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In this Letter, the authors propose a low-complexity search method for
carrier frequency offset (CFO) estimation in generalised frequency
division multiplexing (GFDM). The proposed technique does not
have any limitations on CFO acquisition range while providing an
accurate estimate. Compared with the existing solutions in the literature
with the lowest complexity, the proposed technique brings at least an
order of magnitude complexity reduction without any performance
penalty. Finally, the numerical results and comparisons with the exist-
ing literature in terms of performance and complexity attest the efficacy
of the proposed method.
Introduction: One of the main challenges in multicarrier systems such
as generalised frequency division multiplexing (GFDM) is their sensi-
tivity to carrier frequency offset (CFO), caused by Doppler effect and
local oscillator (LO) imperfections [1]. In typical wireless systems,
LO accuracy is usually in the order of parts-per-million of the carrier fre-
quency. Hence, the amount of CFO that is imposed by the LO misalign-
ments in the emerging mmWave systems can be increased by orders of
magnitude compared with sub-6 GHz systems. There have been a few
recent attempts in the literature that address the CFO estimation in
GFDM. In [1], the well-known Schmidl and Cox synchronisation tech-
nique [2] is adopted to GFDM. In [3], a blind maximum likelihood (ML)
CFO and timing offset (TO) synchronisation technique have been pro-
posed. Na et al. [4] designed a preamble consisting of two identical
pseudo-noise (PN) sequences for TO and CFO estimation. However,
all the estimation methods in [1–4] are limited to the CFO acquisition
range of only half subcarrier spacing. To address this issue, a few sol-
utions in the literature have been proposed [5–7]. Li et al. [5] proposed
a joint CFO and channel estimation method which can be straightfor-
wardly extended to GFDM. However, its performance highly depends
on the type of the training sequence being deployed and it is very
complex for implementation in practical systems. More recently, the
authors in [6, 7] proposed joint ML-based CFO and channel estimation
techniques with concentrating on the complexity issue which take the
particular advantages of the Zaduff-Chu (ZC) sequences.

In this Letter, we deploy a preamble block for GFDM containing two
similar frequency-domain ZC (FD-ZC) sequences at the beginning of
each data packet. Deployment of this particular training sequence
leads to a cost function for the ML-based CFO estimator in [6] that is
sparse. Consequently, the search space will be reduced to a small
number of search regions. Therefore, we propose a search method that
leads to around an order of magnitude complexity reduction without
any performance penalty compared with the solutions in [5–7]. We
demonstrate superiority of our proposed method over the solutions in
[5–7] through computational complexity analysis and performance com-
parisons using simulations.

System model: LetM and N be the total number of GFDM symbols and
subcarriers in each GFDM block, respectively. According to the fre-
quency spreading GFDM transmitter structure in [6], the GFDM trans-
mit signal can be constructed as

x = FH
MN diag(a0)Cde[0]+ · · · + diag(aM−1)Cde[M − 1]

( )
, (1)

where diag(am) is a diagonal matrix whose diagonal elements
include the elements of the vector am = [1, e−( j2pm/M ), . . . ,
e−( j2pm/M )(MN−1)]T, C is an MN ×MN circulant matrix with the first
column c = [c0 c1 · · · cM−1 0 · · · 0 cM−1 · · · c1]T containing the
2M − 1 non-zero frequency domain coefficients of the prototype
filter, and the MN × 1 vector de[m] is the M-fold expanded version of
the column vector d[m] = d0, m, . . . , dN−1, m

[ ]T
, with the entries dn, m

corresponding to the data symbol to be transmitted on the nth subcarrier
and the mth time slot. Finally, FMN is the MN-point normalised
discrete Fourier transform matrix with the elements [FMN ]kℓ =
(1/

�����
MN

√
)e−j(2pkℓ/MN ). In GFDM, a cyclic prefix (CP) which is longer

than the channel delay spread is appended to the beginning of the
block, x, prior to transmission to accommodate the channel transient
period. This enables frequency-domain equalisation to tackle the
wireless channel impairments and reduce the channel equalisation
complexity.
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The MN × 1 received signal vector r that has gone through the
channel, after CP removal can be written as r = EXh+ n where
n � CN 0, s2

vIMN

( )
is the complex additive white Gaussian noise

vector with the variance s2
v . The vector h = [h0, . . . , hL−1]

T is the
channel impulse response (CIR) with the length L, and E = diag(w)
is the MN ×MN CFO matrix where w = [1, e j2p1/N , . . . ,
e( j2p1(MN−1))/N ]T and 1 is the normalised CFO to the subcarrier
spacing. Additionally, the MN × L matrix X contains the first L
columns of a circulant matrix whose first column equals to the GFDM
transmit signal x.

Proposed CFO estimation: Based on the results of previous section, CIR
coefficients can be calculated as ĥ = XHX

( )−1
XHEHr. Substituting h

with ĥ in r = EXh+ n, the ML-based CFO estimate can be obtained as

1̂ = argmax
1̃

rHẼX XHX
( )−1

XHẼ
H
r

{ }
, (2)

where Ẽ is obtained in the same way as E by substitution of 1̃ rather than
1. However, using (2), an accurate CFO estimate can only be achieved
through exhaustive search with a very small step-size in the range
|1̃| ≤ N/2. This can lead to a very large search space and thus a high
computational load. To solve this issue and lower the complexity, in
this Letter, we feed two similar FD-ZC sequences into the GFDM modu-
lator to form the preamble block. Additionally, using M = 2 for the pre-
amble reduces the training overhead. It is worth to note that a ZC
sequence with the length N is defined as z = 1/

���
N

√
[1, e jbp/N ,

. . . , e( jbp/N )(N−1)2 ]T, where b is an integer parameter relatively prime
with respect to N. Thus, the FD-ZC sequence can be obtained as
c = FN z. According to (1), it can be shown that the orthogonal
property of the FD-ZC sequence is preserved for the transmitted signal
and the matrix XHX becomes diagonal [7]. Consequently, equation (2)
reduces to

1̂ = argmax
1̃

rHẼX
∣∣∣ ∣∣∣∣∣∣ ∣∣∣

2

{ }
. (3)

where 1̂ can be obtained by maximising the cost function G = ‖rHẼX‖2.
For the reasons that will be explained shortly, the main benefit of our pro-
posed training sequence is that it makes the cost function G sparse. This
dramatically reduces the search space size and leads to a substantial com-
plexity reduction.

At high SNRs, r ≃ EXh and (3) is equal to 1̂ =
argmax1̃ hHXHFX

∣∣ ∣∣∣∣ ∣∣
2

{ }
, where F = Ẽ

H
E = diag jT ljT

[ ]T( )
with j = [1, e j2pDf /N , . . . , e( j2pDf (N−1))/N ]T, Df = 1̃− 1 and
l = e j2pDf . Concentrating on the term Q W XHFX, it can be shown
that the elements [Q]l1 , l2 in the L× L matrix are obtained as

[Q]l1 , l2 = re( jbp(l2
2−l1

2))/N
∑N−1

n=0

e(−j2p(bl1−bl2+Df )n)/N , (4)

where r = 2c20(1+ l), Df = Dfi + Dff , and Dfi and Dff are the integer
and fractional parts of Df , respectively. Assuming Dff = 0 and
−N/2 ≤ Dfi ≤ N/2− 1, we can conclude that (4) is non-zero only
when Dfi = b(l2 − l1), see Fig. 1 (note that this figure is obtained
when the search step-size is g = 1). Hence, the cost function G has
2L− 1 local peaks that are spaced b positions away from each other.
This feature of the cost function is the key to our proposed algorithm
that achieves an accurate CFO estimation with a very low computational
cost. Our proposed search method, summarised in Algorithm 1, involves
two stages, namely, coarse estimation and fine estimation. At the coarse
estimation stage, we set the search step-size to a value larger than one to
reduce the computational cost. This is due to the fact that we only need
to find the local peaks. According to Fig. 1, by setting the search step-
size in the range L , g ≤ 2L− 1, we can find at least one local peak.
However, a very small peak out of the range (A −b× L/2,
A+b× L/2) that may be buried in the noise may be found which
will lead to an inaccurate CFO estimate. Hence, the largest search step-
size that can be used to achieve a reliable CFO estimate is g = L. Using
this step-size, we find the location of one of the local peaks that maxi-
mises G. Knowing that the spacing of b between the peaks, we will
find ⌈g/2⌉ peaks at each side of the peak that was found in step 1 of
Algorithm 1, where ⌈·⌉ is the round-up operator. Then, we will
locally search the neighbourhood of one subcarrier spacing around
each of these peaks with the step-size of 10% the subcarrier spacing
and find the coarse CFO estimate, 1̂0 that maximises G. Finally, at the
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fine estimation stage, we search the neighbourhood of 1̂0 in q iterations
to achieve a CFO estimate with an accuracy of d = 10−(q+1).
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Fig. 1 Cost function G with N = 128, L = 11, 1 = −11.1283 and b = 3
Algorithm 1 (Proposed search method for CFO estimation):

Initialisation:
Set the primary search step: g = L∗

Set the search tolerance: d = 10−(q+1)

Algorithm:
Step 1: c0 = argmax

c̃

G{ } for c̃ [
[− N

2
,
N

2

)
with the search step g.

Step 2: Determine ci = c0 + bi, for i = +{1, 2, . . . , ⌈g/2⌉}, i.e. the
peaks located at the neighbourhood of c0.

Step 3: 1̂0 = argmax
c̃

G{ } where c̃ [
⋃
i
[ci − 0.5, ci + 0.5), for

i = +{0, 1, . . . , ⌈g/2⌉} with the search step 0.1. (Coarse estimation)
Step 4: for n = 1 to q, 1̂n = argmax

1̃
G{ }, where 1̃ [

[1̂n−1 − 10−n, 1̂n−1 + 10−n) with the search step 10−(n+1), end (Fine
estimation)
∗ Due to the spacing of b between the peaks, g = kb (k = 0, 1, . . . ).

Complexity analysis: From Algorithm 1, one may realise that step 1,
steps 2 and 3, and step 4 involve N/g, 10 g+ 1

( )
, and

((2× 10+ 1)q) times evaluation of the cost function, respectively,
which in turn includes 2LN number of complex multiplications
(CMs). Hence, our proposed estimation method requires
2LN N/g+ 10(g+ 1)+ 21q

( )
number of CMs. In comparison, the

computational load of the methods in [5, 6] are approximately 4N3

and 2LN N + 10(4(L− 1)+ 3)+ 21q
( )

number of CMs, respectively.
We compare our proposed method in this Letter with the ones in
[5, 6] as they are the only available solutions in the literature applicable
to GFDMwithout any limitations on the CFO range. Fig. 2 compares the
computational complexity of our proposed method as a function of the
number of subcarriers with the solutions in [5, 6] for L = 11, q = 2, and
three different values of g. We set q = 2 to achieve estimation accuracy
of 10−3 that falls well below the requirement of the LTE standard,
i.e. accuracy of 2% the subcarrier spacing. Note that when g = 1, the
same curve as in [7] is obtained for our proposed method. Fig. 2
shows that our proposed method leads to around an order of magnitude
complexity reduction compared with the solutions in [5, 6] without any
performance penalty as shown in the following section. From this figure,
one may realise that the choice of g = L/2 leads to a lower complexity
than when g = L for the values of N smaller than 512. This is while for
the larger values of N than 512, a lower complexity can be achieved
when g = L. This is because for the small values of N, as g increases,
search need to be performed for a relatively large number of local
peaks in step 2. Taking this point into account, for the values of
N , 512 and N . 512, we choose g = L/2 and g = L, respectively.

Simulation results: In this section, we numerically evaluate the mean
squared error (MSE) performance of our proposed method and
compare it against the solutions in [5, 6]. We consider N = 128 and
M = 2, the subcarrier spacing of 15KHz and use the extended typical
urban channel model (ETU) as defined in the long term evolution
ELECTRONICS LETTERS
(LTE) standard. Also, g = L/2 and the CP length is ⌊0.1N⌋, i.e. long
enough to accommodate the wireless channel delay spread and use a
root-raised cosine prototype filter with the roll-off factor of a = 0.1,
in all the simulations [6].
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Fig. 2 Computational complexity comparison for different methods

Fig. 3 shows the MSE performance of different estimation techniques
where the CFO values are chosen randomly with the uniform distri-
bution in the range 1 [ [− (N/2), N/2). As shown in this figure,
the MSE performance of our proposed estimator improves as
signal-to-noise ratio (SNR) increases and is close to the relevant
Cramer-Rao bound. We also compare our method with the ones in
[5, 6] where the PN and ZC training sequences are deployed.
Although our proposed method leads to the same MSE performance
as the solution in [6], our proposed method has a lower computational
complexity than the one in [6]. Also, the MSE of the method in [5]
with PN sequence follows our proposed method for the SNRs higher
than 6 dB. This is while the method in [5] suffers from a poor perform-
ance when FD-ZC training sequence is utilised.
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Fig. 3 MSE of the CFO estimation

Conclusion: In this Letter, we proposed a low-complexity search
method for CFO estimation in GFDM. Our proposed CFO estimation
method does not have any limitations on the CFO range. We showed
that our proposed method brings an order of magnitude complexity
reduction compared to the existing solutions in the literature with the
lowest complexity without any performance penalty.
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