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Abstract: Infinite circular corrugated waveguide is analysed to investigate its ability to support modes with
backward wave behaviour. Such waveguides provide an alternative structure, easier to manufacture than
those already reported based on rectangular symmetry with corrugated walls or filled with frequency selective
surfaces. The corrugations if sufficiently deep provide a guiding structure with the required series capacitance
and shunt inductance to allow left-handed propagation within some frequency bands. These backward waves
are analysed using the surface impedance model of propagation in corrugated waveguides to predict their
properties. Interpreting the physical meaning of the analysis, the authors discuss how backward waves are
related to resonances in corrugated structures. The relationship between power flows in the guide and the
behaviour of the group velocity for such guides is shown. A full wave simulator is also applied to validate
these results and the case of a dielectric filled waveguide is considered showing the improved ability to
support left-handed modes. The authors present the results of a parametric study of how left-handed
propagation depends on the corrugation depth. Potential applications of backward waves in corrugated
circular waveguides are proposed.
1 Introduction
Metmaterial structures for microwave and antenna devices
have been amply introduced and studied in recent years
[1, 2]. These are structures that support left-handed
propagation in addition to conventional right-handed
propagation. Several studies have been made of
transmission lines with left-handed behaviour [3, 4].
Principal advances and applications using metamaterials in
transmission lines include improved response and more
compact design. Among guided-wave structures,
waveguides are characterised by their low loss, high-power
handling capability and the absence of leakage and other
extraneous phenomena due to their closed geometries. The
first papers related with such structures examined the left-
handed propagation of backward waves [5, 6]. The
propagation of backward waves in rectangular waveguides
with printed split-ring resonators was investigated. In
addition, corrugated waveguides with dielectric-filled
corrugations were also analysed using an equivalent
transmission line model [7, 8]. Furthermore, modal and
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dispersion characteristics of rectangular waveguides with
dielectric-filled corrugations were studied in recent papers.
Another study of backward wave propagation in a
waveguide based on periodic structures loaded with various
frequency selective surface (FSS) strip layers is described in
detail in [3–9]. Therefore as reported thus far in the
literature, backward wave propagation behaviour of a
waveguide is achieved both by means of periodic strip FSS
layers and also by making use of corrugations filled with
dielectric. However, all of these studies have been always
based on rectangular waveguides.

In this paper, we report on our study of the modal and
dispersion characteristics of circular corrugated waveguide
to probe its ability to support backward waves, that is,
waves that exhibit phase advance in the direction of
propagation. Propagation in circular corrugated waveguide
has been extensively discussed by Clarricoats and Olver
[10, 11]. Corrugated waveguides have been used in horn
antenna applications, where the corrugations serve as a
high-impedance surface required to support hybrid modes
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that improve the radiation characteristics. A new function for
the corrugated surface may, however, be sought to support
backward waves in the waveguide. For left-handed waves to
propagate, the guiding structure should provide series
capacitance and shunt inductance within some frequency
ranges. Corrugations introduce such an effect provided they
are sufficiently deep.

We aim to demonstrate the ability of circular corrugated
waveguide to support backward waves of a simple form.
The principal advantages compared with a rectangular
waveguide are the easier manufacture of the circular
waveguide, the availability of two polarisations for multiple
applications and miniaturisation of systems and devices. In
addition, we also suggest other significant and powerful
applications such as bandpass filtering in waveguide-fed
quasi-optical systems and negative refractive index-based
microwave plate lenses.

The main theoretical approach we have taken for the
analysis of backward waves in corrugated circular waveguide
is the so-called surface impedance method, as described by
Clarricoats. In this approach, we consider the waveguide as
having its corrugated surface replaced by a wall of uniform
non-isotropic impedance (with different impedances in the
transverse and axial directions) [12]. The analysis is
relatively straightforward to implement and complemented
by the qualitative insight given by mode-matching
techniques [10, 11]. It allows us to predict the approximate
frequency bands for backward wave behaviour for
waveguides with different relative slot depths. In the mode-
matching technique, the corrugated waveguide structure is
regarded as a sequence of cylindrical waveguide segments
with the radius stepping between the top and bottom of
the corrugation slots [11–15]. We then go on present the
results of a full-wave simulation based on CST software
[16] (based on the FDTD method). This allows us to
analyse more complex structures such as waveguides with
dielectrically filled grooves.

The theoretical analysis of the corrugated circular
waveguide based on the surface impedance model is
presented in Section 2. Dispersion diagram characteristics
and power-flow distributions are discussed. In Section 3,
we present the results of computational modelling,
including the example of waveguide with the corrugations
filled with high dielectric permittivity. We present a
parametric study of this case. In Section 4 we discuss
potential applications of corrugated circular waveguide as a
backward wave-supporting structure, and conclusions and
future work are discussed in Section 5.

2 Analytical approach
From an analytical viewpoint, we can most easily study
backward wave propagation in corrugated waveguides by
considering the surface impedance technique as described
by Clarricoats and Olver [10, 11], in which the
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corrugations are represented by a continuous non-isotropic
impedance surface bounding an inner region of radius r1.
(Fig. 1) This approach assumes many corrugations per
wavelength (.4) and narrow slots, so that only a single
non-propagating TM mode is capable of existing in the
slot (of depth r0 2 r1). The propagating hybrid waveguide
modes in the inner guide (of depth r , r1) can be regarded
as a mixture of TE and TM fields, with the z components
of the electric and magnetic fields

Ez(r, f) ¼ am Jm(Kr) cos mf exp j(vt � bz) (1)

and

Hz(r, f) ¼ amy0
�L Jm(Kr) sin mf exp j(vt � jbz) (2)

where y0 is the admittance of free space, b the propagation
coefficient with K 2 ¼ k22b2 (the usual waveguide
equation), k ¼ v/c and �L the so-called normalised hybrid
factor. The transverse fields can be derived from the
z-component of the fields in the usual way [17]
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so that, for example

Ef(r, f) ¼
jam

K 2

mb

r
Jm(Kr)þ k �LKJ 0m(Kr)

� �

� sin mf exp j(vt � bz) (4)

The necessary requirement that the f component of the
electric field be zero (Ew ¼ 0) at the corrugations yields the
following relationship between �L and b

�L ¼ �
mbJm(Kr1)

kKr1 J 0m(Kr1)
¼ �

mb̄

Fm(Kr1)
(5)

where Fm(x) ¼ xJ 0m(x)/Jm(x) and where b̄ ¼ b=k.

As discussed in Clarricoats [10] in order to derive the
dispersion relationships for the propagating modes in the
waveguide relating k and b, we match at r ¼ r1 (the radius

Figure 1 Definition of the waveguide structure
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of the inner guide) the admittance of the hybrid mode in
the inner region of the guide given by Y ¼ (Hw/
Ez) ¼2jyo(k/K )2[Fm(Kr1) 2 mb2/Fm(Kr1)] to the surface
admittance of the lowest order TMm in the slot,
Y ¼2jyoS(kr1, kr0), where Sm(x, y) is given by

Sm(x, y) ¼ x
J 0m(x)Ym(y)� Jm(y)Y 0m(x)

Jm(x)Ym(y)� Jm(y)Ym(x)
(6)

This yields the characteristic equation for b

Fm(Kr1)�
(mb̄ )2

Fm(Kr1)
¼

Kr1

kr1

� �2

Sm(kr1, kr0) (7)

It is clear from the work of Clarricoats that for sufficiently
deep corrugations, dispersion curves with negative slopes
(db/dk) can exist, these in general corresponding to the
lowest order mode of the different families of modes
defined by their azimuthal symmetries. For example, the
dispersion curves for the two lowest order modes with
azimuthally symmetry defined by m ¼ 1 and for the case of
r1/r0 ¼ 0.48 are shown in Fig. 2.

Clearly, the EH11 is a backward wave in the sense that the
group velocity (dk/db) . c is negative, whereas the phase
velocity (k/b) . c is positive (or vice versa). In fact, for
values of r1/r0 less than about 0.6, the lowest order mode
EH11 mode has a significant section of the dispersion
curve (k,b) with a negative slope db/dk implying
backward wave behaviour over useful finite bandwidths
(Fig. 3). Results are coincident with those presented in
[12, 13].

The strongest backward wave effects occur for r1/r0 � 0.48
approximately. It is noteworthy that the nature of the EH11

mode changes at cut-on (b ¼ 0) around this value, from pure
TM for r1/r0 , 0.480 with kr1 ¼ 1.8412, to pure hybrid
with �L ¼ �1 for r1/r0 ¼ 0.480 and pure TE for r1/r0 .

0.480 with kr1 ¼ 3.8317. This is because as noted by
Clarricoats [10] there are two cases for which the

Figure 2 Dispersion diagrams for HE11 and EH11 modes
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characteristic equation is satisfied with b ¼ 0, either J01(kr1) ¼
0 (which corresponds to pure TE mode in the inner guide
at cut-off/on with kr1 ¼ 1.8411) or J1(kr0) ¼ 0 (which
corresponds to pure TM in the inner guide). These two cases
represent the cut-off/on kr1 of either the EH11 or the HE11

mode, with the EH11 cut-off/on occuring at the lower value
of the two possible cases of kr1 for which b ¼ 0. As illustrated
in Fig. 4, for r1/r0 , 0.48, the EH11 cut-on varies
linearly with kr1 (TM in the inner guide), whereas for r1/r0 .

0.48, it is a constant at kr1 ¼ 1.8411 (TE in the
inner guide). When r1/r0 ¼ 0.48, both conditions are
satisfied and cut-off of both modes occurs at the same
value of kr1.

In fact, to understand physically what is happening in the
guide (r , r1), it is illuminating to consider the power flows
and the behaviour of the Poynting vector with r. Clearly, for a
backward wave, we expect that the power flow will be
opposite in direction to the phase velocity of the
hybrid mode. In other words, the flux of the pointing
vector S over the guide cross-section will be opposite in
direction to that of b (the propagation wavevector for
the mode along the guide at least for some values of r).
For the=case where m ¼ 1, the Poynting vector, Sz ¼

(E � H �)z ¼ ExHy
�

2 EyHx
� can be written (after some

Figure 3 Dispersion curves for EH11 mode and cut-off/on
kr1 for EH11 mode

a Dispersion curves for EH11 mode for several values of
r1/r0 ¼ 0.30, 0.35, 0.40, 0.48.0.60
b Cut-off/on kr1 for EH11 mode (bold curve) as a function of r1/r0

Dashed line represents the cut-off for the HE11 mode
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algebraic manipulations) as

Sz ¼ y0 a1k=2 Kj j
� �2

ð( �bþ �L)(1þ �b �L)J 2
0 (Kr)

� ( �L� �b)(1� �b �L)J 2
2 (Kr)� [( �Lþ �b)(1� �b �L)

þ ( �L� �b)(1þ �b �L)] J0(Kr)J2(Kr) cos 2f
� �

Þ (8)

We divide the waveguide cross-section into infinitesimal
concentric annuli of radii r and width dr and integrate the
Poynting vector over the area of the annulus to compare
how power flow dP in an annulus of width dr varies as a
function of r. Clearly, dP (r) is given by

dP(r) ¼

ð2p

0

Sz(r, f)df

� 	
r dr

¼ y0

a1

2

k

jK j

� �2

�b(1þ �L
2
) J 2

0 (Kr)þ J 2
2 (Kr)

� �


þ �L(1þ �b
2
) J 2

0 (Kr)� J 2
2 (Kr)

� ��
2pr dr (9)

If for different cases of r1/r0 , 0.6, we now consider the
sign of dP (r) as b is varied along the dispersion curve
(kr1, br1), we find that the power flow is along the
2z direction for at least some parts of the waveguide cross-
section (r , r1).

We will first consider power flows for the case r1/r0¼ 0.48
in this regard. At b¼ 0 (cut-on/off), the EH11 mode is pure
hybrid with �L ¼ �1. This also coincides with the
admittance of the corrugation slot being zero since Sm(krr1,
kr0) ¼ 0, implying the slot is ‘resonant’ with a standing
wave in the radial direction since Hw ¼ 0 at r ¼ r1 and r0.
We see that for small values of br1� 1, since �L must still
be given by �L ’ �1, then dP (r), the power flow in
an annulus of width dr, must be negative since for all

Figure 4 Plot showing the power flow per annulus dP(r)/dr
for various values of br1, showing backward flow for low
values and forward flow along corrugated walls for high
values (r1/r0 ¼ 0.48)
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r , r1 (implying a backward f lowing wave)

dP(r) ¼

ð2p

0

Sz(r, f)df

� 	
rdr

’ (�1)y0
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k

jK j

� �2

J 2
0 (kr)� J 2
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2pr dr , 0 (10)

This is because J 2
0 (kr)� J 2

2 (kr) ¼ J1(kr)J 01(kr)=4 � 0, as long
as kr1 , 1.8414. Thus, the wave has to be left handed for low
values of b. Since dP (r) represents the power flow through an
annulus of width dr and is clearly proportional to dr, we
therefore plot dP (r)/dr (the power flow through an annular
ring of width dr divided by dr) as a function of r/r1 in
Fig. 4. Thus, for example at point 1, (kri, bri) ¼
(1.812,0.100), we see that dP (r)/dr is essentially negative
for all values of r (Fig. 4).

As bri increases, we find that the pattern of dP (r)/dr
changes. Thus, there is some power flow in the positive z
direction (with dP (r)/dr . 0) close to walls. Note that for
the forward HE wave we obtain the more ‘normal’
behaviour expected (with dP (r)/dr . 0) for all values of r.
The case of (kri, bri) ¼ (1.9881, 0.75) is also shown in
Fig. 4. As b increases further and we approach the
inflection point, the integrated Poynting vector cross-
section (i.e. total power flow in the guide) tends to zero

P ¼

ðr1

0

ð2p

0

Sz(r, f)r dr df ¼

ðr1

0

dP(r)! 0 (11)

and there is a balance between power flowing ‘backward’
along the central region of the guide and ‘forward’ close to
the corrugated walls, again as illustrated in Fig. 4. For
higher values of bri .2.3, more power flows in the forward
direction (close to the corrugated walls) and the mode
becomes a forward mode (Fig. 4). Thus, for (kri, bri) ¼
(1.6205,4.00), power flow is predominantly close to the
corrugated walls and in the forward direction only and the
mode becomes a conventional forward one.

For r1/r0 . 0.48, the mode is pure TE at cut-on and
the backward flow of power becomes less pronounced (e.g.
r1/r0 ¼ 0.60, as shown in Fig. 5). There is already a
forward component of the total power in the guide close to
the corrugated walls even at cut-off/on for br1 ¼ 0, and as
br1 increases, balance is quickly reached between the total
power flowing in the reverse and forward directions. Again
this balance occurs at the value of (kri, bri), for which the
group velocity db/dk is zero (point of inflection). The
mode is only backward over a rather small bandwidth.

The situation is more interesting for cases where r1/r0 ,

0.48 as the backward wave regime in the guide has a bigger
bandwidth. The backward mode is then pure TM
( �L ¼ 1) at cut-on (b ¼ 0) and the region of the guide
close to the corrugations now has a negative non-zero
power flow dP (r)/dr. As we move upwards along the
IET Microw. Antennas Propag., 2008, Vol. 2, No. 7, pp. 659–667
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dispersion curve (as br1 increases), and provided the
corrugations are not too deep (0.48 , r1/r0 , 0.35,
approximately), we reach a point where the admittance of
the walls shrinks to zero, Sm(krr1, kr0) ¼ 0, again implying
the slot is ‘resonant’ with a standing wave in the radial
direction with Hw ¼ 0 at r ¼ r1 and r0. At this point,
dP (r)/dr is now zero at r ¼ r1. Then as br1 grows further
along the dispersion curve power flow dP (r)/dr in the
positive direction for the region close to the corrugations
sets in, and eventually balance is reached between the total
power flowing in the forward and reverse directions, so that
total power flow is zero. This point again coincides with
the group velocity also being zero. In general, we see that
the group velocity reaching zero (inflection point on the
dispersion curve) coincides with the total power in the
guide (integrated Poynting vector). See Fig. 6 for example
cases of r1/r0 ¼ 0.48, 0.60.

For very deep corrugations (r1/r0¼ 0.30 or less), however, the
power flow remains negative and the point on the dispersion

Figure 6 Plot of dk/db (bold curves) and total integrated
Poynting vector (light lines) in relative units, as a function
of br1 for the two cases r1/r0 ¼ 0.48 (right-hand curves)
and 0.60 (left-hand curves)

Both curves change sign at the same value of (kr1, br1)

Figure 5 Plot showing the power flow per annulus dP(r)/dr
close to cut-on/off br1 � 0 for various values of r1/
r0 ¼ 0.4, 0.48, 0.6
Microw. Antennas Propag., 2008, Vol. 2, No. 7, pp. 659–667
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curve where the admittance is zero, Sm(kr1, kr0) ¼ 0 is only
reached as br1! 1. In fact, the power flow also becomes
concentrated close to the corrugated walls as br1! 1,
although now in the backward direction, the field flux drops
sharply to zero right at the walls. In this section, we have only
considered the case of m ¼ 1. Similar behaviour exists for
higher values of m, but with the backward wave behaviour at
higher values of kr1. The symmetry of these modes is, of
course, more complex. From a scattering matrix viewpoint, we
regard the waveguide as made up of a sequence of wide and
narrow circular waveguide segments.

Conventional circular waveguide modes propagate in each
segment in both the forward and backward directions. Modes
may also be evanescent. At the junction between two
segments, the modes are scattered by the discontinuity.
The mode-matching technique allows this scattering to be
computed through the conservation of complex power.
This is desribed in detail by Olver [11].

What is unusual for the case of the backward wave mode
for m ¼ 1 and r1/r0 ¼ 0.48, for example, is that for kr1 ,

1.8414 no propagating waveguide mode can exist in the
narrow waveguide segments. Yet for the band range of the
EH11 mode in fact we have kr1 , 1.8414. On the other
hand, of course, the wider waveguide segments (coinciding
with the slots) can support a propagating TE11 mode,
otherwise there would be no propagation at all.
Furthermore, in order to satisfy the boundary conditions, a
significant number of higher-order evanescent modes are
also required in both the narrow and wide guide sections.
In fact, the wide segments (with the deep slots) act like
cavities. The system therefore behaves like a guide
consisting of coupled waveguide cavities (in which both
propagating and evanescent modes exist) connected by
short sections in which all modes are evanescent. In this
case, clearly a complex multi-moded standing wave
structure will build up in the cavities and we see
qualitatively that the classic set up for backward wave
behaviour exists, in that the system consists of a series of
coupled oscillators. The backward wave behaviour only sets
in therefore when there is a necessary strong scattering
between the modes.

3 Computational results
We present the results of a corrugated circular waveguide
obtained with a full-wave simulation from CST software
[18]. In Fig. 7, we show the universal dispersion diagram
for the first seven modes (some of which are degenerated)
for r1/r0 ¼ 0.5 close to the value of 0.48 considered in
Section 2.

As we can see from the slopes of the dispersion curves, it is
possible to obtain modes that can support both forward and
backward waves. The passbands for these modes as well as the
stopbands of the waveguide are obvious. Also, in Fig. 8, we
show the electric and magnetic energy densities for the first
663
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left-handed mode EH11, which are the degenerate modes 2
and 3 of Fig. 7 (i.e. the two polarisations of EH11). As
developed analytically in the previous section, for the case
m ¼ 1 (EH11), there exists for a range of ratios,
approximately defined by 0.35 , r1/r0 , 0.5, a resonance
in the structure (at some value of kr1) corresponding to a
radial standing wave in the waveguide slot.

In Fig. 9, we present a parametric study of the dispersion
diagram for the second mode (EH11) of the corrugated
circular waveguide. This mode is left handed but when the

Figure 8 Electric and magnetic energy densities for EH11

Figure 7 Dispersion diagram of an unfilled circular
corrugated waveguide with r1/r0 ¼ 0.5

Degenerate modes correspond to: mode 1! E01, modes
2,3! EH11, modes 4,5! EH21 and modes 6,7! HE11
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ratio r1/r0 has a value greater than 0.5, the propagation of
the mode changes to being predominantly forward. Clearly,
for a range of ratios r1/r0 between 0.35 and 0.5, we obtain
potential useful bandwidths of the order of 10%.

We study also the behaviour of a corrugated circular
waveguide with the corrugations filled with dielectric as
described in Fig. 10. Fig. 11 shows the dispersion diagram
for the first 10 modes of a corrugated circular waveguide
(including degenerate modes) with r0 equal to 10 mm and
with the depth of the corrugation r0 2 r1 of 4 mm (i.e.
inner radius r1 ¼ 6 mm and r0/r1 ¼ 0.6). The width of
the corrugation is 1 mm. The dielectric permittivity of the
filled corrugation has a value of 1r2 ¼ 10 with the central
guide empty 1r1 ¼ 1. As we can see, there exists a
backward wave in all modes except the first (E01) [10].
Thus, the application of a corrugated waveguide as a
composite metamaterial guided-wave structure is achieved.
The dispersion diagram obtained through the analysis of
the periodic structure exhibits forward and backward wave
passbands. The bandwidth of the latter can be controlled
by tuning the corrugations parameters, such as corrugation
period, depth and width as well as the waveguide radius.

As we can see from the dispersion diagram, there exist
passbands and stopbands in the waveguide. Therefore in
fact, it is possible to use left-handed mode propagation in a
bandpass with no propagation of other modes. For
example, for the first two left-handed modes from Fig. 12,
we can see that modes 2 and 3 are degenerated. In Figs. 12
and 13, we present the electric energy densities in the

Figure 10 Definition of the waveguide structure

Figure 9 Parametric study of the mode EH11 for different
values of the ratio r1/r0
IET Microw. Antennas Propag., 2008, Vol. 2, No. 7, pp. 659–667
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transverse cross-section of the waveguide for the two
polarisations of the two modes EH11 and EH21.

If we increase the ratio r1/r0 (by increasing r1), a similar
phenomenon occurs to that of the circular waveguide with
no dielectric in the grooves. In Fig. 14, we present the
results of the first two degenerate left-handed modes
(EH11) for a value of r0 equal to 10 mm and r1 varying
from 5 to 8 mm (so that the depth of the corrugations

Figure 12 Electric energy densities in the transverse cross-
section of the waveguide for the two polarisations of the
two modes EH11

Figure 11 Dispersion diagram of a filled circular corrugated
waveguide with r1/r0 ¼ 0.6

Degenerate modes correspond to: mode 1! E01, modes
2,3! EH11, modes 4,5! EH21, modes 6,7! EH31, modes
8,9! EH4,1 and modes 10,11! EH5,1
Microw. Antennas Propag., 2008, Vol. 2, No. 7, pp. 659–667
: 10.1049/iet-map:20070229
r0 2 r1 varies from 5 to 2 mm or r1/r0 varies between 0.5
and 0.2).

The width of the corrugation was kept at 1 mm as in the
previous cases. We can again see the resonant phenomenon
described in the previous section. It occurs at a highest
ratio of r1/r0 of 0.76, at which value, the mode becomes a
forward wave and the left-handed propagation disappears.

It is possible to see that for some values of the corrugation
and waveguide geometry, there exist, at the same frequency,
both forward and backward wave modes, although with
a different azimuthally symmetry. This is not only a

Figure 13 Electric energy densities in the transverse cross-
section of the waveguide for the two polarisations of the
two modes EH21

Figure 14 Parametric study of the mode EH11 for different
values of the ratio r1/r0
665
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phenomenon that occurs for the filled waveguide but also
occurs in the unfilled case, as we can see in Fig. 7.

4 Discussions
In terms of applications, we propose taking advantage of the
orthogonality of the propagating modes, for transmitting and
receiving a signal in a waveguide at different group velocities.
For example, with a receiver with a fixed sampling frequency,
it is possible to have the signal carried by two separate
orthogonal modes working at the same microwave
frequency. One mode could be forward (right handed) and
the other left handed. For example, consider the case for
r1/r0 ¼ 0.48 and kr1 ¼ 1.7, then br1 ¼ 0.63 and 9.15 for
which the two corresponding group velocities are 20.16c
and þ0.011c, respectively (Fig. 15). The advantage of this
is that the forward mode is slow propagating, whereas the
left handed has a faster group velocity. Clearly, it is possible
to transmit the same information on both modes. Then the
receiver could get information at the sampling frequency
from the forward mode. However, it could also extract
information from the left-handed (faster group velocity)
mode with apparent high frequency sampling. Therefore
extra-information could be extracted from the left-handed
mode wbich is not possible from the right-handed
slower one.

Backward wave devices allow to obtain an index of
refraction lower than one (n , 1). With this value, it is
possible for the development of lenses with uniform
thickness and index of refraction variable with distance
from the centre, in order to make the exit plane a constant-
phase surface. The index of refraction should be stepped at
intervals. Moreover, these lenses present advantages when
used as arrays for wide scanning angles.

Corrugated circular waveguides have been used at
millimetre wavelengths as band edge filters in Cosmic
Microwave Background experiments with bolometric
detectors (e.g. QUAD, Planck-HFI 2 radiotelescopes) [15,
19]. They are convenient in such systems as they allow
both polarisations of the signal through from the
corrugated horn antenna feed to the detector cavity without
the need for the usual waveguide converters such as circular

Figure 15 Showing how group velocity varies for large
range of br1 for case of r1/r0 ¼ 0.48
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to rectangular. The lower band edge is thus sharply defined
without the need for any extra filtering components. In the
cases described in the literature, the waveguide is designed
to propagate the lowest order HE11 mode. An alternative,
of course, would be to use the backward propagating EH11

mode for cases where r1/r0 , 0.48. One advantage of this
mode is both its upper and lower band edges are clearly
defined in a region in which only one mode type can
propagate, and a more compact waveguide structure can be
used than that for the HE11 design. In any case, the
disadvantage of HE11 design itself is that it also requires
deep corrugations of r1/r0 , 0.48 otherwise two modes
will be present which results in loss of coherence and an
unpredictable antenna beam pattern [16, 19].

We have shown that we can achieve a left-handed
behaviour without requiring complicated structures in a
waveguide. For example, we can avoid the introduction of
FSS inside the waveguide. Therefore the manufacture of
the system is simpler and cheaper. We achieve left-handed
propagation making use only of the corrugations, which are
part of the structure of the guide. In addition, circular
corrugated waveguide is simpler than the rectangular
corrugated waveguide with filled corrugations on only one
side reported in the literature [8, 9]. Such a waveguide is
more difficult to manufacture than the unfilled empty
corrugated circular waveguide we have studied or even the
filled one we have proposed.

5 Conclusion
We have analysed the left-handed propagation capabilities of
infinite circular corrugated waveguides. A theoretical
approach to the problem has been done following the
surface impedance model for circular corrugated
waveguides. The physical meaning of this kind of backward
propagation has been related to resonances in the
corrugated structure. Also the relationship between the
power flow and group velocity for the waveguide is shown.
The influence of the corrugations in the bandwidth and
propagation characteristics of the different modes has been
studied. We also realised a parametric analysis of the depth
of the corrugations, with and without dielectric fill in the
grooves, by using a full-wave simulator (CST). Several
applications have been proposed for such structures.

The advantages of the circular corrugated waveguide are
the easier manufacture compared with the rectangular
waveguide even for the dielectric filled case, the availability
of two polarisations for multiple applications and the
miniaturisation of systems. Clearly, they are easier and
cheaper to manufacture than those waveguides which use a
complicated structure inside such as the FSS.

The future plans are to apply the surface impedance model
to the dielectric filled guide, to explore applications with
regard to lenses and filters, coupling, reflections,
polarisation effects etc., and to analyse the possibility of
IET Microw. Antennas Propag., 2008, Vol. 2, No. 7, pp. 659–667
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transition sections for forward to backward propagation.
Also, a close study of different depths of the corrugations
along the waveguide is likely to bring useful results.
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