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Abstract
“Rounding” can be understood as a way to coarsen continuous data. That is, low level and infrequent values are replaced by 
high-level and more frequent representative values. This concept is explored as a method for data privacy with techniques 
like rounding, microaggregation, and generalisation. This concept is explored as a method for data privacy in statistical 
disclosure control literature with perturbative techniques like rounding, microaggregation and non-perturbative methods like 
generalisation. Even though “rounding” is well known as a numerical data protection method, it has not been studied in depth 
or evaluated empirically to the best of our knowledge. This work is motivated by three objectives, (1) to study the alternative 
methods of obtaining the rounding values to represent a given continuous variable, (2) to empirically evaluate rounding as 
a data protection technique based on information loss (IL) and disclosure risk (DR), and (3) to analyse the impact of data 
rounding on machine learning based models. Here, in order to obtain the rounding values we consider discretization methods 
introduced in the unsupervised machine learning literature along with microaggregation and re-sampling based approaches. 
The results indicate that microaggregation based techniques are preferred over unsupervised discretization methods due to 
their fair trade-off between IL and DR.

Keywords Rounding for micro data · Unsupervised discretization · Micro data protection

1 Introduction

Rounding is based on the operating principle of data dis-
cretization or quantization, which maps a given continuous 
variable into a discrete set of values. This is achieved by 
replacing the values of a given set X = {x1,… , xn} into a 
much smaller set R = {r1,… , rk} , where k < n and each ri 
is less specific compared to xi values. Here, ri is a round-
ing point and R indicates a collection of rounding points 
which defines a rounding set. Rounding values are defined 

so that minimum protection is guaranteed which describes 
the minimum criteria required for data protection. Privacy 
is achieved by replacing multiple xi values by a single ri . In 
rounding the biggest challenge is to generate the rounding 
set R, which reduces the expected distortion while avoid-
ing the risk of “disclosure”. A disclosure occurs when an 
adversary exploits a released dataset in order to obtain infor-
mation about an individual otherwise not known to him. 
When each data record contains unique attribute values, it 
is straightforward for an adversary with relevant background 
information to attempt a disclosure, either by linking a given 
data record to a specific individual (identity disclosure) or 
by learning a sensitive attribute belongs to an individual 
(attribute disclosure).

Obtaining the rounding points can be explained with 
respect to scalar quantization (SQ). A given attribute/vector 
is partitioned into homogeneous groups, and a representa-
tive value is chosen for each partition as a rounding point. 
In information theory terminology a rounding point can be 
identified as a code word and the rounding set as the code 
book. In quantization, the objective is to generate a code 
book in a way that minimizes the distortion introduced by 

This work is supported by Vetenskapsrådet project: “Disclosure 
risk and transparency in big data privacy” (VR 2016-03346, 2017-
2020)

 * Navoda Senavirathne 
 navoda.senavirathne@his.se

 Vicenç Torra 
 vicenc.torra@mu.ie; vicenc.torra@his.se

1 School of Informatics, University of Skövde, Skövde, 
Sweden

2 Hamilton Institute, Maynooth University, Maynooth, Ireland

http://orcid.org/0000-0002-2564-0683
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-019-01489-7&domain=pdf


 N. Senavirathne, V. Torra 

1 3

encoding. As explained earlier, this can be used as a data 
protection technique to minimize the disclosure risk.

As explained by Willenborg and De Waal (2012), the 
conventional way of defining the rounding points is to 
convert each xi into a multiple of a given base value b as 
⌊xi∕b⌋ ∗ b . For each rounding point ri , the number of original 
data points ( xi ) that can be mapped to it are known as the 
set of attraction. This is a half open interval indicated as 
[ri −

b

2
, ri +

b

2
) . All the values in the original dataset within 

the above mentioned interval will be represented by ri . It 
is necessary to decide on a suitable b value such that each 
set of attraction is sufficiently large enough (contains a 
least number of elements) in order to avoid disclosure. Fur-
ther, this is explained as choosing the smallest b such that, 
min {Fx(0, r1 +

b

2
),… ,Fx(rn −

b

2
, xmax]} ≥ � is achieved. 

Fx indicates the number of data points that fall within a 
given interval and � indicates the minimum size of the set 
of attraction. However, it is difficult to decide a base value b 
in a way that the distance between |ri − xi| is minimized, and 
the required minimum protection is achieved.

In this work, we explore a few alternative approaches to 
generate the rounding sets. Here, we focus on the univari-
ate case where the numerical attributes are masked one at a 
time. The SDC literature discusses masking methods with 
respect to both univariate and multivariate cases as they 
both have different benefits. In the univariate case, the over-
all distortion introduced by masking can be minimized as 
each variable is considered individually. However, this will 
intrinsically have a higher risk of disclosure compared to the 
multivariate case. Even though the multivariate masking can 
preserve the statistical relationships between the variables it 
would still introduce a high distortion. Moreover, grouping 
the variables for masking is not very straight forward.

• Methods based on data discretization Data points are par-
titioned into k non overlapping intervals, and for each 
interval rounding points are chosen based on a given 
aggregation method e.g., on mean, median, re-sampling 
mean or cluster centroids.

  Here, we consider methods such as equal width dis-
cretization (EWD), equal frequency discretization (EFD), 
re-sampling based discretization (RBD) and K-means 
clustering based discretization (KMD). EWD and EFD 
methods are general data pre-processing techniques often 
used in data analysis and machine learning domains. 
RBD is a new approach that we introduce in this paper.

• Methods based on microaggregation In this case, micro 
clusters are generated over a given set of data points 
ensuring a minimum of k items in each cluster. Then 
cluster centroids are selected as rounding points.

  Three univariate microaggregation methods are con-
sidered in this work. Maximum Distance to Average Vec-
tor (MDAV), Optimal Microaggregation (OMA) (Hansen 

and Mukherjee 2003), and the univariate implementa-
tion of Variable Distance to Average Vector (V-MDAV) 
method initially introduced for multivariate microaggre-
gation.

Once the set of rounding values are identified, a given con-
tinuous variable can be quantized by either replacing each xi 
using a deterministic approach or a stochastic approach. The 
methods mentioned above are explained in Sect. 3.

In the literature, rounding is explained as a statistical 
disclosure control method but we did not come across any 
experimental evaluations of the method. In this paper, we 
work to fill this gap. This will provide a clear understanding 
of rounding as a data masking tool and integrate rounding 
with discretization methods and microaggregation in a uni-
fied framework. We employ unsupervised and supervised 
discretization methods that have not been discussed before 
in the SDC literature in order to obtain the rounding points. 
Then we compare the results of different discretization meth-
ods discussed above in terms of their information loss (IL) 
and disclosure risk (DR).

This paper is structured as below. Related work is men-
tioned in Sect. 2 followed by in detail discussion of different 
rounding methods in Sect. 3. In Sect. 4, experimental setup 
and results are discussed. Impact of data rounding towards 
selected machine learning algorithms is discussed in Sect. 5, 
followed by discussion in Sect. 6 and conclusion in Sect. 7.

2  Related work

The SDC literature contains a plethora of micro-data 
protection methods also referred to as masking methods 
(Domingo-Ferrer 2008; Willenborg and De Waal 2012). 
Based on their operational principles, masking methods can 
be categorised into three categories as perturbative, non-
perturbative and synthetic data generation (Torra 2017). 
Rounding is a perturbative data masking methods.

In this work, we are adopting data discretization meth-
ods to generate the rounding set. Data discretization is used 
widely in machine learning (ML) and knowledge discov-
ery (Chmielewski and Grzymala-Busse 1996; Ibrahim and 
HacibeyoĞLU 2016; García et al. 2013; Dougherty et al. 
1995; Ramírez-Gallego et al. 2016). Benefits of discretizing 
data as a pre-processing step include improvements in induc-
tion time, smaller sizes of induced trees/rules, enhanced 
predictive accuracy and the fact that most of the super-
vised learning algorithms require a discrete feature space 
(Pfahringer 1995; Yang and Webb 2002).

The operating principle of discretization can be used for 
numerical data masking in order to provide a privacy guar-
antee. Discretized data minimize the risk of disclosure, at 
the cost of information loss or decrease in analytical quality 
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of data. Therefore, when designing a discretization method 
minimizing the information loss becomes paramount. In data 
discretization, original attribute values are mapped into a 
more generic, less precise values. Microaggregation (MA) 
is a clustering based SDC technique that is designed for 
continuous data masking. It is considered as a quantization 
mechanism in Ramírez-Gallego et al. (2013) and Willenborg 
and De Waal (2012).

Lloyd (1982) and Max (1960) algorithms are the earli-
est and foremost attempts at creating optimal quantizers 
which is similar to k-means clustering. Here, the under-
lying principle of clustering is used for quantizer design-
ing which is the same notion as discretization. The work 
presented by Rebollo-Monedero et al. (2013) introduced a 
modified version of Loyd-Max algorithm that shows how 
the concept of quantization can be used to achieve privacy 
by creating k-anonymous quantizers. Another algorithm for 
k-anonymous microaggregation is introduced by Rebollo-
Monedero et al. (2011) which is based on the concept of 
distortion-optimized quantizers. The notion of k-anonymity 
is introduced by Sweeney (2002). A dataset is said to satisfy 
k-anonymity for k > 1 , if each data record has at least k − 1 
number of records sharing the same values for quasi iden-
tifiers. Data generalisation and local suppression are used 
to achieve k-anonymity while minimizing information loss. 
Having at least k records sharing the same values for quasi 
identifiers eliminate the risk of identity disclosure.

Data anonymization is studied as a vector quantization 
problem with respect to health data for minimizing individual 
or group re-identification from a released dataset (Miché et al. 
2016). The paper proposes to use properties of vector quanti-
zation to anonymize a given dataset. Zhang (2011) discusses 
how fuzzy discretization can be used for protecting sensitive 
attribute values. Zhu et al. (2009) discuss how data discre-
tization can be used for privacy preserving time series min-
ing and the results indicate that data discretization causes a 
slight reduction of classification accuracy. However, they have 
not discussed the problem with respect to information loss 
or disclosure risk evaluation or comparatively analysing the 
different discretization techniques available. In our work we 
are, targeting to fill this gap with respect to continuous data.

3  Rounding

Rounding on micro data replaces the original continuous 
variable values ( xi ) with selected rounding points ri , so that 
the distance |xi − ri| is minimized. All the rounding points 
obtained with respect to an attribute is known as a round-
ing set. Rounding can be either univariate or multivariate 
and deterministic or stochastic. In this work, we focus on 
deterministic-univariate rounding.

Rounding comprises three sub-processes (a) partitioning 
the dataset into quantization regions, (b) constructing the 
rounding set, and (c) encoding the original values with the 
nearest rounding points. Here, deriving the rounding set is 
the most critical step. Figure 1 depicts the process of obtain-
ing the rounding set.

If rounding is considered as a process of quantization, 
there are two optimality conditions to be met (Lloyd 1982) .

• nearest neighbour condition: select the quantization point 
such that for all xi arg min d(xi, q(xi)) where q() is an 
optimal quantizer.

• centroid condition: each quantization point (rounding 
point) is the centroid of the quantization interval.

In the next section, we are exploring a few techniques that 
can be used to generate the rounding set keeping in mind the 
two optimality conditions of quantizer design.

3.1  Microaggregation for rounding

SDC methods are used for protecting micro-data so that the 
protected data can be released without a risk of disclosure. 
Here, we discuss microaggregation for deriving the round-
ing points.

This is a numerical data masking technique where the 
original values are divided into micro-clusters and then 
they are replaced by the cluster representatives. Parameter k 
defines the number of minimum data points required to form 
a micro-cluster. As the cluster centroid is used to replace 
the original values that fall into the particular cluster, the 
uniqueness of data records is concealed, thus preserving the 
privacy of the released data. The basic idea is to generate 
homogeneous clusters over the original data in a way dis-
tance between clusters are maximized so that the informa-
tion loss can be minimized. Clusters are formed minimizing 
the sum of squared error (SSE) in groups.

Three variants of microaggregation (MA) are used to gen-
erate the rounding set as below.

Fig. 1  Obtaining quantization regions and rounding points for a given 
variable x. Each quantization region is an interval and is represented 
by a rounding point ri ∈ ℝ . A quantization region can be defined as 
Qi = [ai−1, ai)
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• MA based on MDAV (maximum distance to average vec-
tor) algorithm with “fixed” micro-cluster sizes.

• MA based on V-MDAV (variable maximum distance to 
average vector) (Solanas et al. 2006) algorithm with “vari-
able” micro-cluster sizes. This is initially introduced for 
multivariate microaggregation in Solanas et al. (2006). The 
micro-cluster sizes are between k and 2k − 1 . The algo-
rithm is explained in Algorithm 2.

• Optimal MA (OMA) (Hansen and Mukherjee 2003) based 
on the shortest path principle in graphs with “variable” 
micro-cluster sizes lies between k and 2k − 1 . This derives 
the optimal solution for the k partition problem with mini-
mal distortion.

Here, micro-cluster centroids are considered as rounding 
points ( ri ) and each of these points has at least a k number of 
points of attraction from the original dataset.

There exists a wide variety of MA algorithms to gener-
ate the anonymized data other than the ones mentioned above 
(Chettri et al. 2012; Abidi et al. 2018).

3.2  Discretization for rounding

The process of discretization is used to map continuous data 
with a high cardinality into a finite set of values. Discretiza-
tion of a given continuous variable includes sorting the data 
values, partitioning them into non overlapping intervals based 
on a given condition and selecting suitable values to represent 
the data in each interval. Discretization methods can be cat-
egorised into two, as supervised and unsupervised based on 
whether the class information is utilized in the data partition-
ing process. In this work, we are employing the unsupervised 
methods discussed below for obtaining the rounding set as 
class information is not always available for a dataset. More 
specifically, they are used to partition the data.

3.2.1  Equal width discretization (EWD)

The range of a sorted variable is divided into c non-overlap-
ping partitions which are equally sized. Intervals are equi-
distant and c is a user defined parameter. The width of the 
intervals are obtained as interval width = (maxx − minx)∕c.

EWD is known to perform well on uniformly distrib-
uted data. However, with skewed distributions, this results 
in generating unbalanced intervals. Therefore, with EWD 
minimum protection cannot be ensured for rounding points 
obtained for each interval.

3.2.2  Equal frequency discretization (EFD)

Sorted values of a given variable are partitioned into c inter-
vals in a way that each interval will roughly contain n

c
 num-

ber of values.

The issue of unbalanced interval raised by EWD can 
be resolved by adopting EFD. But, EFD is known to have 
some other drawbacks such as duplicate data points being 
assigned into different intervals while very dissimilar values 
can be put together in order to form intervals with a given 
frequency (Bennasar et al. 2012). Also, when the above issue 
is resolved by grouping all the duplicate values within the 
same interval, it is not always possible to generate intervals 
with equal frequency (c) (Jiang et al. 2009). Therefore, the 
flexibility of deciding the number of intervals (anonymity 
constraint—c) is limited in this case.

3.2.3  K‑means clustering (KMD)

Univariate k-means clustering is used on a given variable 
to create c clusters while minimizing the sum of distances 
between data points and cluster centroids. Cluster centroids 
are considered as rounding points, and the original data 
within each cluster is replaced by the centroid values.

3.2.4  Re‑sampling based discretization (RBD)

Here, we explore how re-sampling can be used for discre-
tization. First, we derive a re-sampled dataset from a given 
original dataset and then apply k-means clustering on the re-
sampled dataset for discretization. First the sorted, original 
dataset ( sorteddf  ) is partitioned into x quantiles (in this work 
we use 10 quantiles). Then for each quantile Qi , m bootstrap 
samples ( bs1…m ) are extracted, where each bsi is sized m. 
m is the size of the relevant quantile, that is m = |Qi| . For 
each bootstrap sample, bsi , its centroid (e.g., mean, median) 
is calculated. By repeating this process x ∗ m times, the re-
sampled dataset is generated which is then discretized by 
using k-means clustering. Here, the discretization step is 
tested with other unsupervised discretization methods like 
EWD and EFD. Based on the results use of k-means cluster-
ing outperforms them, and thus we have used it for discre-
tization here. The algorithm is explained in Algorithm 1. 
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3.3  Determining the quality of rounding methods

The results of each discretization method are evaluated 
based on three criteria, (a) information loss (b) disclosure 
risk and (c) the accuracy of machine learning models built 
on the rounded data.

3.3.1  Information loss

In simple terms, information loss measures quantify how 
deviated the masked data from its original version based 
on the statistical properties and the distance between data 
points. In this case, we use two methods to measure infor-
mation loss (IL).

The information loss metrics (ILMetrics) is intro-
duced by Domingo-Ferrer and Torra (2001). In this case, 
the IL is calculated by averaging the mean variance of 
X − X�, X̄ − X̄�,V − V �, S − S� and the mean absolute error 
of R − R� and finally multiplying it by 100. The symbols are 
explained as follows, X—the original data file and X′—the 
masked data file; V and R are covariance and correlation 
matrix of X; and S denotes the diagonal of V where X̄ is the 
variable averages for X. Similarly, the other sets of symbols 
indicate the same properties of the masked data file.

Another IL measure is IL1s which computes the stand-
ardised distances between masked data and the original data 
sca led  by  the  s t andard  dev ia t ion .  Tha t  i s 
IL1s =

1

mn

∑m

j=1

∑n

i=1

�xij−yij�√
2Sj

.

3.3.2  Disclosure risk

The main purpose of applying any SDC method is to mini-
mize the risk of disclosure. Especially when personal data 
are handled, we want to make sure that the application of 
SDC methods mitigates the identity and attribute disclo-
sures. Hence, an adversary with a substantial amount of 
auxiliary information would not be able to identify the data 
records with respect to a given data subject with certainty. 
In this case, two methods are employed to quantify the dis-
closure risk; (a) distance based record linkage (DDR) and 
(b) interval based disclosure (IDR).

In DDR, for each record in the masked data file, the dis-
tance to every record in the original data file is calculated. 
Then, the original data records that report the shortest dis-
tance to a given masked data record are considered as can-
didates for the linking process. A correct match is counted 
if the nearest record in the original data file is, in fact, the 
corresponding original record.

IDR defines an interval around the masked data (based 
on the standard deviation) and checks whether any original 
values fall within this interval (Templ 2017). Risk is meas-
ured as the number of times the above check is positive. 

However, the underlying concept of this is also the distance 
between masked data and original data. In order to distin-
guish this from DDR we refer to this as IDR in this work. 

3.3.3  IL‑DR score

As discussed above, IL is measured based on IL metrics 
and IL1s while disclosure risk is calculated based on IDR 
and DDR. These values obtained for each masked/discre-
tized dataset is then used to derive a score as explained 
below (Domingo-Ferrer and Torra 2001).

IL-DR score gives equal weight to different IL (information 
loss) and DR (disclosure risk) measures we have obtained. 
Therefore, it is used to understand the trade-off between pri-
vacy (DR) and utility (IL). The lower the score, the better 
the particular discretization methods is.

3.3.4  Accuracy of ML models

This can also be considered as another way of measuring 
information loss. Here, we explore how rounding impacts 
the predictive accuracy of machine learning (ML) models. 
This is studied with respect to linear regression and decision 
trees. The prediction accuracy of the ML models trained 
on masked data is determined based on how accurately the 
models can predict the original data. Low prediction accu-
racy on original data indicates that the masked data used 
to train the models have a poor utility. For linear regres-
sion models mean squared error (MSE) and R2 score is used 
to evaluate the utility of the models built on masked data 
along with information loss measures discussed above. With 
respect to decision trees, mainly classification accuracy and 
entropy is used for the analysis. Decision tree classifiers are 
built using the RPART 1 package available on R.

IL-DRscore =(IL Metrics ∗ 0.25 + IL1s ∗ 0.25

+ 0.25 ∗ DDR + 0.25 ∗ IDR)

1 https ://cran.r-proje ct.org/web/packa ges/rpart /rpart .pdf

https://cran.r-project.org/web/packages/rpart/rpart.pdf
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4  Methodology and experimental results

As explained previously, we evaluate different techniques 
that can be used to obtain the rounding set which is based on 
microaggregation or unsupervised discretization techniques. 
These methods are then evaluated with respect to distortion 
(information loss) and anonymity (disclosure risk) while 
changing other properties such as data distribution and data-
set size. Finally, the impact of data masking on ML learning 
based data modelling is evaluated using linear regression 
and decision tree algorithms.

4.1  Data

For the experiments two types of datasets are used; (a) 
synthetic datasets following theoretical distributions, i.e., 
exponential, uniform and normal distributions, and (b) Tar-
ragona2, Boston housing information3, and Wine4 classi-
fication datasets which are openly available. All synthetic 
datasets are 2 × 500 in dimension and generated using rexp, 
runif and rnorm functions available in R respectively to gen-
erate exponential, uniform, and normal distributions. Param-
eters for generating the synthetic datasets are as follows. 
Exponential distribution is generated with � = 0.08 , normal 
distribution is generated with ( � = 0 , � = 1 ) and uniform 
distribution is generated with minimum and maximum val-
ues in the range of (0,1). Dimension of the other datasets are: 
Tarragona as 834 × 13 , Boston housing information 506 × 14 
and Wine classification as as 179 × 14.

4.2  Results

In this Section, we have reported the results from the experi-
ments. First, we compare the information loss (IL), and dis-
closure risk (DR) values obtained for different synthetic 
datasets. Comparisons are made for microaggregation based 
methods and unsupervised discretization methods. MDAV, 
V-MDAV and OMA are compared together as they are 
microaggregation based discretization methods, whereas the 
unsupervised discretization methods such as EWD, EFD, 
KMD, and RBD are compared together. Here, each of the 
above mentioned methods is used to obtain the rounding set. 
This can also be explained as partitioning a dataset based on 
specified criteria. Then for each partition, the representative 
values are selected and then the original data are replaced 
by them. IL is the distortion caused by this encoding pro-
cess while DR indicates whether we can directly identify a 
given masked data record (after rounding is applied) with 

respect to its original record with a certainty. This can also 
be explained as the number of successful record linkages 
between the original dataset and the rounded dataset.

4.3  Setting anonymity constraints

We have selected the anonymity constraint values (k and c 
respectively for microaggregation and unsupervised discre-
tization) in a way that approximately the same number of 
data points are used to form the micro-clusters in microag-
gregation and the intervals/ clusters in unsupervised dis-
cretization to obtain the rounding points. The relationship 
between k and c can be explained as below. The k and c 
values are set like this in order to compare the overall result 
at the end.

The selected set of values for parameter k in microaggrega-
tion are { 167, 100, 50, 34, 25, 20 }. These are approxi-
mately equal to the selected parameter values c for unsuper-
vised discretization. They are respectively { 3, 5, 10, 15, 20, 
25 }. In synthetic datasets each attribute has 500 instances.  

4.4  Microaggregation for rounding

In the case of microaggregation, the number of data points 
per micro-cluster (k) is directly proportional to IL, and it 
is inversely proportional to DR. The higher the number of 
values in micro-clusters, the quality of the selected round-
ing points will be low resulting in high IL. This behaviour is 
vice versa, when a fewer number of values are used to form 
the micro-clusters.

Here, three MA based methods are compared with respect 
to different synthetic data distributions and the results are 
shown in Tables 1, 2 and 3. As explained in Sect. 3.3.3 the 
lower the IL-DR scores the better the specific method is. 
With respect to exponentially distributed data VMDAV 
outperforms the other two microaggregation methods when 
evaluated based on the IL-DR Score (see column IL-DR 
Score on the above mentioned tables). When uniformly and 
normally distributed data are considered, OMA performs 
better than the other two MA methods. However, with 
respect to uniformly distributed data when the k value is low 
(i.e., k = 34, 25, 20) VMDAV performs better than OMA. 
With high k values, OMA performs better. With respect to 
normally distributed data when the k value is low, both OMA 
and MDAV perform equally. As we can see despite being 
the “optimal” method for microaggregation, OMA does 
not always produce the lowest IL-DR Scores. Compared to 

k ≈
# of instances in attributej

c

c ≈
# of instances in attributej

k

2 https ://cran.r-proje ct.org/web/packa ges/sdcMi cro/index .html
3 https ://cran.r-proje ct.org/web/packa ges/mlben ch/index .html
4 https ://archi ve.ics.uci.edu/ml/datas ets/wine

https://cran.r-project.org/web/packages/sdcMicro/index.html
https://cran.r-project.org/web/packages/mlbench/index.html
https://archive.ics.uci.edu/ml/datasets/wine
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other methods, in most of the cases, OMA results in high 
disclosure risk (DR) ratios caused by the high utility of the 
rounded data. Eventually, this results in high IL-DR Scores 
which indicate a high privacy utility trade-off.

The same experiments are used on Tarragona dataset 
to measure IL and DR, as shown in Fig. 2. In this experi-
ment, IL is also measured in terms of the sum of square 
error (SSE) and total sum of squares (SST). SSE indicates 
within the group homogeneity in micro-clusters. SST is the 

Table 1  Comparison of IL 
and DR measures obtained for 
the exponentially distributed 
synthetic dataset with varying 
anonymity constraints (k)

Increasing anonymity constraint (k) value relates to low DR (high privacy) and high IL

Rounding method Anonymity 
constraint (k)

IL metrics IL1s IDR DDR IL-DR score

MDAV exponential 167 103.26 542.51 0.05 0.00 161.45
100 43.06 179.47 0.24 0.03 55.70
50 123.91 102.12 0.47 0.09 56.65
34 52.49 98.40 0.63 0.16 37.92
25 73.26 57.10 0.73 0.26 32.84
20 81.86 44.48 0.82 0.31 31.87

OMA exponential 167 126.50 335.30 0.07 0.00 115.47
100 43.06 179.47 0.24 0.03 55.70
50 123.91 102.12 0.47 0.09 56.65
34 75.18 74.33 0.64 0.17 37.58
25 73.26 57.10 0.73 0.26 32.84
20 84.40 44.36 0.81 0.29 32.47

VMDAV exponential 167 120.57 335.54 0.07 0 114.05
100 78.66 201.09 0.15 0.01 69.98
50 7.54 99.86 0.43 0.07 26.98
34 10.65 79.99 0.65 0.16 22.86
25 4.11 58.30 0.72 0.24 15.84
20 3.30 42.45 0.75 0.30 11.70

Table 2  Comparison of IL and 
DR measures obtained for the 
uniformly distributed synthetic 
dataset with varying anonymity 
constraints (k)

Increasing anonymity constraint (k) value relates to low DR (high privacy) and high IL

Rounding method Anonymity 
constraint (k)

IL metrics IL1s IDR DDR IL-DR score

MDAV uniform 167 284.75 354.33 0.04 0.00 159.78
100 26.07 122.59 0.15 0.03 37.21
50 9.34 62.70 0.28 0.09 18.10
34 25.19 46.26 0.40 0.16 18.01
25 13.15 31.96 0.57 0.28 11.49
20 2.01 25.41 0.73 0.33 7.12

OMA uniform 167 52.66 321.22 0.04 0.00 93.48
100 26.07 122.59 0.15 0.03 37.21
50 9.34 62.70 0.28 0.09 18.10
34 21.65 43.05 0.42 0.17 16.32
25 22.49 30.98 0.59 0.27 13.58
20 50.22 24.16 0.75 0.32 18.86

VMDAV uniform 167 138.60 321.43 0.05 0.00 115.02
100 9.48 156.13 0.12 0.01 41.44
50 11.02 70.86 0.25 0.08 20.55
34 3.85 44.89 0.40 0.17 12.33
25 3.33 32.23 0.56 0.26 9.10
20 1.29 24.47 0.74 0.32 6.71
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summation of, between the groups’ sum of squares (SSB) 
and SSE. Here the IL is calculated based on the following 
formula IL =

SSE

SST
∗ 100 . The formulas are explained in detail 

in Chettri et al. (2012).
As shown in Fig. 2a, b both OMA and VMDAV results 

in low IL compared to MDAV. OMA reports the highest DR 
compared to the other two methods. When Consider the IL 
and DR trade-off VMDAV outperforms the other two meth-
ods. Most of the attributes in the Tarragona dataset are expo-
nentially distributed. Based on the results obtained on the 
synthetic datasets, VMDAV is the most suitable approach 
for rounding when a dataset is exponentially distributed. The 
test results confirm this finding.

4.5  Unsupervised discretization for rounding

In the case of unsupervised discretization, the number 
of intervals/clusters (c) are inversely proportional to IL, 
whereas it is directly proportional to DR. The higher the 
number of intervals, the quality of the selected rounding 
points will also be high resulting a low IL and a DR. When 
the number of intervals is few, a large number of data points 
fall into a given interval thus introducing a high data distor-
tion once a rounding point is selected for discretization.

A noteworthy point is that, in the case of unsupervised 
discretization a high value for the anonymity constraint c 
indicates low privacy whereas this behaviour in microag-
gregation based methods are vice versa. The reason for 
this is the quality of the selected rounding point which 

discretizes the values fall into a particular interval/cluster 
or a micro-cluster.

Here, four unsupervised discretization methods are evalu-
ated with respect to rounding, namely re-sampling based 
discretization (RBD), equal width discretization (EWD), 
equal frequency discretization (EFD) and k-means based 
discretization (KMD). Tables 4, 5 and 6 contains the results 
of using unsupervised discretization methods to obtain the 
rounding set with respect to different theoretical distribu-
tions. Generally, EWD outperforms the other methods with 
respect to exponential and normal distributed data. However, 
we analyse these results more closely. When the number of 
intervals are fewer (i.e., 3, 5) on exponentially and normally 
distributed data RBD performs better than the other methods 
as it reports the lowest average IL-DR score. For normally 
distributed data when the interval size is 3 ( c = 3 ) the IL-DR 
scores are respectively 60.76, 84.27, 166.76 and 254.56, for 
RBD, EWD, KMD and EFD. Exponentially distributed 
data also show that RBD reports the lowest IL-DR score 
of 69.73 when the interval size is 3, compared to 71.31 by 
EFD, 104.18 by EWD and 278.75 by KMD. For both nor-
mally and exponentially distributed data, when the number 
of intervals (c) is high (i.e., 25) EWD results in a low IL-DR 
score compared to the other methods. When the data are 
uniformly distributed, EFD outperforms the other methods.

In conclusion, with respect to a fewer number of intervals 
RBD performs better than the other methods when the data 
are normally or exponentially distributed. With the afore-
mentioned distribution types, if the data are partitioned into 

Table 3  Comparison of IL and 
DR measures obtained for the 
normally distributed synthetic 
dataset with varying anonymity 
constraints (k)

Increasing anonymity constraint (k) value relates to low DR (high privacy) and high IL

Rounding method Anonymity 
constraint (k)

IL metrics IL1s IDR DDR IL-DR score

MDAV normal 167 35.85 404.89 0.05 0.00 110.20
100 44.73 169.16 0.12 0.02 53.51
50 6.28 91.08 0.31 0.08 24.44
34 8.44 75.21 0.41 0.15 21.05
25 5.31 52.61 0.54 0.25 14.68
20 3.24 42.73 0.68 0.33 11.75

OMA normal 167 35.61 377.93 0.03 0.00 103.39
100 44.73 169.16 0.12 0.02 53.51
50 6.28 91.08 0.31 0.08 24.44
34 5.40 67.72 0.41 0.16 18.42
25 5.73 51.49 0.57 0.26 14.51
20 3.96 42.16 0.69 0.32 11.78

VMDAV normal 167 38.36 378.30 0.04 0.00 104.18
100 30.91 201.79 0.09 0.01 58.20
50 9.05 90.49 0.26 0.07 24.97
34 21.13 71.15 0.39 0.16 23.21
25 14.94 50.72 0.54 0.25 16.61
20 6.45 43.08 0.67 0.31 12.63
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a high number of intervals it is advisable to use EWD. How-
ever, if the data are uniformly distributed EFD is preferred 
irrespective of the number of intervals.

Figure 3 depicts the IL and DR analysis on Tarragona 
dataset when unsupervised discretization methods are used 
for obtaining the rounding set. A steady decrease in IL and 

Fig. 2  Microaggregation based discretization on Tarragona dataset
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gradual increment in DR can be noted when the data are 
split into a high number of intervals. As per the results, RBD 
performs poorly with regarding to IL. This is indicated by 
the high SSE ratio and IL metrics values shown in Fig. 3a, 
b. In this case, EWD outperforms the other methods in terms 
of IL and DR.  

4.6  Comparative analysis of the rounding methods

Here, we comparatively evaluate microaggregation and 
un-supervised discretization methods for rounding, based 
on their mean IL-DR Scores. In this case, an average value 
for IL-DR Scores are obtained over differing k or c values. 
As discussed earlier, the selected k or c parameter values 
ensure approximately a similar number of data points are 
used to form each micro-cluster or interval/cluster. There-
fore, this comparison can be justified. Figure 4 depicts the 
results of applying different rounding methods on different 
synthetic datasets. It can be noted that compared to nor-
mally and uniformly distributed data, exponentially dis-
tributed data incurs a high privacy-utility trade-off. When 
considering microaggregation based methods, OMA is more 
suitable for normally and uniformly distributed data. For 

exponentially distributed data VMDAV is preferable. Out 
of unsupervised discretization methods, EWD is more suit-
able for exponentially or normally distributed data. EFD 
performs better when the data are uniformly distributed. 
Overall OMA, VMDAV, EWD methods are more suitable 
for obtaining the rounding set compared to other methods 
under consideration.

5  Impact of rounding for modelling data

In this section, we explore the impact of rounding when 
data are modelled using machine learning algorithms. Two 
types of machine learning algorithms are used to build the 
models: (a) linear regression, and (b) decision trees. The 
quality of the models is evaluated based on the classification 
accuracy, R2 values and the mean squared error (MSE) based 
on their relevance. We compare the impact of applying dif-
ferent discretization methods based on the above mentioned 
evaluation criteria. The results of the different discretiza-
tion methods are measured with varying anonymity con-
straint values (k for microaggregation and c for unsupervised 
discretization).

Table 4  Comparison of IL 
and DR measures obtained for 
the exponentially distributed 
synthetic dataset with varying 
anonymity constraints (c)

Increasing anonymity constraint (c) value relates to high DR (low privacy) and low IL

Rounding method Anonymity con-
straint (c)

IL metrics IL1s IDR DDR Score

EWD exponential 3 38.36 378.30 0.04 0.00 104.18
5 30.91 201.79 0.09 0.01 58.20

10 9.05 90.49 0.26 0.07 24.97
15 21.13 71.15 0.39 0.16 23.21
20 6.45 43.08 0.67 0.31 12.63
25 14.94 50.72 0.54 0.25 16.61

EFD exponential 3 46.69 238.38 0.12 0.04 71.31
5 48.03 157.61 0.26 0.10 51.50

10 110.12 93.24 0.52 0.29 51.04
15 52.76 69.97 0.72 0.39 30.96
20 38.58 55.39 0.79 0.43 23.80
25 34.22 40.73 0.84 0.46 19.06

KM exponential 3 721.23 393.67 0.10 0.01 278.75
5 246.42 281.97 0.13 0.03 132.14

10 56.39 131.91 0.34 0.10 47.19
15 37.69 96.27 0.60 0.20 33.69
20 44.70 84.10 0.68 0.27 32.44
25 33.13 70.86 0.80 0.34 26.28

RBD exponential 3 83.77 195.00 0.14 0.02 69.73
5 52.36 131.56 0.23 0.04 46.05

10 66.82 99.42 0.36 0.11 41.68
15 52.78 80.98 0.56 0.19 33.63
20 67.99 76.46 0.62 0.25 36.33
25 73.79 71.87 0.69 0.30 36.66
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For the unsupervised discretization methods, apart from 
the user defined c values the number of bins are also decided 
based on FreedmanDiaconis rule which is widely used for 
deriving the interval width based on the following formula, 
width = 2 ∗

IQR(x)
1∕3
√
n

 . The same formula is used to decide the 
micro-cluster size k, for each variable in the dataset as, 
k =

number of data points

width
 . In this case, instead of processing each 

variable with the same anonymity constraint value (which is 
either the number of intervals (c) or the micro-cluster size 
(k)) it is determined per variable based on the FreedmanDi-
aconis rule.

5.1  Evaluating model accuracy

Microaggregation and unsupervised discretization methods 
are used to obtain the rounding set. For linear regression 
R2 and MSE values are used to evaluate the model utility. 
R2 value indicates the goodness of fit. It explains how close 
the actual data points are to the fitted regression line. In 
other words, this is the variation of the response variable 
that can be explained by the model. Therefore, a higher R2 
value illustrates a model with a good fit for the underlying 

data. However, in this case R2 cannot be used for compara-
tive analysis as they are measured on different independ-
ent training data sets obtained through different rounding 
methods. Instead, it is used to understand the relationship 
between the data and the respective models. In order to com-
pare the model utility MSE is used, and this is calculated as 
MSE =

1

n

∑n

i=1
(y − ŷ)2 . Here, y indicates the original values 

of the response variable before rounding, and ŷ indicates the 
predicted values. The lower the MSE, the better the models 
are.

In the case of decision trees, classification accuracy is 
used for the comparison. Here, two types of accuracy fig-
ures are obtained. AccV is the validation accuracy of a given 
model on the rounded testing data. AccO is the classification 
accuracy of the model, with respect to original (un-rounded) 
data. Here, AccO is used for comparison.

5.2  Experimental setup

As explained earlier, in each scenario a different discretiza-
tion method is used to obtain the rounding set, and then the 
original values are encoded using them. When applying EFD 

Table 5  Comparison of IL and 
DR measures obtained for the 
uniformly distributed synthetic 
dataset with varying anonymity 
constraints (c)

Increasing anonymity constraint (c) value relates to high DR (low privacy) and low IL

Rounding method Anonymity 
constraint (c)

IL metrics IL1s IDR DDR IL-DR score

EWD uniform 3 8.92 192.29 0.11 0.04 50.34
5 169.69 112.67 0.19 0.10 70.66

10 30.53 55.78 0.35 0.29 21.73
15 33.11 35.61 0.50 0.39 17.40
20 9.23 25.06 0.68 0.44 8.85
25 9.55 19.14 0.85 0.46 7.50

EFD uniform 3 26.21 176.25 0.15 0.04 50.66
5 118.17 96.02 0.25 0.10 53.64

10 82.68 39.00 0.52 0.28 30.62
15 55.23 25.91 0.69 0.38 20.55
20 4.84 21.49 0.81 0.44 6.90
25 11.19 16.44 0.93 0.46 7.25

KM uniform 3 444.61 365.00 0.09 0.02 202.43
5 224.58 238.74 0.14 0.04 115.87

10 127.93 124.75 0.28 0.12 63.27
15 27.65 90.95 0.40 0.21 29.80
20 36.80 71.42 0.56 0.28 27.27
25 12.12 56.48 0.68 0.34 17.40

RBD uniform 3 47.60 171.48 0.13 0.02 54.81
5 177.20 120.92 0.17 0.04 74.58

10 15.59 73.15 0.32 0.12 22.29
15 15.16 55.61 0.36 0.17 17.83
20 10.53 37.41 0.51 0.28 12.18
25 3.40 33.82 0.55 0.31 9.52
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some variables cannot be partition exactly into the specified 
number of intervals c. This is due to the fact that unique 
partitions cannot be created for the variable when a par-
ticular c value is determined. In such cases, the next highest 
number of intervals are selected for discretization. The same 
approach was used when partitioning data into x number of 
quantiles in RBD.

Usually, SDC/masking methods are applied only to the 
quasi identifiers-the variables that work as indirect identi-
fiers and can be used for re-identification or record link-
age-and the sensitive (dependent) variables are left in their 
original form. By masking such variables their uniqueness 
is concealed, thus limiting the risk of disclosure. However, 
in these test scenarios we have considered all the continu-
ous variables as quasi identifiers and masked them using 
microaggregation and discretization methods. For the data-
sets used to train decision trees, the sensitive variable (class 
variable) is left as it is since they are categorical in nature.

In the case of linear regression datasets, the sensitive 
(dependent) variable is also numerical. From the prelimi-
nary test results, it was noted that when all the continuous 
variables of a given dataset is masked (fully discretized), 
including the sensitive (dependent) variable, the trained 

model’s utility is better than (low MSE value) leaving the 
sensitive (dependent) variable unmasked. For example, on 
Boston housing prices dataset when the LR models are built 
on a fully discretized dataset, the utility of the discretized 
models are equal or better than the original model 26

55
 times. 

As opposed to the above, when the sensitive (dependent) 
variable is not masked, always the original model reports 
a better utility value. This is resulted by the strengthened 
correlation among the variables when the same treatment is 
applied to the predictive variable. Therefore, in the LR test 
cases the datasets are fully masked.

5.3  Results

Table 7 illustrates the results of linear regression on rounded 
training data with varying anonymity constraint values (k or 
c). When the results are compared based on the MSE values, 
it can be seen that MDAV reports the highest number of 
instances where the MSE values are lower than or equal to 
the original model (baseline model). For a k parameter value 
as high as 25, all the MA based methods are reporting MSE 
values less than the original model, indicating that the dis-
cretized models are not only providing a privacy guarantee 

Table 6  Comparison of IL and 
DR measures obtained for the 
normally distributed synthetic 
dataset with varying anonymity 
constraints (c)

Increasing anonymity constraint (c) value relates to high DR (low privacy) and low IL

Rounding method Anonymity 
constraint (c)

IL metrics IL1s IDR DDR IL-DR score

EWD normal 3 74.72 262.23 0.09 0.04 84.27
5 38.27 169.53 0.15 0.08 52.01

10 12.24 79.88 0.29 0.18 23.15
15 8.62 48.81 0.44 0.27 14.54
20 7.76 36.00 0.53 0.34 11.16
25 5.60 27.41 0.68 0.38 8.52

EFD normal 3 768.79 249.30 0.10 0.04 254.56
5 50.10 151.99 0.17 0.10 50.59

10 12.70 79.99 0.38 0.28 23.34
15 8.71 55.19 0.57 0.38 16.21
20 6.30 42.03 0.72 0.42 12.37
25 6.47 34.25 0.80 0.44 10.49

KM normal 3 58.76 608.24 0.05 0.01 166.76
5 48.48 353.31 0.10 0.03 100.48

10 17.83 181.04 0.20 0.09 49.79
15 5.67 122.52 0.31 0.17 32.17
20 16.63 95.34 0.43 0.26 28.16
25 5.10 78.30 0.58 0.32 21.07

RBD normal 3 23.62 219.33 0.07 0.02 60.76
5 25.42 155.80 0.11 0.04 45.34

10 17.44 87.47 0.24 0.11 26.31
15 14.07 79.39 0.35 0.18 23.50
20 14.51 71.02 0.38 0.22 21.53
25 14.14 60.11 0.52 0.32 18.77
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Fig. 3  Unsupervised discretization methods on Tarragona dataset
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but also results in high predictive accuracy. Here, the MSE 
values (prediction accuracy) are obtained from  the mod-
els built on rounded/discretized data which are then used to 
obtain the predictions on the original data. The lowest MSE 
values of 14.57 and 17.88 are reported by EFD when the 
parameter c is set to 3 and 10 respectively. Both EWD and 
RBD provide a higher number of instances where the predic-
tive accuracies are better than the original case. Moreover, 3 
out of 4 cases of using Freedman–Diaconis rule with respect 
to unsupervised discretization methods also result in bet-
ter predictive accuracies compared to the baseline model. 
However, none of the KMD instances were able to achieve 
the baseline predictive accuracy or better. As shown by the 
results the IL loss values (shown by IL metrics) are not 
directly related to the predictive accuracy of the models. On 
average MA based methods work better than the unsuper-
vised discretization methods.

Predictive accuracy of the ML models is not that suscep-
tible to the information loss caused by discretization. The 
discretized data are deviated from its original form, but the 
statistical properties required to model the data are preserved 
so that they can be used to train useful ML models. In the 
case of LR we have obtained the mean absolute correlation 
that summarizes the correlation matrix of a given data file. 

As indicated by the results most of the anonymity constraint 
value and the masking methods combinations maintain their 
correlation values within ±0.2 from the original value. Gen-
erally, the higher correlation results in lower MSE and vice 
versa.

Table 8 illustrates the results of applying rounding on 
decision tree classifiers. Two accuracy measures are taken 
for the evaluation purpose. AccV indicates the classification 
accuracy of a given ML model on its test data, and AccO 
indicates the classification accuracy of a given ML model 
with respect to the original data. In this case, models are 
built on the rounded/ discretized data and evaluate on the 
original data. This criterion is used as an evaluation measure 
to understand the utility of the models built on masked data.

The average ACCO values reported by each method is as 
follows; OMA—0.9289, MDAV—0.93, VMDAV—0.936, 
EWD—0.95, EFD—0.946, KMD—0.918 and RBD—0.924. 
As shown by the results EWD, EFD and VMDAV methods 
perform better than the rest. Showing the same pattern as 
previous KMD performs poorly. On the discretized/rounded 
dataset we derived the entropy values based on Shannon’s 
entropy for each variable and sum it up to obtain the total 
entropy for each variable. As it is shown by the results when 
data are discretized, the entropy is decreased. Moreover, 

Fig. 4  Mean IL-DR score for 
different rounding methods
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Table 7  Linear regression on 
Boston housing prices dataset

Rounding method Anonymity constraint (k/c) MSE R
2 Mean abso-

lute correla-
tion

IL metrics IL1S

Original model – 21.89 0.74 0.46 0.00 0.00
OMA 2 21.89 0.74 0.46 2.33 12.66

3 21.91 0.74 0.46 2.78 21.15
5 21.90 0.74 0.46 2.36 42.25
7 21.87 0.74 0.46 2.97 65.87
10 22.03 0.74 0.46 2.39 96.33
15 22.00 0.74 0.47 2.73 145.82
20 21.65 0.74 0.47 3.62 201.15
25 21.58 0.75 0.47 4.07 254.65
FreedmanDiaconis rule 22.13 0.74 0.46 3.73 298.22

MDAV 2 21.89 0.74 0.46 0.82 21.97
3 21.94 0.74 0.46 0.95 40.44
5 21.84 0.74 0.46 1.18 63.28
7 21.82 0.74 0.46 1.32 95.86
10 21.79 0.74 0.46 1.61 141.55
15 21.47 0.75 0.46 2.28 215.80
20 21.64 0.75 0.46 2.84 263.42
25 21.56 0.75 0.46 3.09 299.78
FreedmanDiaconis rule 22.84 0.74 0.46 2.67 434.27

VMDAV 2 21.88 0.74 0.46 1.13 20.59
3 21.86 0.74 0.46 1.23 37.02
5 21.87 0.74 0.46 1.56 55.68
7 21.99 0.74 0.46 1.11 93.31
10 21.95 0.75 0.46 1.71 122.94
15 22.07 0.74 0.46 1.93 176.33
20 22.12 0.73 0.46 2.30 274.15
25 21.73 0.75 0.47 2.86 296.07
FreedmanDiaconis rule 22.36 0.74 0.46 2.50 346.52

EWD 3 24.13 0.69 0.43 5.66 7533.45
5 23.58 0.74 0.46 5.60 4456.77
10 21.79 0.74 0.46 3.78 2396.30
15 22.07 0.74 0.46 4.65 1630.63
20 21.62 0.74 0.45 3.09 1228.44
30 21.74 0.74 0.46 2.38 810.90
Freedman–Diaconis rule 21.81 0.74 0.46 4.05 1362.59

EFD 3 14.57 0.70 0.44 6.31 7268.81
5 27.18 0.70 0.45 4.78 4517.43
10 17.88 0.76 0.46 4.42 2829.41
15 22.99 0.73 0.46 4.43 1987.84
20 23.00 0.73 0.46 3.97 1860.71
30 22.23 0.74 0.46 4.15 1364.85
Freedman–Diaconis rule 21.61 0.74 0.45 3.94 1739.21

KMD 3 39.15 0.56 0.38 9.19 13856.35
5 27.89 0.66 0.41 8.89 9074.86
10 22.83 0.71 0.44 5.41 4730.21
15 22.94 0.73 0.45 4.49 3070.48
20 22.67 0.73 0.45 5.16 2839.30
30 22.37 0.73 0.45 3.30 2010.76
Freedman–Diaconis rule 22.48 0.72 0.44 5.17 3856.14
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entropy is inversely related to information loss. As anonym-
ity constraint value (k) increases in MA methods the entropy 
drops gradually, and the opposite behaviour can be seen with 
respect to unsupervised discretization methods. However, 
low entropy does not impact the validation accuracy ( ACCV ) 
of the decision tree models. The correlation between ACCV 
and entropy is 0.14 which indicates a negligible positive 
relationship. When correlation is measured between ACCO 
and entropy it shows a moderately inverse relationship of 
− 0.54 where the accuracy increases as the entropy decrease. 
This behaviour can be explained as below. Low entropy lev-
els indicate less amount of information or less uncertainty in 
data. This can also be attributed to the less diversity in the 
underlying data. When continuous data are less diverse due 
to discretization (as many unique data points are replaced 
with centroids), the ML models derived from such data are 
more generalized compared to the models built on original 
data as they are not over-fitted. Therefore, the DT models 
built on discretized data still shows a fairly good accuracy 
when they are used to predict previously unseen data despite 
the IL incurred in the process.

In these experiments, we have also employed two super-
vised discretization methods that use class information in 
order to discretize continuous data. The two methods are, 
namely discretization using minimum description length 
principle (MDLP) and discretization using ChiMerge 
(ChiM) algorithm. MDLP is an entropy based method 
whereas ChiM uses �2 statistics to determine the discretiza-
tion points. Many empirical studies conducted in the litera-
ture have shown that supervised discretization methods are 
more effective compared to the unsupervised discretization 
methods in terms of maintaining a high predictive accuracy 
when training and validation accuracies are determined. In 
this case, we are also interested in measuring AccO which 
indicates the utility of a discretized model against the origi-
nal data when supervised discretization methods are used. 
Also, we want to explore whether supervised discretization 
methods can be used as an alternative for generating the 
rounding set. When discretized using supervised methods, 

validation accuracy ( AccV ) is equal or greater than the origi-
nal model. However, when the original data are classified 
using the discretized ML models ( AccO ) it can be seen that 
the accuracies are far lower than any other method. Never-
theless, low entropy values are noted in this case. However, 
the reduction of entropy has to be done carefully. Otherwise, 
as shown by the outcomes of the supervised discretization 
methods, a significant reduction of entropy can lose use-
ful information so that the minimum amount of information 
required to learn the model is no longer available. Thus, the 
models built on such data inherits a poor predictive accuracy 
when tested with new data. This indicates that for rounding 
supervised discretization methods are not ideal.

When the overall results are considered it can be seen 
that Freedman–Diaconis rule provides a very close accuracy 
to the original case despite the dataset or the discretization 
methods adopted. Interval based DR on Boston housing 
dataset when the Freedman–Diaconis rule is applied vary 
from 0.40 to 0.83 (OMA-0.5889, MDAV-0.5945, VMDAV-
0.5561, EWD-0.8346, EFD-0.7929, KMD-0.4996 and RBD-
0.40612), which provides a good privacy-utility trade-off 
compared to the other methods. Therefore this method can 
be considered when selecting anonymity constraint values as 
it provides a good accuracy while minimizing the disclosure 
risk. Especially, in the cases where the data owners do not 
have a clear insight on what value should be selected as the 
anonymity constraint (degree of privacy).

We have also performed experiments with iris and faithful 
datasets, but for the sake of conciseness in the discussion 
it is restricted to the ones mentioned above. Results of the 
datasets iris and faithful were similar to the above.

6  Discussion

In this work, we have explored different discretization 
methods in order to mask the numerical data. Based on the 
results it can be concluded that microaggregation (MA) 
based methods incur a low IL compared to unsupervised 

Table 7  (continued) Rounding method Anonymity constraint (k/c) MSE R
2 Mean abso-

lute correla-
tion

IL metrics IL1S

RBD 3 33.49 0.60 0.44 8.26 12894.81

5 23.40 0.70 0.47 7.26 8610.45

10 20.41 0.73 0.48 6.15 6134.04

15 19.47 0.75 0.49 7.41 5547.41

20 18.96 0.75 0.48 5.70 5071.81

30 19.49 0.75 0.49 6.82 5053.47

Freedman–Diaconis rule 18.91 0.76 0.49 7.44 6282.77
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Table 8  Decision tree models 
trained on Wine classification 
dataset

Rounding method Anonymity constraint (k/c) Acc_V Acc_O Entrpoy IL metrics IL1S

Original model – 0.88 0.94 82.80 0.00 0.00
OMA 2 0.88 0.93 78.42 4.96 235.16

3 0.89 0.94 73.60 6.72 427.77
5 0.86 0.93 65.73 6.22 756.31
7 0.90 0.95 60.34 9.87 1054.22
10 0.85 0.93 54.24 10.51 1456.06
15 0.89 0.94 46.41 10.84 2194.82
20 0.86 0.90 40.39 12.60 2913.20
25 0.86 0.91 38.05 10.21 3420.58
Freedman–Diaconis rule 0.89 0.93 45.07 10.52 2365.54

MDAV 2 0.88 0.93 81.12 2.33 331.50
3 0.88 0.93 76.15 3.85 580.20
5 0.90 0.95 68.00 6.38 959.74
7 0.86 0.94 61.88 8.28 1260.79
10 0.87 0.93 54.45 11.42 1854.36
15 0.86 0.92 46.12 10.37 2718.31
20 0.92 0.92 40.00 14.42 3593.31
25 0.84 0.91 38.05 8.90 3543.17
Freedman–Diaconis rule 0.90 0.94 45.33 8.32 2620.36

VMDAV 2 0.92 0.95 78.41 2.88 305.69
3 0.86 0.94 73.15 3.91 543.03
5 0.90 0.94 64.58 4.66 884.94
7 0.88 0.93 58.96 6.71 1185.81
10 0.87 0.95 52.95 8.69 1612.67
15 0.93 0.95 45.70 10.52 2390.37
20 0.89 0.92 40.43 10.74 3076.69
25 0.85 0.92 35.57 11.00 3740.52
Freedman–Diaconis rule 0.87 0.92 43.67 10.28 2609.10

EWD 3 0.92 0.96 36.90 13.23 4533.74
5 0.89 0.94 45.64 6.97 2761.45
10 0.93 0.96 56.12 8.40 1444.51
15 0.90 0.96 62.04 5.63 968.42
20 0.87 0.95 66.00 3.77 764.86
30 0.86 0.93 70.94 4.24 452.76
Freedman–Diaconis rule 0.89 0.95 57.17 8.09 1378.13

EFD 3 0.83 0.94 38.89 20.23 4149.45
5 0.86 0.94 46.73 11.20 2786.93
10 0.88 0.93 58.57 6.44 1455.19
15 0.90 0.96 65.08 8.91 964.08
20 0.89 0.95 68.94 8.07 722.20
30 0.90 0.94 72.29 4.92 562.61
Freedman–Diaconis rule 0.93 0.96 59.81 5.89 1329.15

KMD 3 0.86 0.90 21.58 17.19 7868.63
5 0.88 0.91 30.17 12.31 4768.16
10 0.89 0.92 42.94 8.99 2526.06
15 0.85 0.92 49.32 8.20 1785.65
20 0.90 0.93 54.70 5.91 1366.02
30 0.86 0.93 61.75 5.88 961.64
Freedman–Diaconis rule 0.87 0.92 43.35 7.67 2491.14
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discretization methods and intuitively results in an 
improved DR. A single discretization technique or an ano-
nymity constraint value cannot be determined as the best in 
addressing the privacy-utility trade-off, as the nature of the 
underlying data impacts that. However, methods like OMA, 
VMDAV and EFD perform well in most of the instances. 
For normal and exponentially distributed data with a small 
number of intervals (c), RBD (Re-sampling based discre-
tization) is suitable over the other methods as it incurs a 
low privacy-utility trade-off. For a uniformly distributed 
dataset EWD or EFD can be used to obtain the rounding 
set with minimal privacy-utility trade-off. On average, uni-
formly distributed data can be discretized with minimal IL 
compared to other data distributions we have checked here. 
Normally distributed data incurs the highest IL whereas 
exponentially distributed data reports the highest DR 
despite the rounding method we use. Therefore, examining 
the data distribution beforehand can be helpful in deciding 
the rounding method and privacy parameters such as inter-
val/cluster size, aggregation method etc. Instead of using 
a fixed anonymity constraint value for all the variables, we 
can define the size of k or c per each variable in the case of 
univariate discretization. We have illustrated some example 
cases in the experiments using Freedman–Diaconis rule 
to determine the anonymity constraint without having to 
specify it by the users. The experiments show that in both 
unsupervised discretization and MA, the outcome of using 
the above approach is very close to the baseline results.

As discussed earlier, releasing of rounded/discretized data 
helps to mitigate the disclosure risk. However, this results in an 
IL which directly impacts the analytical value of the underlying 
dataset. In this work, we explored how IL caused by round-
ing can influence the predictive power of the machine learn-
ing models. It seems that IL does not necessarily result in poor 
predictive accuracy in ML models. In many cases, rounding 
improves the model utility as it reduces the noise in the data so 
that the ML algorithm can learn without the risk of over-fitting.

For example, data owners release a perturbed version of 
original data to the data analysts in order to minimize the risk 
of disclosure. Assume the data masking method used is care-
fully tuned so that the analytical value of data is not com-
pletely destroyed. In this case, the models trained on such data 
should also have good predictive accuracy, maybe with a slight 
reduction compared to the original model. When we build a 
ML model, one of the main concerns is to avoid model over-
fitting. If the generated models are more generalized towards 
the training data a better accuracy can be seen when new 
data are classified using these models. In ML, this is mainly 
achieved through regularization. In our case, generalized data 
are used to train the models with the expectation that it would 
result in simple but accurate models. The other advantage is 
that these data masking techniques also guarantee a degree of 
privacy for the data in use. This privacy and utility trade-off in 
model building can be justified if we are dealing with sensitive 
information. Considering the above mentioned facts, it can be 
concluded that models built on rounded data are generalized, 
thus it secures a good predictive accuracy.

7  Conclusion

“Rounding” is a numerical data masking technique which has 
not been discussed previously in the literature with empiri-
cal results. The operating principle of rounding can be seen 
as discretization or quantization where the continuous values 
are mapped into a discrete space. In this work, we discuss 
rounding in a unified way with unsupervised discretization 
and microaggregation where these methods are used to gener-
ate the rounding sets. Also, we have introduced a re-sampling 
based discretization method for continuous data which works 
better with a small number of intervals thus minimizing the 
disclosure risk. Then these methods are evaluated based on 
their information loss and disclosure risk with respect to theo-
retical distributions and real world data. Finally, the rounded 

The accuracy values are obtained based 10-cross fold validation and mean values are reported

Table 8  (continued) Rounding method Anonymity constraint (k/c) Acc_V Acc_O Entrpoy IL metrics IL1S

RBD 3 0.89 0.91 43.14 8.81 2681.74

5 0.85 0.93 42.95 10.25 2664.94

10 0.88 0.93 42.85 11.46 2658.41

15 0.86 0.91 42.76 11.89 2707.15

20 0.87 0.93 42.73 12.16 2657.79

30 0.85 0.91 42.78 8.16 2724.58

Freedman–Diaconis rule 0.90 0.95 42.89 10.18 2687.42
MDLP – 0.88 0.39 18.08 33.03 10317.56
ChiM – 0.93 0.30 31.89 12.75 6691.81
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data are used to train linear regression, and decision tree 
models and the impact of rounding towards model accuracy 
is discussed. Based on the results, it can be concluded that 
generally, microaggregation based methods are more suitable 
for deriving the rounding set. However, based on the data dis-
tribution in some cases unsupervised discretization methods 
outperforms microaggregation methods. Also, we have used 
Freedman–Diaconis rule to define the anonymity constraint 
value per each attribute and shown that this method can be 
used to minimize disclosure risk while maintaining a model 
utility closer to the benchmark (original) model.

This work is focused on univariate, deterministic round-
ing. In future work, it will be interesting to explore multi-
variate and stochastic rounding based on the above discussed 
methods. Also, a study on different aggregation methods that 
can be used to obtain the centroids/rounding points will be 
interesting in terms of managing the IL and DR.
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