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Summary Durability traits in Thoroughbred horses are heritable, economically valuable and may

affect horse welfare. The aims of this study were to test the hypotheses that (i) durability

traits are heritable and (ii) genetic data may be used to predict a horse’s potential to have a

racecourse start. Heritability for the phenotype ‘number of 2- and 3-year-old starts’ was

estimated to be h2m = 0.11 � 0.02 (n = 4499). A genome-wide association study identified

SNP contributions to the trait. The neurotrimin (NTM), opioid-binding protein/cell adhesion

molecule like (OPCML) and prolylcarboxypeptidase (PRCP) genes were identified as candidate

genes associated with the trait. NTM functions in brain development and has been shown to

have been selected during the domestication of the horse. PRCP is an established expression

quantitative trait locus involved in the interaction between voluntary exercise and body

composition in mice. We hypothesise that variation at these loci contributes to the

motivation of the horse to exercise, which may influence its response to the demands of the

training and racing environment. A random forest with mixed effects (RFME) model

identified a set of SNPs that contributed to 24.7% of the heritable variation in the trait. In an

independent validation set (n = 528 horses), the cohort with high genetic potential for a

racecourse start had significantly fewer unraced horses (16% unraced) than did low (27%

unraced) potential horses and had more favourable race outcomes among those that raced.

Therefore, the information from SNPs included in the model may be used to predict horses

with a greater chance of a racecourse start.

Keywords behaviour, durability, equine, genome-wide association study, performance,

random forest model, temperament

Introduction

Thoroughbred horses are bred for competitive racing and

undergo intense training and conditioning regimes, com-

mencing as early as 20 months of age. Maintenance of

strength, physical soundness and desirable behavioural

characteristics are critical to the longevity of a horse’s

racing career. In addition to injury, the high attrition rate

among Thoroughbred horses in training may be due to the

functional effects of performance-limiting health traits (i.e.

recurrent laryngeal neuropathy, recurrent exertional rhab-

domyolysis, exercise-induced pulmonary haemorrhage

etc.), negative adaptive behaviour to the training environ-

ment and/or trainer/owner decision-making regarding a

particular horse’s perceived lack of potential racing ability.

There is high variation in racing career length among

Thoroughbreds with females tending to be retired to stud at

a younger age than males and with only a relatively small

number of males entering the breeding population.

A key milestone in the training/racing career of a

Thoroughbred is making a racecourse start. Thoroughbred

horses trained for flat racing may commence racing in their

2-year-old year, although there is significant variation in

age at first start. Although many horses have their first
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racecourse start at 2 years of age, some may not commence

racing until 3–5 years of age (More 1999). Further studies

indicate that the average age at first start for Thorough-

breds is two and a half years (Sobczynska 2010). Horses

that make a racecourse start at a young age are described as

‘precocious’ with indications that early maturity may be

influenced by variation at the myostatin gene (MSTN).

Horses with the C/C and C/T genotypes (MSTN:

g.6649373C>T SNP) have been shown to have better

racing outcomes as 2-year-olds than do T/T horses (Hill

et al. 2010, 2012, 2019).

Arguably, a more economically important trait is not the

age at which the horse starts racing but whether the horse

progresses to making a racecourse start at all, as this

critically affects the opportunity for earnings and perceived

value to the pedigree. A study of active Thoroughbred

mares registered in the General Stud Book (United Kingdom

and Ireland) in 1975 found that of the 9765 live foals born

eligible for naming, 49% were actually named and com-

menced training and 38% had raced by the end of their

fourth year of age (Jeffcott et al. 1982). A more recent study

of a cohort of 1022 foals born in 1999 showed similar

results as 2-year-olds, whereby 52% had entered training

and 32% had raced. In the 1975 cohort, 8.6% of horses

were exported, whereas in the 1999 study, 28% were

exported and may have raced abroad. These studies indicate

that less than half of the Thoroughbred population actually

makes it to the racecourse (Wilsher et al. 2006). Although

this limits the opportunity for racecourse earnings, some

unraced horses, in particular females, enter the breeding

population and have a reproductive career. Also, some

stallions have a higher proportion of unraced progeny,

suggesting that there may be a genetic contribution to

whether an individual is raced or unraced.

Racing durability or resilience in the Thoroughbred

population has been described as a horse’s ability to resist

and withstand the rigours associated with training and

racing (Velie et al. 2016) and is a desired trait with economic

value. Durability traits include persistence (number of races),

longevity (length of racing career) and frequency of races.

Recently, heritability estimates in an Australian population

of Thoroughbreds suggest that, among durability traits,

racing longevity has the highest heritability (h2 = 0.12). In

addition, the heritability of racing persistence was estimated

as 0.10. It is also interesting to note that the heritability of

harness race starts among the Spanish Trotter horse popu-

lation has been estimated as 0.17 (Sole et al. 2016). A recent

investigation of performance traits in Norwegian-Swedish

Trotters identified multiple candidate genes related to neural

regulation (Velie et al. 2018); of particular interest were the

glutamate ionotropic receptor NMDA type subunit 2B (GRIN2B)

and potassium channel regulator (KCNRG) genes, which are

both involved in memory and learning (Tang et al. 1999;

Zamanillo et al. 1999; Lovell et al. 2013). These results

suggest that, in addition to the physiological requirement for

elite sporting performance, the ability to learn and adapt to

the rigours of competitive racing are also critical to success.

The primary aim of this study was to test the hypothesis

that measurable genomic variation contributes to the

heritability of durability traits in the Thoroughbred popu-

lation and to identify candidate genes that may contribute

to variation in the trait. Subsequently, in an independent

analysis we developed a genomic prediction model for the

potential to race as a 2- or 3-year-old and evaluated the

accuracy of the prediction model in ascertaining the

likelihood of a horse being raced. The two approaches are

entirely separate. The genome-wide association study

(GWAS) was used to identify regions of the genome that

are statistically significantly associated with the trait (after

multiple comparison correction) to provide functional

relevance for phenotypic effects. On the other hand, the

prediction model had no requirement for statistical signif-

icance (or pruning of SNPs) and was used to provide the

best possible prediction of the trait. An additional benefit of

also employing a prediction model approach is that SNP

feature importances are created that may provide further

support for (or contradiction against) the SNPs identified in

a GWAS.

Methods

Samples and phenotypes

Thoroughbred horse DNA samples (n = 4499) were col-

lected with owners’ consent and approval for use in

research. Race records were obtained from Arion Pedigrees

Ltd. for horses that had been bred or trained for racing and

were at least 3 years of age at the date the race records were

retrieved. The year of birth of the horses ranged from 1974

to 2013 (Table S1). Samples were collected from the global

Thoroughbred population of 16 different countries and

included 827 sires and 3487 dams (Tables S2 & S3,

Fig. S1a,b). The number of lifetime starts was recorded for

PHEN01. Horses were classified in a binary assignment as

unraced (no starts) or raced (≥1 start) for PHEN02. The

number of days between first and last start was recorded to

define longevity of racing for horses with one or more (≥1)
starts (PHEN03). Unraced horses were not included in

PHEN03, and for horses raced only once, the number of

days was recorded as 0. The number of racing seasons was

also recorded. The number of starts in the 2-year-old and 3-

year-old racing seasons was recorded separately (PHEN04),

as this was considered to be the most economically relevant

timeframe for a horse to have at least one racecourse start

(Table 1).

Validation sample panel

An independent panel of samples was collected from 528

yearling horses in advance of yearling sales in Australia in
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2012–2013. The total number of 2- and 3-year-old starts

and total earnings was recorded for the horses at the end of

their 3-year-old racing year (2016), with horses categorised

on this basis as ‘raced’ or ‘unraced’.

DNA, genotyping and quality control

DNA was isolated from blood or hair samples and

genotyped using the Illumina EquineSNP50 BeadChip

(SNP50), the Illumina EquineSNP70 BeadChip (SNP70)

or the Affymetrix AxiomTM Equine 670K SNP genotyping

array (SNP670). Samples and SNPs were included that had

a genotyping rate greater than 95% and minor allele

frequency greater than 5% respectively. A set of 48 896

informative SNPs originally derived from the SNP50 and

SNP70 arrays was used for the analysis. This SNP set was

extracted from the genotype data from each of the three

arrays. SNPs that failed quality control or were not present

on one of the array platforms were imputed using the

software program BEAGLE (version 3.3.2; Browning &

Browning 2016). For 10 horses genotyped using both

the SNP50 and SNP70 arrays and 10 different horses

separately genotyped using the SNP70 and SNP670 array

post-imputation concordance was greater than 99%. For

cases in which the MSTN:g.6649373C>T SNP was not

present on the array or failed quality control, horses were

genotyped for this SNP using a custom Taqman� assay

(Life Technologies).

Heritability estimation

The genomic-relatedness-based restricted maximum likeli-

hood (GREML) method within GENOME-WIDE COMPLEX TRAIT

ANALYSIS (GCTA, version 1.24.2; Yang et al. 2011) was used to

estimate genomic heritability (h2m). Significance was calcu-

lated using the standard mixed effects regression log

likelihood ratio test evaluated under the null and alternative

hypothesis where the null hypothesis was that the contri-

bution of genetic variation to the heritability of the trait is 0

(Visscher et al. 2014). Sex, MSTN (g.66493737C/T) geno-

type (which was considered a fixed effect) and month of

birth corrected for hemisphere (MOBc) were included as

covariates in the estimation of h2m, both separately and

together in a final model for PHEN01, PHEN02, PHEN03

and PHEN04 with the number of racing seasons included as

a covariate for PHEN01 and PHEN03.

Genome-wide association study

A GWAS was performed using a linear model with

covariates for PHEN04. This was implemented through

the egscore function in the R software package GENABEL. An

identity-by-state matrix was calculated for all samples, and

principal components derived from this matrix were used to

correct for population stratification (Price et al. 2006). Sex,

MSTN (g.66493737C/T) genotype and MOBc were included

as covariates in the analyses, as there is documented

evidence of their effects on Thoroughbred racing perfor-

mance (More 1999; Hill et al. 2010, 2012). The inbreeding

coefficient was also included as a covariate, as it has been

associated with performance and health traits in other

horse breeds (Klemetsdal 1998; Gibbons 2014). For the

calculation of the inbreeding coefficient, the SNP dataset

was pruned, based on the variance inflation factor (VIF), to

9659 SNPs using PLINK (version 1.07; Purcell et al. 2007).

The parameters used were a window size of 50, a sliding

window shift of 5 and a VIF threshold of 5, resulting in the

pruned dataset. This SNP set was used to calculate the

estimate of genomic inbreeding (F) using the hom function

in GENABEL.

Genomic prediction using random forests with mixed
effects

A prediction model was fitted for PHEN04 using a standard

two-step approach with minor adjustments. Following

Aulchenko et al. (2007), we first fitted a fixed effects model

to account for SNP effects and subsequently accounted for

random effects via relatedness using the residuals of this

model. Such an approach is commonly known as restricted

maximum likelihood (REML; Pinheiro & Bates 2000), which

produces unbiased estimates of the variance components.

Although most genomic prediction approaches (e.g.

GBLUP) use linear models for the fixed effects, prediction

performance may be vastly improved by replacing the linear

fixed effects component with a non-linear model. We used

random forests, which can automatically account for

possible additive, dominance, and SNP interaction effects

through the use of bagged regression trees. Random forest

approaches are increasingly being applied in genomic

studies (Chen & Ishwaran 2012; Winham et al. 2012; Hill

et al. 2019).

We applied the following steps to produce predictions of

PHEN04:

Table 1 Description of phenotypes and number of horses in each category used in the analyses.

Phenotype Description Unraced Raced Total

PHEN01 (continuous) Durability—number of starts 384 3095 3479

PHEN02 (binary) Durability—raced or unraced 384 3095 3479

PHEN03 (continuous) Longevity—number of days between first and last start — 3044 3044

PHEN04 (continuous) Race ready—number of starts in 2-year-old and 3-year-old seasons 664 3835 4499

© 2019 Stichting International Foundation for Animal Genetics, 50, 347–357

Prediction model for racecourse starts 349



1 The dataset (excluding the independent validation set)

was divided into a training set and a test set of 75% and

25% of horses respectively. The training and test sets

were stratified to include equivalent proportions of the

MSTN:g.6649373C and T SNP genotypes, given that

MSTN genotype may influence precocity.

2 For the training set, a random forest model was fitted to

the square root of the continuous phenotype PHEN04

with sex, genomic inbreeding coefficient, month of birth

and SNP data as features in the model.

3 Residuals for the training set were calculated using the

out-of-bag predictions from the random forests, which

protects against over-fitting of the method.

4 A multivariate normal distribution was applied to the

training residuals to estimate the components of varia-

tion corresponding to that associated with genomic

relatedness and that due to pure error respectively.

5 The random forest model was used to predict PHEN04

for the test set, and the multivariate normal distribution

was used to predict the leftover variation in PHEN04

based on the genomic relatedness between the training

and test sets. The random forest and multivariate normal

predictions were added together and subsequently

squared (because PHEN04 was square-rooted in step 2)

to produce an overall prediction of PHEN04.

6 The square of the correlation coefficient between the true

test PHEN04 values and the predicted PHEN04 values

was used as an out-of-bag R2 estimate to judge the

performance of the model.

7 The entire model run (steps 1–5) was repeated on the

full dataset (i.e. no training/test split) to produce

estimated important SNPs (via the standard random

forest variable importance score) and to provide predic-

tions for future horses.

For the multivariate normal distribution fit detailed in

step 4, the training residuals (ri) were used in the following

model:

ri ¼ lþ gi þ �i;

where l is the overall mean of the residuals; gi is the genetic

random effect, given am MVNð0; r2gRÞ distribution, with R
the known genomic relatedness matrix; and �i is a residual

term given a Nð0; r2e Þ distribution. The variance terms r2g
and r2e quantify the contribution of genetic and residual

variation respectively. These parameters were estimated via

maximum likelihood based on the training set and subse-

quently used to make predictions on the test set using the

standard multivariate normal formula:

r̂test ¼ lþ
XT

train;test

X�1

train
ðrtrain � lÞ;

where r̂test is the estimated residuals for the test set, Rtrain;test

is the genomic relatedness matrix between the training and

test sets, Rtrain is the genomic relatedness matrix for the

training set and rtrain is the vector of training residuals.

Genotypes for 4499 horses were available for the model

development, and a standard 75%/25% training/test split of

3374/1125 horses was applied. The training and test sets

were stratified to be representative of the MSTN genotypes,

as variation at this locus has been suggested to influence

precocity (Tozaki et al. 2011). The final model run used

48 896 SNPs and covariates representing sex, MSTN

genotype, month of birth (corrected for hemisphere) and

genomic inbreeding coefficient. The inbreeding coefficient

was standardised by subtracting the mean (0.012) and

dividing by the standard deviation (0.041).

Score assignment

The genomic prediction scores for the test set (n = 1125)were

divided into duodeciles with horses assigned to one of the 12

categories based on the score. The correlation between the

number of 2- and 3-year-old starts and the proportion of

unraced horses in each duodecile was calculated. The reason

for doing this was to determine whether the model developed

based on number of races could be used to inform whether a

horse is likely to be raced or unraced. To investigate this

further we post-hoc adjusted cut-off levels used to classify

horses by changing the proportion of unraced to match the

population level of approximately 33%. We achieved this by

repeatedly discarding a random set of raced horses so that the

33% unraced proportion was obtained, estimating predicted

phenotype scores using the random forest with mixed effects

(RFME) model, and creating new cut-offs for this sampled

dataset. After 10 000 iterations, we averaged the cut-off

scores and used these for future prediction of duodeciles for

new horses. For simplicity of explanation compared to the

duodeciles, we collapsed the population instead into thirds to

identify horses with a high, medium or low probability of

having at least one racecourse start as a 2- or 3-year-old.

Bioinformatics and candidate gene mining

Gene clusters were extracted from loci identified among the

top 100 SNPs from the GWAS and RFME model. A locus

was defined as one or multiple jointly associated SNPs

within a region with all distances less than 1 Mb between

two adjacent associated loci. Genes within 500 kb up- and

downstream of the flanking SNPs for each locus were

extracted from Ensembl BioMart (Smedley et al. 2015).

Results

Heritability

Marker or chip heritability estimates were highest for

PHEN01 and PHEN04 (h2m = 0.11 � 0.02). The lowest

heritability estimate was observed for PHEN03

(h2m = 0.01 � 0.02); see Table 2. With the exception of

PHEN04, the estimated heritabilities increased with the
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inclusion of the covariates sex, MSTN genotype and month

of birth. For PHEN04, month of birth had no effect on the

heritability estimate. Heritability was estimated using

number of seasons and sex as covariates for PHEN01 and

PHEN03. The inclusion of seasons did not increase heri-

tability estimates for these phenotypes (PHEN01,

h2m = 0.06 � 0.02; PHEN03, h2m = 0.01 � 0.02). Based on

heritability estimates and economic relevance, PHEN04

(number of 2- and 3-year-old starts) was selected for the

GWAS analysis and prediction model development.

Phenotypic variation

For PHEN04, 664 (14.7%) of the horses were unraced (0

starts) by the end of their 3-year-old racing year and the

proportion of unraced horses was similar for males (14.5%)

and females (14.8%). There was a wide range in the

number of starts, although the majority (36.1%) had

between six and 10 starts with less than 1% having had

more than 25 starts. The largest number of starts (n = 37)

was observed for a single horse (Fig. 1).

Identification of genetic contributions in a GWAS

In a GWAS for PHEN04 (number of 2- and 3-year-old starts),

14 SNPs reached significance at the genome-wide level

following Bonferroni correction for multiple testing (modified

threshold P < 1.02 9 10�6; see Fig. 2), with 126 SNPs signif-

icantly associated with the trait following correction using the

Benjamini & Hochberg (1995) false discovery rate adjustment

method (see Table S4 & Fig. 2). The top 14 SNPs were located

on ECA7, 13 of which were contained within a region

spanning 1.6 Mb (ECA7:40 217 482–41 818 480 bp). Loci

were also identified and genes extracted among the top 100

SNPs (Table S5).

The top region in the GWAS (ECA7:40 217 482–
41 818 480 bp) contained two genes, neurotrimin (NTM)

and opioid binding protein/cell adhesion molecule like (OPCML).

Among the top 100 SNPs there was also a 190-kb region on

ECA7 that was physically separate (>20 Mb away) from the

top GWAS region. This region contains the DNA damage

induced apoptosis suppressor (DDIAS), prolylcarboxypeptidase

(PRCP) and RAB30, member RAS oncogene family (RAB30)

genes. One of the significant (Bonferroni) SNPs (BIEC2-

1004566) is located in this region, 125 kb from the PRCP

gene, which also contained 12 SNPs that were significant

using the less stringent Benjamini-Hochberg adjustment.

The QQ plot (Fig. S2) indicated a large contribution to the

trait from SNPs that did not reach the threshold for

significance in the GWAS, supporting our decision to use

a genomic prediction method that can estimate all marker

effects for all loci and capture even small genetic effects for a

complex trait.

Table 2 Estimated heritability (h2m) of each phenotype with co-variates.

Phenotype Co-variates n h2m P-value

PHEN01 (continuous) None 3479 0.084 7.40E-12

Sex 3479 0.110 5.55E-17

Sex, seasons 3479 0.059 4.32E-07

MSTN SNP 3479 0.085 2.12E-12

MOBc 3479 0.084 8.34E-12

Final 3479 0.110 <1E-17
PHEN02 (binary) None 3479 0.085 8.87E-14

Sex 3479 0.089 1.60E-14

MSTN SNP 3479 0.087 2.70E-14

MOBc 3479 0.084 3.25E-13

Final 3479 0.090 1.50E-14

PHEN03 (continuous) None 3044 0.063 7.65E-07

Sex, seasons 3044 0.011 2.02E-01

PHEN04 (continuous) None 4499 0.105 <1E-17
Sex 4499 0.106 <1E-17
MSTN SNP 4499 0.108 <1E-17
MOBc 4499 0.104 <1E-17
Final 4499 0.108 <1E-17

MOBc refers to the month of birth corrected for hemisphere. The

standard error for the estimates ranged from 0.016679 to 0.020519;

rounded to two decimal places the standard error for all estimates was

0.02.

Unraced 1−5 6−10 11−15 16−20 21−25 26−30 >30

%
 R

ac
ed

0
10

20
30

40

Figure 1 Proportion of total number of starts

in 2-year-old and 3-year-old seasons for the

study population for PHEN04.
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Genomic prediction using random forests with mixed
effects

For the RFME model, the correlation between the actual and

predicted phenotype for the test set was 0.17 with an out-of-

bag R2 of 2.7%. When corrected for heritability (h2m = 0.11),

the model identified a set of SNPs that contribute 24.7% of

the heritable variation for the trait. When stratified by

MSTN genotype, heritable variation for the trait was highest

among MSTN C/T and C/C horses (43.0% and 25.2%

respectively). A list of the top 100 SNPs in the RFME model

and the genes identified within these regions are provided in

Tables S6 & S7. The ECA7 regions identified among the top

SNPs in the GWAS were also present among the highest

ranked SNPs in the RFME method.

Score assignment

When the horses in the test set (n = 1125) were divided into

duodeciles ranked on the basis of the genomic prediction

score, there was a strong inverse relationship (�0.71,

R2 = 0.51) between the number of 2- and 3-year-old starts

and the proportion of unraced horses in each duodecile. To

accurately reflect the proportion of unraced horses in the

population, cut-off levels were adjusted to reflect that

approximately 33% of Thoroughbreds are unraced at the

end of the 3-year-old season. For simplicity of explanation

compared to the duodeciles, we collapsed the population

instead into thirds, identifying horses with a high (74.1%),

medium (69%) or low (56.9%) probability of having at least

one racecourse start as a 2- or 3-year-old. High potential

horses had a significantly higher probability of being raced

than did low potential horses (P = 3.0 9 10�6; see Fig. 3).

Validation set

Of the 528 horses that were sampled in Australia as

yearlings, 20% (n = 105) were unraced at the end of their

3-year-old year. By applying the prediction model for

potential for a 2- or 3-year-old start to SNP genotypes for

the horses, 16%, 22% and 27% of horses in each of the

high, medium and low potential categories respectively

were unraced (Table 3, Fig. 4). High potential horses had a

significantly higher probability of being raced than did low

potential horses (P = 0.02). In addition to running in

significantly more races (P = 5.5 9 10�5), horses cate-

gorised as high potential also earned more than double

race prize money than did low potential horses (P = 0.006;

Figs. S3 & S4).

Discussion

In the present study, marker or SNP heritability was

estimated for a number of durability traits in Thorough-

bred horses. Heritability estimates were highest for

PHEN01 (total number of starts) and PHEN04 (number

of 2- and 3-year-old starts). Although not all the horses

evaluated had completed their racing careers, all were at

0

2

4

6

8

10

Chromosome

−
lo

g 1
0

( p
)

1 2 3 4 5 6 7 8 9 10 1112 14 15 16 17 18 19 20 21 22 23 2425 2728 30

Figure 2 GWAS for PHEN04 (number of 2-year-old and 3-year-old starts). The red and blue lines indicate the P-value cut offs for genome-wide

significance using Bonferonni and Benjamini Hochberg corrections respectively for multiple testing.
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least 3 years old, with the opportunity for racing therefore

higher for the older horses. Although horses that were

born earlier than 2000 were included in the analysis, the

largest group of horses (20%) were born in 2009 and had

four racing seasons of opportunity by 2015, when the

race records were retrieved. We therefore included the

number of racing seasons as a covariate, which decreased

the heritability estimates. To prevent confounders as a

result of number of racing seasons, we attempted to

identify genetic predictors for a consistent number of

seasons. We focused the analyses therefore on the number

of 2- and 3-year-old starts (PHEN04) because this also is

the most economically important period for flat race-

horses. There was excellent agreement between the

heritability estimates in this study and estimates for a

range of durability traits previously generated from

pedigree data (Velie et al. 2016). Racing persistence was

the trait most similar between the two studies, with

estimated heritabilities of 0.10 (Velie et al. 2016) and 0.11

(PHEN01 and PHEN04). These results demonstrate that

racing persistence and the probability of a racecourse start

are heritable in the Thoroughbred population; they also

support the application of genomic prediction for genetic

management of the population.

Identification of genetic contributions in a GWAS

We identified two loci on ECA7 that contained candidate

genes that may contribute to the potential for racing as a 2-

or 3-year-old. One locus was defined by the top 13 GWAS

High Potential Medium Potential Low Potential

%
 R

ac
ed

0
20

40
60

80
10

30
50

70

***

***

Figure 3 Proportion of raced horses in each

category in the test set; n = 352 in each

category (including unraced). There was a

significant difference (P = 3.0 9 10�6) in the

proportion of unraced low potential compared

to high potential horses. ***P < 0.05.

Table 3 Validation study indicating the percentage of horses assigned to each racing potential category and the racing performance of the horses in

each category.

Racing potential N % % Raced % Unraced % Wins Ave races Ave earnings Ave sales price

High 249 47 84 16 48 6.1 34 769 129 140

Medium 205 39 78 22 43 5.6 26 804 117 946

Low 74 14 73 27 34 3.7 14 803 126 687

Total 528 100 80 20 44 5.6 28 878 124 548
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Figure 4 Proportion of raced horses in each

category in the validation set. There was a

significant difference (P = 0.02) in the pro-

portion of unraced low potential compared to

high potential horses. *P < 0.05.
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SNPs and contained the NTM and OPCML genes. The SNP

ranked fourth in the GWAS was BIEC2-996632, a NTM

intronic C>T SNP. Although no exonic variants have been

reported in this gene in the horse, insertions and copy

number variants have been reported for NTM in the Quarter

Horse (Doan et al. 2012). Interestingly, this region was

identified as undergoing divergent selection between draft

and light horses (Gurgul et al. 2019), and NTM was ranked

ninth among 125 genes observed to have been positively

selected during horse domestication, specifically the large

subset linked to neurobiology and brain development

(Schubert et al. 2014). Equine neurological systems per-

turbed by natural and artificial selection associated with

domestication may therefore overlap with adaptive traits

required for successful Thoroughbred racing careers.

Recently, Ntm has been shown to influence behavioural

traits in mice; specifically, Ntm-knockout mice were found to

be deficient in emotional learning for specific tasks (Mazitov

et al. 2017). In humans, NTM has been associated with lipid

phenotypes (Li et al. 2015), childhood aggressiveness (Bre-

vik et al. 2016), heart failure (Cao et al. 2015) and IQ (Pan

et al. 2011). The NTM and OPCML genes are functionally

related, both encoding members of the IgLON family of

proteins that regulate neural growth and synapse formation.

It has been suggested that they work together in comple-

mentary roles (Mazitov et al. 2017) and may share common

promoters. Alternative promoter-driven expression of the

IgLON gene family has been reported, and a complex

functional relationship among the genes has been suggested

(Vanaveski et al. 2017). In a recent transcriptomics study,

using RNA-seq in equine skeletal muscle, the NTM gene was

not differentially expressed in response to exercise or

training whereas OPCML transcripts were significantly

differentially expressed following a period of training

(0.447 fold, P = 0.0074; Table S8; Bryan et al. 2017).

Although the functional effects of NTM and OPCML in the

horse are not fully understood, these results suggest that

these genes could play a role in physiological or behavioural

adaptations required for early racing and training.

The second locus identified on ECA7 contained three

genes, including the PRCP gene. Previously, the Prcp gene

has been implicated as an eQTL in mice, contributing to the

interaction between voluntary exercise and body composi-

tion (Kelly et al. 2010, 2012, 2014); specifically, it has been

shown to be associated with voluntary wheel running

exercise in mice. The underlying basis for voluntary exercise

is thought to be a complex interaction between central and

peripheral nervous system components that contribute to

both motivation and physical ability. Also PRCP deficiency

has been shown to influence blood pressure and cardiac

function (Tabrizian et al. 2015; Maier et al. 2017), and

therefore this gene’s function may have a direct effect on the

physiological phenotype relevant to exercise. Gene expres-

sion data supports a role for PRCP in the exercise response

in the horse: in a cohort of Thoroughbred horses in

training, skeletal muscle RNA-seq analysis identified signif-

icant (�0.71 fold, P = 1.41 9 10�10) differential expression

of PRCP transcripts following a single bout of exercise.

PRCP gene transcripts were among the top 25% of 3241

significantly differentially expressed genes post-exercise. The

expression of the gene was not significantly altered follow-

ing a period of conditioning training (Bryan et al. 2017).

Although the functional role of the PRCP gene in voluntary

exercise is not fully understood, these results support the

hypothesis that genomic variation associated with PRCP

expression influences self-motivated exercise in Thorough-

bred horses.

Temperament, including the ‘will to win’ on the race-

course and a horse’s ‘attitude’ towards its exercise regime, is

considered among the most important aspects to a positive

outcome on the racetrack. The response to exercise training

may be positive in that a horse is perceived to be enthusiastic

for its work or may be negative with a horse described as

being unmotivated. These responses may be interpreted as a

motivational response to exercise. Thoroughbreds trained for

flat racing may enter a training establishment at as young as

20 months of age and start training soon afterwards.

Racehorse trainers observe the behaviour of their horses

daily and tend to adapt the training and management

protocol for each individual horse on the basis of their

observations. There are reasons other than injury and/or

clinical manifestation of a performance-limiting trait that

dictate whether a horse is considered ready or not to either

enter training and/or progress in a training programme,

including being perceived as having a poor attitude towards

exercise. For Thoroughbred racehorses in training, unlike

humans, the type and intensity of exercise is not voluntary

but is imposed by humans. Previously, a SNP in the 5-

hydroxytryptamine receptor 1A gene (HTR1A) has been

shown, in a cohort of Thoroughbred racehorses, to be

significantly associated with ‘tractability’, the ease with

which animals can be trained and controlled (Hori et al.

2016). Therefore, with regards to the opportunity to race, we

propose that behavioural aspects, underpinned by variation

at genes associated with neurophysiological responses—

including amongst others, the NTM/OPCML and PRCP gene

loci—may be equally, if not more, important than physical

attributes for elite athleticism.

Genomic prediction using random forests with mixed
effects

In addition to identifying individual candidate genes, we

have developed a prediction algorithm using 48 896

genome-wide SNPs to identify horses that are most likely

to have a racecourse start in the most economically relevant

period of their training/racing career. The model corre-

sponds to a standard GBLUP run (fitted via REML) with the

linear fixed effects portion replaced by a more flexible

random forests approach.
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When the model was used to generate predictions for both

the test and validation sets, horses that were in the low

potential category exhibited a 1.7-fold greater probability of

being unraced thanhorses in the high potential category. The

validation set comprised samples collected in advance of

yearling sales in Australia in 2012–2013, with race records

for the horses subsequently compiled in 2016 after the model

had been developed using the training/test sets. Interestingly,

not only did the low potential group have a higher proportion

of unraced horses (27%) than the high potential cohort

(16%), the horses in the low potential group that had raced

also had poorer returns on the investment made. There was

no significant difference in the average price paid for high

potential (AUD 129K) and low potential horses (AUD 127K);

however, the average earnings of the high potential horses

were significantly more than the low potential cohort at AUD

35K vs. 15K respectively. This may reflect the significantly

greater number of races competed by the high potential

horses and the relative win percentages of 48% vs. 34% for

high and low respectively.

The results presented here suggest that the traditional

methods of evaluating a horse’s potential for racing seem to

be of limited value in discerning the population of horses

with a higher potential to race, win and achieve earnings,

as most horses at premier sales have already been pre-

selected on the basis of pedigree and conformation. It should

therefore be possible to introduce genomic assessment as an

additional decision-making tool to help in identifying

animals most likely to provide a return on investment.

Post-purchase evaluation of a horse’s potential to race may

be used to modify the training environment to maximise the

genetic potential of a horse by increasing motivation.

Although it is not yet possible to accurately predict multi-

locus genotype combinations in the next generation,

breeders may use this information to favour breeding

horses with the lowest probability of transmitting genomic

variants that undermine the behavioural plasticity or

temperament required for a successful racing career. The

heritable component of this trait suggests that those mares

in the breeding population that are unraced and have low

genetic potential for racing are most likely to transmit

unfavourable genomic variants for racing career success,

regardless of the actual reason they were unraced. There-

fore, selection of highly durable stallions as mate choices for

mares with such a profile may be an appropriate strategy for

breeders.

Conclusion

Our results indicate that genes that function in behavioural

adaptations may be particularly important in the success of

a racehorse. The introduction of genomic prediction tools in

the Thoroughbred industry has considerable potential to

improve management strategies. Not only may these results

be applied in optimising the management environment for

individual horses, but also these data could be readily

implemented in industry-wide monitoring of the population

to ensure long-term sustainability and durability. An

understanding of genomic contributions to durability traits,

and efficient and effective adoption of genomic prediction

tools, may improve management practices towards the

long-term sustainability of the breed.

Data availability

De-identified phenotypes and pre-computed univariate asso-

ciations between genotype and phenotype is available in the

supplementary materials or upon request via a material

transfer agreement for research purposes only.
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