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Abstract

Background—Chemokine signaling through CCR3 is a key regulatory pathway for eosinophil 

recruitment into tissues associated with allergic inflammation and asthma. To date, none of the 
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CCR3 antagonists have shown efficacy in clinical trials. One reason may be their unbiased mode 

of inhibition that prevents receptor internalization, leading to drug tolerance.

Objective—We sought to develop a novel peptide nanoparticle CCR3 inhibitor (R321) with a 

biased mode of inhibition that would block G-protein signaling, but enable or promote receptor 

internalization.

Methods—Self-assembly of R321 peptide into nanoparticles and peptide binding to CCR3 were 

analyzed by dynamic light scattering and NMR. Inhibitory activity on CCR3 signaling was 

assessed in vitro using flow cytometry, confocal microscopy, and western blot analysis in a 

CCR3+ eosinophil cell line and blood eosinophils. In vivo effects of R321 were assessed using a 

triple allergen mouse asthma model.

Results—R321 self-assembles into nanoparticles and binds directly to CCR3, altering receptor 

function. IC50 values for eotaxin-induced chemotaxis of blood eosinophils are in the low 

nanomolar range. R321 inhibits only the early phase of ERK1/2 activation and not the late phase 

generally associated with β-arrestin recruitment and receptor endocytosis, promoting CCR3 

internalization and degradation. In vivo, R321 effectively blocks eosinophil recruitment into the 

lungs and airways and prevents airway hyperresponsiveness in a mouse eosinophilic asthma 

model.

Conclusions—R321 is a potent and selective antagonist of the CCR3 signaling cascade. 

Inhibition through a biased mode of antagonism may hold significant therapeutic promise by 

eluding the formation of drug tolerance.

Graphical Abstract
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INTRODUCTION

In allergic disorders, such as asthma and eosinophilic esophagitis (EoE), eosinophils are 

recruited into the lung and esophagus, respectively, and activated in excess at these sites of 

inflammation. In these diseases, eosinophils are both a histologic hallmark and among the 

major effector cell types contributing to their pathology1, 2. The C-C chemokine receptor 3 
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(CCR3) signaling pathway is one of the key regulatory pathways involved in eosinophil 

recruitment and migration into the affected tissues as part of the allergic diathesis.

While CCR3 is most highly expressed by eosinophils, it is also expressed by basophils, 

subsets of mast cells and Th2 cells, and airway epithelial cells3–5. CCR3 is a promiscuous 

G-protein-coupled receptor (GPCR), interacting with multiple inflammatory chemokines, 

including the high affinity agonists eotaxin-1 (CCL11), eotaxin-2 (CCL24), eotaxin-3 

(CCL26), and RANTES (CCL5). The receptor is coupled to the pertussis toxin-sensitive G 

protein Gαi. Upon ligand binding, the receptor is activated and active GTP-bound Gαi and 

the Gβγ dimer dissociate from CCR3 to trigger downstream signaling cascades including 

the MAPK (ERK1/2, p38) and the PI3K/AKT pathways6, 7. These intracellular signaling 

pathways culminate in priming, chemotaxis, activation, and degranulation of eosinophils. 

Following receptor activation by the ligand, CCR3 is desensitized and internalized8, 9. The 

mechanism of CCR3 internalization is not yet fully understood, but is thought to occur via 

β-arrestin recruitment to phosphorylated CCR3 and sequestration of the receptor into 

endosomes10. In addition, eotaxin-induced CCR3 internalization may be required for actin 

polymerization and chemotaxis9.

The importance of CCR3 as a potential therapeutic target was established through the 

observations that CCR3-null mice and eotaxin-1 and eotaxin-2 double knockout mice 

displayed near complete abolishment (up to ~70%) of allergen-induced airway eosinophil 

recruitment11. CCR3 transcript and protein levels are increased in the bronchial mucosa of 

patients with allergic asthma12. In line with this, much effort has been invested in the 

development of small molecule CCR3 antagonists, yet none have been approved for clinical 

use to date4.

Most of the currently known CCR3 antagonists are competitive or allosteric inhibitors of 

CCR3 activation and internalization by chemokines4. The dual inhibitory activity of these 

molecules classifies them as unbiased antagonists. Reports on the use of unbiased 

antagonists of other GPCRs, such as CXCR4, suggest that after prolonged exposure, cell 

surface GPCR accumulates, a phenomenon associated with developing resistance to receptor 

inhibition13, 14. These findings prompted us to search for antagonists that can “bias” 

downstream signaling by selectively inhibiting only one of the signaling cascades. There is a 

growing interest in the development of biased agonists of GPCRs,15 but biased antagonists 
of GPCRs remain largely unexplored, very few have been identified, and their therapeutic 

potential remains to be determined.

In the present study, we report the development and validation of R321, a novel peptide 

inhibitor derived from the second transmembrane helix of CCR3. R321 self-assembles into 

uniform nanoparticles and inhibits CCR3-mediated chemotaxis of human blood eosinophils 

with nanomolar potencies. Intravenously administered R321 significantly reduces eosinophil 

recruitment into the lung and airspaces and diminishes airway hyperresponsiveness (AHR) 

in a triple allergen (DRA) mouse asthma model of allergic airway inflammation. We propose 

that the R321 peptide exerts its receptor inhibitory effects on eosinophil function as a biased 
antagonist by inhibiting G-protein mediated processes and promoting the internalization 

(endocytosis) and degradation of CCR3.
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MATERIALS AND METHODS

Reagents

Small molecule CCR3 antagonists, SB238437 and UCB35625, were purchased from Tocris 

Bioscience (Bristol, UK).

Peptide synthesis and characterization

Synthesis, purification and evaluation of nanoparticle formation of R321 and R323 peptides 

were performed as described in the Supplementary Materials.

Cell culture

AML14.3D10-CCR3 cells, an eosinophil-differentiated acute myeloid leukemia cell line 

stably transfected to express CCR3 (ATCC® CRL-12079), were cultured as previously 

described.16 Jurkat cells, a T cell leukemia line endogenously expressing CXCR4, but not 

CCR3, were cultured in RPMI-1640 supplemented with 10% FBS, 1% Penicillin-

streptomycin, and 2 mM L-Glutamine.

Eosinophil purification

Eosinophils were purified from blood drawn from mild allergic asthmatic subjects. 

Peripheral blood was separated over a gradient of Ficoll-Paque Plus (GE Healthcare, 

Pittsburg, PA). Eosinophils were further purified by negative selection using a commercial 

Eosinophil Isolation kit (MAC Miltenyi Biotec, Auburn, CA).

Chemotaxis and degranulation assays

Chemotaxis and degranulation assays are described in the Supplementary Materials.

Prolonged exposure to inhibitors

AML14.3D10-CCR3 cells or human peripheral blood eosinophils were incubated for 24, 48, 

or 72 hours with either vehicle control or 1 μM inhibitors. Cells were resuspended in fresh 

complete medium with inhibitors every day.

Signal transduction – western blotting and confocal microscopy

Detailed descriptions are provided in the Supplementary Materials.

Receptor expression and internalization

To evaluate CCR3 cell surface expression and ligand-induced internalization, cells were 

treated for 30 min with vehicle control, R321 (0.01–10 μM) ± CCL11 (12 nM), or R323, 

SB238437, UCB35625 (all at 1μM) ± CCL11 (12nM). Cells were blocked with 10% heat-

inactivated human AB-serum, stained using PE-conjugated anti-human CCR3 antibody 

(clone 5E8, BioLegend, San Diego, CA) or PE-conjugated isotype-matched control 

(BioLegend, San Diego, CA) and analyzed on a Quanta SC flow cytometer (Beckman 

Coulter, Indianapolis, IN). Cell surface staining and gating strategy employed for the 

enumeration of mouse blood eosinophils and determination of CCR3 surface expression 

levels is described in the Supplementary Materials.
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Mice

Female BALB/cJ mice (10–12 weeks of age) were purchased from The Jackson Laboratory 

(Bar Harbor, ME). All animal study protocols were reviewed and approved by the 

Institutional Animal Care and Use Committee of the University of Illinois (Chicago, IL).

Sensitization and airway challenge

Sensitization and intranasal challenges were performed according to the acute asthma 

protocol previously described by Goplen at al17. In brief, mice were sensitized twice ip with 

a cocktail of 3 allergens: Dust-mite (D. Farinae) – 5 μg, ragweed (A. artemisifolia) – 50 μg, 

and Aspergillus fumigatus – 5 μg. All extracts were purchased from Greer Laboratories 

(Lenoir, NC). One week after the second sensitization, intranasal challenges consisting of 

0.15 μg of Aspergillus, 0.15 μg of dust-mite, and 1.5 μg of ragweed extract were given for 3 

consecutive days. Control mice were sham-challenged with PBS. For the prophylactic 

protocol, R321, scrambled R323 peptide control, vehicle, or PBS was delivered by iv 
injection into the retro-orbital sinus one day before the first challenge and directly prior to 

each subsequent challenge. For the therapeutic protocol, mice started receiving 12 mg/kg of 

R321 or R323 on the day after the final allergen challenge and for 3 additional days 

following the date of the last challenge.

Bronchoalveolar lavage, lung histology and airway responsiveness to methacholine

Bronchoalveolar lavage (BAL) was performed as described in the Supplementary Materials. 

Whole lungs were fixed in 10% formalin and embedded in paraffin. Lung tissue sections 

were stained with rat anti-mouse MBP1 antibody (generously provided by the Lee 

laboratories, Mayo Clinic, Scottsdale, AZ) as previously described.18 Immunostained slides 

were scanned using Aperio Scanscope CS2 scanner (Aperio, Vista, CA) and analyzed with 

Aperio's image viewer software. Nuclei were counterstained with Mayer’s Hematoxylin and 

cell counts were expressed as percent of MBP1 positive cells of the total nucleated cell 

count. Determination of airway responsiveness to methacholine is described in the 

Supplementary materials.

NMR

NMR was performed as described in the Supplementary Materials.

Statistical Analysis

Statistical analysis was performed using two-tailed t-tests, one way or two-way ANOVA, 

followed by Tukey post hoc analysis in GraphPad Prism software (GraphPad, San Diego, 

CA).

RESULTS

R321 self-assembles into nanoparticles

Peptides containing sequences from each of the seven transmembrane domains and 

associated extracellular loops of human CCR3 were first screened for inhibition of 

chemotaxis to CCL11, identifying the second transmembrane domain and first extracellular 
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loop region as the most inhibitory (data not shown). The final design of R321 (Fig. 1A) was 

based on a previously described self-assembling CXCR4 peptide antagonist19, 20. Twenty-

seven units of polyethylene glycol (PEG) were placed on the C-terminus of the peptide to 

prevent aggregation, and the PEG units were followed by three aspartate residues that ensure 

homogeneous self-assembly and correct orientation upon membrane fusion (Fig. 1A). The 

control peptide, R323, was derived by randomly, but separately, scrambling the sequences of 

the R321 transmembrane and extracellular loop regions (Fig. 1A). DLS analysis (Fig. 1B) 

showed that R321 and R323 monomers both self-assemble in an aqueous environment into 

nanospheres with a hydrodynamic radius of 7.1± 0.7 nm and 4.5 ± 0.4 nm, respectively, with 

R323 smaller and more polydisperse than R321. The size of the R321 particles was 

maintained over a wide range of monomeric concentrations (Fig. 1C).

R321 specifically inhibits eotaxin-induced eosinophil chemotaxis

Human blood eosinophils and the stable CCR3+ eosinophilic myelocyte cell line, 

AML14.3D10-CCR3, undergo CCR3-mediated chemotaxis induced by multiple chemokines 

including CCL11/eotaxin-1, CCL24/eotaxin-2, and CCL26/eotaxin-3 (Fig. 2). R321 was 

observed to inhibit eotaxin-induced chemotaxis by both primary eosinophils (Fig. 2A) and 

the AML14.3D10-CCR3 cell line (Fig. 2B) in a dose-dependent manner and with nanomolar 

potencies. The IC50 and IC90 values are shown in Fig. 2C. When used at a concentration of 1 

μM (approximate IC90 value for R321), the scrambled peptide control (R323) failed to 

significantly inhibit eotaxin-mediated chemotaxis in blood eosinophils (Fig. 2D). R321 

failed to inhibit CXCR4-mediated chemotaxis in Jurkat T-cells (Fig. 2E) and platelet-

activating factor (PAF)-mediated chemotaxis of blood eosinophils (Supplementary Fig. S1), 

demonstrating the specificity of R321 inhibition of CCR3. Although CCR3 ligands induce 

degranulation of cytochalasin-B treated human eosinophils,21 R321 did not promote CCL11-

induced degranulation and secretion of eosinophil cationic protein (ECP) in blood 

eosinophils (Supplementary Fig. S2).

Effects of R321 on CCR3 signal transduction pathways

R321 was found to inhibit the activation of Gαi in an immunoprecipitation assay that detects 

Gαi-GTP (Fig. 3A) but did not inhibit receptor degradation (Fig. 3B). Pretreatment of 

AML14.3D10-CCR3 cells with 10 μM R321 (a concentration exceeding IC50 and IC90 for 

chemotaxis) before exposure to ligands was even found to enhance degradation of the CCR3 

receptor (Fig. 3B). Both G-protein and β-arrestin mediated signaling pathways can lead to 

AKT and ERK 1/2 activation, although the time course of activation through the two 

pathways is different, leading to biphasic phosphorylation.22–25 Following stimulation of 

AML14.3D10-CCR3 cells with chemokines, biphasic phosphorylation of AKT (Fig. 3C) 

and ERK 1/2 (Fig. 4A) was observed in western blots. The early (2–5min) phosphorylation 

is mediated by G-protein signaling. The late sustained phase (30 min) phosphorylation is 

likely due to β-arrestin signaling as demonstrated for other GPCRs.22, 25, 26 Pretreatment of 

cells for 30 min with 10 μM R321 prior to stimulation lead to a complete inhibition of the 

early phase of ERK 1/2 activation (5 min) but had no effect on the prolonged late phase (30 

min). The control peptide, R323, had no effect on ERK1/2 phosphorylation patterns. Both 

SB328437 and UCB35625 fully inhibited the late phase, with SB328437 blocking the early 

phase as well, and UCB35625 doing so only partially (Fig. 4A). These results indicate that, 
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unlike SB328437 and UCB35625, R321 does not inhibit the β-arrestin signaling that 

mediates the late phase phosphorylation of ERK1/2.

R321 does not antagonize β-arrestin recruitment to CCR3

Co-localization of CCR3 and β-arrestin 2 was observed following stimulation of CCR3 with 

CCL11 (Fig. 4B), suggesting that β-arrestin plays a role in ligand-induced CCR3 

internalization and degradation. Pretreatment of cells with 10 μM R321 or R323 did not 

significantly (p>0.05) alter the reported co-localization coefficients either before or after 

CCL11 stimulation (Fig. 4C). In contrast, co-localization of CCR3 and β-arrestin 2 was 

significantly attenuated after treatment with UCB35625 and SB328437 when compared to 

untreated cells (p≤0.0001) (Fig. 4C). Representative images of antibody controls can be 

found in Supplementary Fig. S3.

R321 promotes rather than inhibits CCR3 internalization and degradation

Inhibition of β-arrestin signaling may interfere with effective degradation of CCR3 and lead 

to receptor accumulation on the eosinophil cell surface. To elucidate the fate of CCR3 upon 

ligand and inhibitor treatment, surface levels of CCR3 in AML14.3D10-CCR3 cells were 

determined by flow cytometry. More than 50% of CCR3 present on the cell surface was 

internalized following 30 min of CCL11 exposure, in keeping with previous reports8, 27. 

R321 and the scrambled R321 peptide control showed no significant effect on ligand-

induced receptor internalization, whereas the small molecule antagonists, UCB35625 and 

SB328437, partially blocked CCR3 internalization and degradation (Fig. 5A). Of note, R321 

at 10 μM was found to promote CCR3 internalization on its own, without the addition of 

chemokine ligand (Fig. 5B).

R321 maintains its efficacy over 72h in contrast to unbiased antagonists

The effects of prolonged exposure to inhibitors on CCL11-induced chemotaxis and CCR3 

surface expression was assessed for up to 72h in AML14.3D10-CCR3 cells and in blood 

eosinophils (Fig. 5C and 5D). CCL11 (12 nM) alone and CCL11 + R321 reduced CCR3 

expression to ~68% and ~55%, respectively, after 24h, and to ~18% and ~12% after 72h 

(Fig. 5D). Treatment of cells for 72h with R321 alone reduced surface levels of CCR3 to 

68%, as compared to untreated cells. In contrast, UCB35625 lead to receptor accumulation 

on the surface and enhanced CCR3 surface levels up to 133% after 72h. R323 and 

SB328437 had no significant effect on receptor levels. A similar effect was observed on 

CCR3 surface expression in AML14.3D10-CCR3 cells (Supplementary Fig. S4). In 

agreement with the levels of CCR3 expression detected, R321 did not lose any of its 

inhibitory potency during 72h of treatment (maintaining 90% inhibition of chemotaxis), 

while UCB35625 and SB328437 inhibition levels dropped by 19.3% and 13.7%, 

respectively (Fig. 5C). These results indicate that resistance to the small molecule inhibitors, 

but not to R321, develops over time.

R321 inhibits eosinophil recruitment into the lung and airspaces

In a robust mouse DRA allergic asthma model of eosinophilic airway inflammation (Fig. 

6A), prophylactically (Supplementary Fig. S5A) administered iv R321 demonstrated a dose-
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dependent inhibitory effect on eosinophil recruitment into the airways (Fig. 6B). 

Significantly, R321 reduced eosinophil counts in the BALF beginning with a dose of 6 

mg/kg (44.24 ± 9.33 % of vehicle) and reached 69.33 ± 4.20% inhibition at the maximum 

dose of 12 mg/kg (Fig. 6C). An IC50 value of 8.16 mg/kg was obtained from linear 

regression analysis. R323 showed no inhibitory effect at 12 mg/kg. No significant 

differences were observed in total cell counts of other inflammatory cells including 

macrophages, neutrophils, or lymphocytes (Supplementary Fig. S6). MBP1-stained lung 

tissues showed a 36.20 ± 5.28% decrease in eosinophil counts following treatment with 12 

mg/kg of R321 (Fig. 6D). In a therapeutic protocol (Supplementary Fig. S5B), R321 (12 

mg/kg) successfully reduced airway (BAL) eosinophils by 74.18 ± 6.50%. (Fig. 7A) and 

lung eosinophils by 83.30 ± 7.29 %, fully reversing both allergen-induced eosinophilia in the 

blood (Fig. 7B) and in the lung tissue (Fig. 7C and 7E) to levels comparable to PBS-sham 

challenged mice. As expected, blood eosinophils displayed reduced levels of surface CCR3 

upon exposure to allergen when compared to sham-challenged controls (~29% reduction) 

(Fig. 7D), and R321 treatment further reduced CCR3 levels (~15% reduction compared to 

vehicle, p=0.01). The protocols for allergen (DRA) sensitization, airway challenge, and 

peptide treatments are provided in Supplemental Fig. S5.

R321 blocks airway hyperresponsiveness in allergen-challenged mice

DRA-challenged mice showed a ~9 times higher peak system and airway resistance in 

response to methacholine as compared to sham-challenged (PBS) mice (Fig. 6E and Fig. 

6F). R321 treatment had a striking effect on airway responsiveness, reducing both the 

system and airway pulmonary resistance of challenged mice to levels comparable to those 

observed in sham-challenged (PBS) mice.

R321 interacts with CCR3 and allows chemokine binding

To study the binding of R321 to CCR3, we used NMR spectroscopy to correlate 13C and 1H 

frequencies in 13CH3 groups of membrane proteins incorporated by reductive methylation 

(Supplementary Fig. S7) 28–33. The HSQC spectrum of CCR3 positive membranes 

contained four discernable signals (Fig. 7A). In contrast, CCR3 null membrane exhibited 

only two signals (Fig. 7A). These signals overlapped with only two out of four signals of 

CCR3 positive membranes, suggesting that the remaining two signals belong to CCR3 (Fig. 

7A). Immunoblotting only detected CCR3 in the CCR3 positive membranes (Supplementary 

Fig. S8). Moreover, CCL11 specifically reduced the intensity of CCR3 signals (Fig. 7B, 

black arrows) but did not affect the spectrum of CCR3 null membranes (Supplementary Fig. 

S8). Similar to CCL11, R321 shifted only the CCR3 signals (Fig. 7C). This suggests that 

R321 specifically perturbs CCR3 structure. Next, we investigated the interaction of R321 

and CCR3 in the presence of CCL11 (Fig. 7D–F). The chemical shift changes and 

differences in signal intensities show that neither CCL11 nor R321 interfere with each 

other’s binding to the receptor. This suggests that R321 and CCL11 interact with CCR3 

simultaneously and R321 alters CCL11’s ability to activate signaling (Fig. 7).

Dose-dependent responses of CCR3 at different concentrations of R321 (Supplementary Fig. 

S7 and Fig. S9) allowed calculation of the dissociation constants (Supplementary Fig. S7C). 

We found two dissociation constants for R321 binding to the receptor, one in the nanomolar 
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range and the other in the micromolar range. This suggests that R321 might employ two 

distinct mechanisms for interaction with CCR3, potentially explaining its unique inhibitory 

profiles in vitro and in vivo.

DISCUSSION

In the present study, we report the development and characterization of a novel peptide 

inhibitor of CCR3. The described peptide (R321) self-assembles into uniformly sized 

nanoparticles, essentially functioning as its own carrier and delivery system. Self-assembly 

protects the peptide from proteolytic degradation, a known issue with peptide-based drugs20. 

Addition of polyethylene glycol (PEG) to the R321 nanoparticles is recognized to further 

prevent aggregation, proteolytic degradation, improve pharmacokinetics, and reduce 

immunogenicity of peptide based drugs34.

In this study, iv administration was used as the most reliable method for delivering R321 

peptide nanoparticles to the systemic circulation. However, future studies will involve 

alternative routes of administration, notably formulating R321 preparations for nebulization 

or direct airway instillation or inhalation. UCB35625, initially identified as a high affinity 

unbiased antagonist of CCR3 and CCR1, was subsequently found to be an agonist of CCR2 

and CCR5, making it prohibitively complex for in vivo studies35, 36. SB328437 was 

developed as a specific inhibitor of CCR3 in eosinophils and was shown to successfully 

suppress OVA-induced accumulation of eosinophils in the lungs of mice adoptively 

transferred with in vitro-differentiated Th2 cells37, 38. However, a very high subcutaneous 

dose (100 mg/kg) of SB328437 resuspended with Tween-80 was used in the study, and we 

have also experienced solubility issues with this compound, making it unsuitable for iv 
injection.

CCR3 signaling is increasingly implicated in various pathological contexts besides allergic 

inflammation. These include age-related macular degeneration,39 reproductive malignancies,
40–42 eosinophilic myocarditis,43 neurodegenerative diseases,44 renal cell carcinoma,45 

Crohn’s disease,46 and glioblastoma.47 Several antagonists that prevent chemokine binding 

to CCR3 have been developed; however, none of these inhibitors have been FDA approved. 

Failures of small molecule CCR3 inhibitors in the few clinical trials that have been 

conducted have called into question the role of CCR3 in airway eosinophilia in asthma, 

suggesting that CCR3 is not a viable target for drug development. However, a clinical trial of 

the unbiased CCR3 antagonist, GW766994, showed a trend towards inhibition of sputum 

eosinophils, with significant inhibition of AHR,48 suggesting treatment duration may not 

have been sufficient to meet primary study endpoints,48, 49 or eosinophils and other CCR3+ 

target cells developed resistance (tolerance) to this unbiased antagonist. Furthermore, studies 

have shown that CCR3 knock-out mice display up to a maximum of 70% reduction in 

eosinophil recruitment into the airways in an OVA-asthma model.50 In agreement with this 

finding, our in vivo results from the mouse DRA-asthma model also validate CCR3 as a 

drug target, since the highest prophylactically administered dose of R321 reached ~70% 

inhibition of eosinophil recruitment into the airways and strikingly, when delivered 

therapeutically, completely reversed both blood and lung tissue allergen-induced 

eosinophilia. The inhibitory effect on blood eosinophil numbers could be explained by either 
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R321 blocking egress of eosinophils from the bone marrow and/or decreasing eosinophil 

differentiation.51 Further studies are warranted, including in severe chronic murine asthma 

models. Despite incompletely inhibiting eosinophil recruitment to the airways, R321 

delivered at 12 mg/kg fully blocked the development of AHR to methacholine in allergen-

challenged mice. Airway hyperresponsiveness is considered a cardinal feature of asthma, 

and the ability of R321 to completely antagonize the development of AHR in a robust 

allergic asthma model offers promise of R321 as a therapeutic agent in the treatment of the 

eosinophilic asthma phenotype. The presence of CCR3 on other non-eosinophil cells 

relevant to asthma and airway hyperreactivity, such as basophils and subsets of mast cells 

and Th2-lymphocytes could indicate a wider therapeutic effect of R321 beyond inhibition of 

eosinophil recruitment and activation.

Drug development thus far has focused on conventional unbiased antagonists, despite 

growing evidence that chemokine receptors mediate effects both through G protein and non-

G protein effectors. An unbiased antagonist of CCR3 acts to inhibit both the activation 

branch as well as the desensitization and degradation branch of CCR3 signaling following 

ligand binding. In this scenario, the cell increases its surface receptor density as the basal 

turnover process continues to produce new receptors.52, 53 Receptor accumulation may 

potentially explain the limited in vivo success observed with such unbiased antagonists, e.g. 

in a clinical trial in subjects with eosinophilic asthma,48 as eosinophils may eventually 

overcome inhibition and become resistant.

Our results demonstrate that the novel R321 peptide effectively inhibits G-protein mediated 

signal transduction by CCR3, but does not interfere with β-arrestin signaling, receptor 

internalization and degradation (Supplemental Figure S10). In contrast, small molecule 

CCR3 antagonists, UCB35625 and SB328437, partially or completely block CCR3 

internalization, with this effect becoming more pronounced with longer treatment times. Our 

observation that R321 by itself appears to promote CCR3 internalization, and without acting 

as an agonist for chemotaxis, suggests the fate of CCR3 internalized in the presence of R321 

is biased towards that of degradation instead of cell activation. As demonstrated by NMR 

studies, both R321 and CCL11 can bind simultaneously and specifically to the CCR3 

receptor, and R321 has two independent binding sites. It is possible that R321 binding at a 

site different than the eotaxin ligand stabilizes a receptor conformation that induces β-

arrestin recruitment, although with a much weaker affinity than observed for the eotaxin 

ligands. Future structural studies should help clarify the unique inhibitory profile of R321.

Avoiding the pitfall of tolerance development by seeking out novel biased antagonists of the 

CCR3 signaling cascade may hold significant therapeutic promise for eosinophilic asthma, 

EoE and other eosinophil-associated diseases. Our results should also prove encouraging in 

a continuing search for biased antagonists of not only CCR3, but also other chemokine 

receptors, and point the way toward approaches alternative to classical ligand-displacement 

compounds.
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Refer to Web version on PubMed Central for supplementary material.
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Key Messages

• R321 is a novel biased nanoparticle CCR3 antagonist that inhibits G-protein 

signaling but not β-arrestin-mediated CCR3 internalization and degradation

• R321 blocks eosinophil recruitment into the blood, lungs and airways and 

prevents airway hyperresponsiveness in a mouse eosinophilic asthma model
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Figure 1. The R321 CCR3 peptide and its scrambled control (R323) self-assemble into 
nanoparticles
(A) Structures of R321 and the scrambled peptide R323. Alignment with human and mouse 

CCR3 shows a high degree of identity at the TM2 region. (B) Dynamic Light Scattering 

(DLS) regularization distribution histograms are shown for 10 μM peptide solutions in PBS. 

Radii for R321 and R323 are 7.1 ± 0.7 nm and 4.5 ± 0.4 nm, respectively, with R323 

somewhat smaller and more polydisperse; the polydispersity index of R321 and R323 were 

0.07 and 0.28, respectively. Results represent mean ± SEM from experiments (n=3) 

performed in duplicate (C). R321 self-assembly into nanoparticles shows no dependence on 

peptide concentration. TM: transmembrane. ECL: extracellular loop.
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Figure 2. R321 inhibits eotaxin/CCR3-mediated chemotaxis
R321 (0.001–10 μM) dose-response inhibition of chemotaxis induced by CCL11/Eotaxin-1 

(12nM), CCL24/Eotaxin-2 (20nM), and CCL26/Eotaxin-3 (100nM) for 4h of (A) blood 

eosinophils and (B) AML14.3D10-CCR3 cells. (C) IC50/IC90 inhibitory activity of the R321 

peptide on eotaxin-induced chemotaxis of blood eosinophils. (D) Scrambled peptide control 

– R323 (1 μM) does not significantly inhibit chemotaxis of blood eosinophils. In contrast, 

R321 inhibits chemotaxis by >90% when tested at the same (1 μM) concentration. (E) R321 

does not inhibit CXCL12/CXCR4-mediated chemotaxis of Jurkat-T lymphocytic leukemia 

cells. Results are normalized to % maximum chemotactic response and are representative of 

the mean ± SEM from experiments (n=3) performed in triplicate. ns=p>0.05.
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Figure 3. 
(A) R321 inhibits activation of pertussis toxin (PT) sensitive Gαi. AML14.3D10-CCR3 

cells were pretreated with PT (200 ng/mL) or R321 (10 μM) before being stimulated with 

CCL11 (12 nM) for 1 min. Active, GTP-bound Gαi was immunoprecipitated using antibody 

specific for GαiGTP and detected by western blotting using antibody to total Gαi. The input 

lysates were blotted for CCR3 as a loading control. (B) R321 does not inhibit β-arrestin 
signaling by activated CCR3. AML14.3D10-CCR3 cells were treated with CCL11 (12 

nM) or RANTES/CCL5 (12 nM) for 3h. Decrease in CCR3 indicates receptor degradation 

after exposure to ligand. Pretreatment with 10 μM R321 before CCR3 ligands enhances 

degradation. (C) Eotaxin-mediated activation of CCR3 leads to biphasic activation of 
AKT. After CCR3 activation by the indicated chemokines (12 nM), biphasic 

phosphorylation of AKT was observed. Acute (2min) phosphorylation is mediated by G 

protein signaling. Late phase (30min) phosphorylation is likely due to β-arrestin signaling.
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Figure 4. R321 does not inhibit ligand-induced β-arrestin recruitment and signaling by activated 
CCR3
(A) Following CCR3 activation with 100 nM CCL11, biphasic ERK1/2 phosphorylation was 

observed. Acute (2–5min) phosphorylation is mediated by G protein signaling. Late phase 

(30min) phosphorylation is likely due to β-arrestin signaling. R321 (10μM) inhibits only 

acute phosphorylation of ERK1/2. Scrambled peptide control – R323 (10μM) does not 

inhibit acute or late phase phosphorylation. SB328437 (10μM) inhibits both acute and late 

phase phosphorylation and UCB35625 (10μM) inhibits the late phase to a higher degree than 

the early phase. (B) Representative confocal images of AML14.3D10-CCR3 cells exposed 

to vehicle or inhibitors for 30 min and stimulated with CCL11/eotaxin-1 for 30 min. (C) 
Quantitation by Pearson’s correlation method shows colocalization of CCR3 to β-arrestin2 

30 min after stimulation with CCL11/eotaxin-1. R321 and R323 (10 μM) did not inhibit 

CCL11-induced β-arrestin2 recruitment to CCR3 whereas the CCR3 antagonist SB328437 

and UCB35625 strongly inhibited colocalization. Results represent mean (50 cells per 

treatment group) ± SEM from 3 independent experiments. (*p ≤ 0.05, **p≤ 0.01,****p ≤ 

0.0001 as compared to control).
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Figure 5. R321 does not inhibit CCL11-induced CCR3 internalization and does not induce 
resistance (tolerance) to inhibition of CCL11-induced chemotaxis
(A) R321 does not inhibit CCL11-mediated internalization of CCR3. When added 

concurrently with 12 nM CCL11, R321 (1μM) and R323 (1μM) did not interfere with 

CCL11-induced receptor internalization. Both SB328437 (1 μM) and UCB35625 (1 μM) 

significantly inhibited the chemokine’s ability to induce CCR3 internalization. (B) R321 

alone decreases CCR3 surface expression. R321 dose-response reduction of surface CCR3 

expression on AML14.3D10-CCR3 cells. Significant internalization levels were reached at 

1μM R321. (C) R321 maintains prolonged inhibitory activity. AML14.3D10-CCR3 cells 

were treated for 24h, 48h or 72h with R321 or unbiased antagonists (all at 1 μM) ± CCL11 

(12 nM). (D) R321 promotes CCR3 internalization in human blood eosinophils over a 

prolonged incubation period. Results shown as surface expression of CCR3 as percentage of 

vehicle expression. Of note, SB328437, when used at equimolar concentrations to R321 and 

UCB35625 (1μM), was a less effective inhibitor of CCL11/CCR3-mediated chemotaxis and 

failed to promote CCR3 cell surface accumulation. Results represent mean ± SEM from 

experiments (n=3) performed in triplicate. Compared to vehicle (B, D) or 24h data point (C): 

*p ≤ 0.05, **p ≤ 0.01, ***p<0.001, ****p ≤ 0.0001; Error bars = SEM.
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Figure 6. Prophylactic treatment with R321 significantly reduces eosinophil recruitment into the 
lung airspaces
(A) The DRA-allergen challenge induces a robust eosinophilic response in female BALB/cJ 

mice as demonstrated by increased numbers of eosinophils in the BAL fluid. (B) Total 

eosinophil cell numbers (x10 ) in the BAL fluid show that R321 significantly inhibits 

eosinophil recruitment into the lung airspaces starting at an iv dose of 6 mg/kg. (C) The 

inhibitory effect of R321 is dose-dependent and reaches 69.33 ± 4.20% inhibition at 12 

mg/kg. (D) Lungs were stained with anti-mMBP1 antibody to identify eosinophils. R321 (12 

mg/kg) treatment reduces lung tissue eosinophil counts by 36.20 ± 5.28%. Results are 

displayed as % of mMBP1 positive cells as compared to total nucleated cells. The mean ± 

SEM are shown for 6–7 mice/treatment group from 3 independent experiments. R321 at 12 

mg/kg significantly lowers respiratory system (E) and airway (F) responsiveness to 

methacholine as compared to vehicle or R323 controls. There is no significant difference 

between R321 treated and sham-challenged mice (n=5, except PBS group where n=4). 

(****p<0.0001, ***p<0.001,**p<0.01, *p<0.05, ns not significant).
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Figure 7. Therapeutic treatment with R321 attenuates established asthmatic lung and airway 
inflammation in allergen-sensitized/challenged mice
(A) R321 administered at 12 mg/kg inhibits recruitment of eosinophils to the lung airspaces 

by 74.18 ± 6.50%. (B) DRA-allergen challenged mice (Vh) develop significant blood 

eosinophilia as compared to sham-challenged mice (PBS). Treatment with R321 reduces 

blood eosinophil numbers to levels not significantly different than those observed in allergen 

sensitized/PBS-sham challenged mice. (C) Following therapeutic treatment with 12 mg/kg 

of R321, lungs stained for MBP1 positive cells showed tissue eosinophil counts not 

significantly different from the PBS-sham challenged mice, an 83.30 ± 7.29 % reduction 

compared to vehicle control. Results are expressed as % MBP1 positive cells compared to 

total nucleated cells. (D) Surface expression of CCR3 in blood eosinophils is reduced upon 

allergen challenge. R321 does not inhibit CCR3 internalization, but has a promoting effect 

(vehicle MFI of 13.7 vs. R321-treated group MFI of 11.7, p=0.01). The mean ± SEM is 

shown for 5 mice/treatment group. (****p<0.0001, ***p<0.001,**p<0.01, *p <0.05,ns not 

significant). (E) Representative images of mouse lung airways (top) and blood vessels 

(bottom) from Fig. 7C immunostained with HRP-conjugated antibodies to MBP1 (positive 

cells are dark brown). Black bars represent 100 μm.
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Figure 8. R321 binds CCR3 in plasma membrane in the presence of CCL11
13C HSQC spectra of 13C-reductively methylated CCR3 positive and CCR3 null membranes 

were recorded with/without 1 μM CCL11 in the presence/absence of 2 μM R321. Spectral 

comparisons between (A) CCR3 (CCR3-K-di13CH3)(red) and CCR3 null membranes (blue); 

(B) CCR3 alone (CCR3-K-di13CH3) (red) and CCR3 + CCL11 (blue); (C) CCR3 alone 

(CCR3-K-di13CH3) (red) and CCR3 + R321 (blue); (D) CCR3 alone (CCR3-K-di13CH3) 

(red) and CCR3 + CCL11 and R321 (blue); (E) CCR3 + CCL11 (red) and CCR3 + CCL11 

and R321 (blue); and (F) CCR3 + R321 (red) and CCR3 + CCL11 and R321 (blue) show 

line-broadening and chemical shift changes indicative of binding. Black arrows show 

significant changes in CCR3-associated signals, but not in the signals that belong to other 

membrane proteins.
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