth, Galleria
mellonella, with all derivatives tested showing low toxicity levels.
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