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Modern microscopes are designed with functionalities that are tailored to enhance image contrast. Dark-field
imaging, phase contrast, differential interference contrast, and other optical techniques enable biological cells
and other phase-only objects to be visualized. Quantitative phase imaging refers to an emerging set of techniques
that allow for the complex transmission function of the sample to be measured. With this quantitative phase
image available, any optical technique can then be simulated; it is trivial to generate a phase contrast image
or a differential interference contrast image. Rheinberg illumination, proposed almost a century ago, is an optical
technique that applies color contrast to images of phase-only objects by introducing a type of optical staining via
an amplitude filter placed in the illumination path that consists of two or more colors. In this paper, the complete
theory of Rheinberg illumination is derived, from which an algorithm is proposed that can digitally simulate the
technique. Results are shown for a number of quantitative phase images of diatom cells obtained via digital
holographic microscopy. The results clearly demonstrate the potential of the technique for label-free color
staining of subcellular features. © 2019 Optical Society of America

https://doi.org/10.1364/AO.58.003104

1. INTRODUCTION

Unstained objects, such as biological cells, present a unique
problem for the light microscopist because their images gener-
ate very little contrast and are essentially invisible in ordinary
bright-field microscopy [1,2]. Transparent “phase-only” ob-
jects, such as biological cells, induce a spatially varying phase
delay on the illuminating optical wavefield; this phase delay
results from spatial variation in the specimen’s refractive index
and/or thickness. Phase-only objects remain nearly invisible in
the image plane of the microscope, because physical detectors
such as the eye, or a camera, cannot detect variation in phase.
The diffraction pattern resulting from the phase delay intro-
duced by the sample can be observed in other defocused planes,
but such an approach renders the image difficult to interpret
[1]. Several specialized imaging techniques [1–14] are com-
monly employed in light microscopes in order to enhance im-
age contrast and enable a direct visualization of subcellular
features (as well as other types of samples that induce small
phase delays) without staining, such as dark field [1,2], phase
contrast [3–5], differential interference contrast [6–8] (DIC),
fluorescence [9,10], and Rheinberg illumination [11–14]. By

exploiting refraction, diffraction, interference, or fluorescence,
these methods are applied mainly to make visible objects such
as cells and other biological structures that are otherwise invis-
ible. Compared to bright-field microscopy, the optical images
produced with such contrast techniques usually provide an
unnatural appearance to the observed specimens. However,
these approaches have become an essential set of tools for
modern life science and material science research.

Although not as popular as phase contrast or DIC,
Rheinberg illumination [11–14] is one such technique that
provides a form of optical staining. The approach was initially
demonstrated by the British microscopist Julius Rheinberg to
the Royal Microscopical Society and the Quekett Club
(England) in 1861. In Rheinberg illumination, diffraction ef-
fects are combined with selective absorption of light in certain
parts of the specimen, in order to generate color contrast of
subcellular features. In simple terms, for the case of a Rheinberg
filter composed of a green center surrounded by a red ring, the
image can be described as being similar to a dark-field image
making up the red component of the image, superimposed on a
lower-frequency green image that will include the background.
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In this paper the underlying theory of Rheinberg illumination
is investigated in detail and based on this, an algorithm is pro-
posed that color stains cell images that have been recorded
using quantitative phase microscopy.

Techniques such as phase contrast [3–5] and DIC [6–8]
effectively enhance the contrast in images of phase-only objects.
However, the information obtained with these techniques is
essentially qualitative. Quantitative phase imaging (QPI)
[15,16] provides a powerful means to study cellular dynamics
associated with both thickness and refractive index fluctuations.
QPI refers to a set of techniques that are capable of recording an
accurate quantitative measurement of the phase delay imparted
by the sample, and therefore provide the complex transmittance
of the sample. This set of techniques includes digital holo-
graphic microscopy (DHM) [17–19], which makes use of a
temporally coherent source to record an interference pattern
between the image of the sample and a known reference wave
field. In this paper, DHM is employed to record the complex
transmittance of a number of diatom cells, which are used for
testing the proposed color staining algorithm. Key advantages
of DHM are a large depth of field [18,19], the capacity for
computational aberration compensation to improve image
quality [20,21], as well as the capability to refocus the image
using numerical propagation algorithms [22,23], which can be
used with autofocus metrics for automatic focusing over a wide
depth of field [24,25]. In recent years QPI has been shown to
be possible with white light [15,16,26–31], which produces
significantly less noise due to the lower spatiotemporal coher-
ence, and also using a form of lensless microscopy [32–34]. It
can be expected that such methods will be commonplace in life
science microscopy in the near future. A brief review of these
methods is provided in Section 5.

The breakdown of this paper is as follows. In Section 2 the
theory of optical Rheinberg illumination is derived. From this a
numerical algorithm is proposed in Section 3 that can color
stain subcellular features in complex transmittance images re-
corded using QPI techniques. In Section 4 the results are
shown of applying the algorithm to a number of images of dia-
tom cells recorded using DHM, and finally, in Section 5 a brief
discussion is offered.

2. THEORY OF OPTICAL RHEINBERG
ILLUMINATION

In this section, a theoretical framework for understanding op-
tical staining by Rheinberg illumination is proposed. Despite
the longevity of Rheinberg illumination, a search of the liter-
ature did not provide any theoretical analysis of the detail pro-
vided here. We believe that this work may represent the first
detailed theoretical analysis of this type of imaging. In the next
section, an algorithm is developed that is based on this analysis.
In Fig. 1(a) the optical setup for Rheinberg illumination is illus-
trated. This setup is based on the traditional architecture of a
bright-field optical microscope employing Kohler illumination
[1,35]. In this configuration, a multimodal filter containing at
least two color filters (most commonly in the form of a circle of
one color filter around which is a ring containing a second color
filter) is placed in the focal plane of the condenser lens. The

source illumination and the lens preceding the filter are not
shown in the image.

Image formation in microscopy can be described using
Fourier theory [35–38]. For the case of spatially coherent illu-
mination, the image is given by the convolution of the input
complex transmittance, t�x�, and the coherent point spread
function of the optical system, h�x�, where x denotes the
two-dimensional spatial coordinate system. This convolution
can be described as a multiplication in the spatial frequency
domain; i.e., the Fourier transform of the image is given by
the Fourier transform of t�x�, which is denoted as F�k�,
and the pupil function of the microscope, P�k�, where k de-
notes the 2D coordinates of the spatial frequency domain. In
this case, the imaging system is linear in complex amplitude.
For the case of incoherent illumination, the image formed
by the microscope is given by the convolution of the intensity
jt�x�j2 and the incoherent point spread function of the optical
system jh�x�j2. Once again this can be described in terms of the
Fourier transforms of these two functions; this time, however,
image formation is linear in intensity.

For the case of a partially coherent imaging, such as that
provided by Kohler illumination, image formation becomes
more complex, and is no longer linear in either complex trans-
mittance or intensity. For such a system, it can be assumed that
the object is illuminated by an “incoherent” delta correlated
light source propagating from the condenser pupil [29]. In
the following derivation, it is assumed that the illumination
is quasi-monochromatic; more specifically, it is assumed that
for each of the different color filters in the illumination setup,
the light that is transmitted is quasi-monochromatic around
that filters line (band) pass wavelength. An extension of this
analysis to polychromatic illumination is trivial. Unit magnifi-
cation is assumed throughout the analysis. Initially, only a

Fig. 1. (a) Illustration of optical Rheinberg illumination.
Three color filters are placed at the back focal plane of the condenser
lens. (b) Each of the three point sources illustrated in Fig. 1(a)
independently contribute to image formation. In each of these three
cases image formation results from bilinear contributions from within
the supports shown in the spatial frequency domain. The radius of the
circular supports shown in the figure is related to the pupil function of
the microscope [36]. The dashed line represents the fundamental limit
of resolution.
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single filter is considered; the illumination emerging from the
filter plane has an intensity distribution S�k�. The image at the
output of the microscope is given by

I�x� �
Z

S�k�j
Z

t�x 0�h�x − x 0�ej2πkx 0
dx 0j

2

dk: (1)

A simple interpretation of microscopic image formation using
Kohler illumination now emerges; the image may be described
as an incoherent superposition of the intensities produced by
coherent plane wave illumination. In other words, each point
(source), or delta functional in the filter plane can be viewed as
a spatially coherent source that produces a coherent image as
described above. The intensity of each of these coherent images
is then superimposed to produce the final image. Equation (1)
can also be rewritten in terms of their respective Fourier
transforms:

I�x� �
ZZZ

S�k�F �k1�F��k2�

× P�k � k1�P��k � k2�ej2πx�k1−k2�dk1dk2dk, (2)

where P�k� � jP�k�jejkW �k� is the coherent transfer function
with the pupil function P�k�. For the majority of cases, P�k�
is given by a circ function with radius r, and the wavefront aber-
ration W �k�. It is clear from Eq. (1) that the observed image
intensity is not linear in the complex (specimen) transmittance.
Furthermore, it can be seen from Eq. (2) that the intensity spec-
trum consists of the mixing of pairs of spatial frequencies in the
amplitude spectrum of the specimen; each pair �k1, k2� produces
a cosine term with a frequency given by �k1 − k2�, a complex
amplitude given by F�k1�F��k2�, which determines the weight
of this cosine in the final image as well as the phase shift of
the cosine angle. For this reason, this type of image formation
is said to be bilinear [29]. Separating the contribution of the
specimen and the system to image formation leads to the concept
of the transmission cross-coefficient [29,37,38],

TCC�k1, k2� �
ZZ

S�k�P�k � k1�P��k � k2�dk, (3)

which leads to a description of the transfer function for partially
coherent image formation as follows:

I�x� �
ZZ

F �k1�F��k2�TCC�k1, k2�ej2πx�k1−k2�dk1dk2: (4)

The case is now considered where S�k� is given by three
different color filters, SR�k�, SG�k�, and SB�k�, where R, G,
and B denote red, green, and blue. If it is assumed that the sensor
recording the image is independently sensitive to red, green, and
blue light, Eqs. (3) and (4) can then be rewritten in terms of three
independent transmission cross-coefficient terms as follows:

TCCi�k1, k2� �
ZZ

Si�k�P�k � k1�P��k � k2�dk

I i�x� �
ZZ

F �k1�F��k2�TCCi�k1, k2�ej2πx�k1−k2�dk1dk2,

(5)

where the index i in the above equations takes on three values R,
G, and B. Here, it is assumed that the camera is capable of re-
cording three independent images for red, green, and blue light

by using a Bayer mask or a temporal filter. In terms of image
formation, each of these three images can be considered
independently by taking into account only the illumination
emerging from the red, green, or blue filter.

The most common filter for Rheinberg illumination uses
only two colors; a central circ function containing one color
(e.g., red) while a surrounding ring contains a second color
filter, (e.g., green). In this case, the image is made up of two
independent color images, IR�x� and IG�x�, as described in
Eq. (5), where

TCCR�k1,k2��
ZZ

circr1�k�P�k�k1�P��k�k2�dk

TCCG�k1,k2��
ZZ

�circr2�k�−circr1�k��P�k�k1�P��k�k2�dk,

(6)

in which r1 and r2 denote the radius of the inner and outer
filters and circ�k� represents a circ function in the Fourier do-
main [36]. In this case, the red image will be formed by con-
tributions of F�k� from only lower spatial frequencies while the
green image will be formed by contributions of F �k� from only
higher spatial frequencies. The resulting image shows a sharp
contrast in color content for regions containing low-frequency
background and higher-frequency cellular features.

In order to better understand the role of the filter distribu-
tion on image formation, a simple case is now considered where
each of the three filters is represented by a single point source,
as illustrated in Fig. 1(a), which are modeled by Dirac delta
functional as follows:

SG�k� � δ�k�,
SR�k� � δ�k − α�,
SB�k� � δ�k � α�, (7)

where α denotes a shift in the kx and ky dimensions. The trans-
mission cross-coefficient terms for the three different images are
given by

TCCG�k1, k2� � P�k1�P��k2�,
TCCR�k1, k2� � P�α� k1�P��α� k2�,
TCCB�k1, k2� � P�−α� k1�P��−α� k2�, (8)

Although image formation is bilinear and is given by the sum of
interference terms within the bounds of overlapping pupil
functions, it is possible to make some interesting conclusions
based on Eqs. (5) and (6). It is clear that image formation will
result from contributions of the complex transfer function of
the specimen F�k� within the bounds of a pupil function P�k�
for the green image, P�k � α� for the red image, and P�k − α�
for the blue image. In this discussion, the bilinear nature of
image formation is not ignored; however, by dropping the
variables k1 and k2 and considering only a single variable it is
possible to focus only on the band of spatial frequencies within
F �k� that contribute to image formation (albeit in a non-linear
manner based on interference terms).

In this way, it can considered that optical staining will be
based on the spatial frequency distribution of the specimen,
as illustrated in Fig. 1(b). In this simplified example, the red
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image will be constructed from a finite band of spatial
frequencies of F�k� that are mostly negative in kx , while the
blue image is formed by contributions from a finite band of
spatial frequencies of F�k� that are mostly positive in kx ; finally,
the green image is formed by contributions from a finite sup-
port of F �k� around the origin. It must be noted that the maxi-
mum spatial frequencies that can contribute to image
formation, denoted by the dashed line in Fig. 1(b), will be

bounded by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2y

q
< 1∕λ, where λ is the wavelength of

the quasi-monochromatic light. Any spatial frequency compo-
nents outside of this area contribute only to rapidly attenuating
evanescent waves [35,36].

In the following section, the theoretical analysis presented
here is used as the basis for the development of a numerical
algorithm that is capable of simulating the process of image
formation in an optical microscope utilizing Rheinberg illumi-
nation.

3. DIGITAL SIMULATION OF RHEINBERG
ILLUMINATION

Quantitative phase imaging techniques based on a partially co-
herent illumination, and digital holographic microscopy based
on coherent illumination [17–19], both produce an image of
the specimens complex transmittance, t 0�x�, which it is as-
sumed will be available as input to the algorithm under
development in this section.

A. General Case
In the general case, the objective is to simulate optical
Rheinberg illumination for a sample transmittance given by
t 0�x�; in terms of the original sample, this is equivalent to first
recording the quantitative phase image t 0�x� using material
holography [36] and then using this material hologram as the
sample in an optical microscope utilizing Rheinberg illumina-
tion. The special case of simulating optical Rheinberg illumi-
nation of the actual original sample, with transmittance t�x�, is
discussed in the next subsection. In order to simplify the analy-
sis that follows, the discussion is based only on continuous
variables; their discrete counterparts are briefly discussed later.
For the general case, the red image can be generated as follows:

1. Select a number of parameters. These include (i) decid-
ing on the number of pinholes in the filter, and for each one
deciding their color and position. Thus, the user selects a set of
N red pinhole positions: �αR1, αR2,…, αRN �; (ii) deciding on
the numerical aperture of the optical microscope that is being
simulated. In simple terms this equates to selecting the radius,
rs, of the pupil function, Ps�k�, of the optical system to be si-
mulated. Obviously rs ≤ r, since it will be impossible to im-
prove on the resolution of the original image.

2. Simulate the illumination of t 0�x� with a plane wave of
angle θ with respect to the optical axis, emerging from point
source αR1. The relationship between θ and αR1 is given by
tan θ � αR1∕f , where f is the focal length of the condenser
lens. In the frequency domain, Step 2 is equivalent to shifting
F 0�k� by an amount αR1.

3. Simulate image formation in the microscope by con-
volving the image obtained in Step 2 with the point spread

function of the microscope being simulated. In the frequency
domain, Step 3 is equivalent to multiplying by Ps�k�.

4. Calculate the intensity of the resultant image.
5. Repeat Steps 2–4 for each of the �αR1, αR2,…, αRN �

pinhole positions to obtain the final red image.

The blue and green images can be obtained in the same man-
ner using different sets of pinhole positions. It must be noted
that is possible for the shift in the frequency domain introduced
in Step 2 to be large enough to result in Ps�k� in Step 3 over-
lapping with no signal energy. Thus, it is important to judi-
ciously select the pinhole positions, taking into account both
the frequency support of the original image as defined by P
as well as the support of Ps. A simple algorithm can now be de-
fined that makes use of the discrete Fourier transform (DFT)
[36,39], which can be efficiently calculated using the fast Fourier
transform algorithm. The algorithm is illustrated in Fig. 2. The
previously described steps can be rewritten in terms of a com-
putational algorithm as follows. For the red image only:

1. Select the set of pixel coordinates �αR1, αR2,…, αRN �
and pixel radius rs, which is the radius of Ps.

2. Calculate the DFT of the input digital complex
image t 0.

3. Multiply the result of Step 2 with a binary mask given
by a circular aperture of radius rs and center coordinate αR1.
Then, calculate the inverse DFT.

4. Multiply each pixel value by its complex conjugate to
obtain the intensity.

5. Repeat Steps 3–4 for each pinhole position given in Step
1 and add all of the resultant intensity images together to obtain
the final red image.

In total,N � 1DFTs must be calculated to generate the red
image. The overall process is repeated for the blue and green

Fig. 2. Description of the algorithm that simulates optical
Rheinberg illumination. Input to the algorithm is the quantitative
phase image. The user selects the pinhole locations and the pupil ra-
dius for the optical microscope under simulation. A single DFT is cal-
culated and stored for use as input to all of the remaining steps in the
algorithm. For the red image, this DFT is multiplied by a sequence of
different binary masks, each one associated with a different point
source (pinhole) in the filter plane. In each case an inverse DFT is
calculated and the resultant intensity is stored. All of these intensities
are superimposed to generate the final red image. The same procedure
is applied for the red and green cases, each with their own set of unique
pinhole positions.
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images, as illustrated in Fig. 2, and the final RGB image is
obtained by combining these three independent images. It
should be noted that the resolution of the final image will de-
pend on the value of rs.

B. Special Case: Simulation of Optical Rheinberg
Illumination of the Original Transmittance t�x�
The general case described the situation where the original sam-
ple’s transmittance t�x� function is first recorded by a quanti-
tative phase microscope with a complex point spread function
h�x�, which provides a complex image t 0�x�. The relationship
between these three functions can be described in terms of their
Fourier transforms as follows:

F 0�k� � F�k�P�k�: (9)

Here, P�k� � jP�k�jejkW �k� denotes the pupil function associ-
ated with the recording optical system, which is commonly as-
sumed to be given by a circ function and the wavefront
aberration W �k� and F �k� is the complex transfer function
of the specimen. Going forward, this aberration is neglected
(the effect of aberration can be reduced significantly using vari-
ous compensation algorithms for quantitative phase imaging
[20,21,40], and the pupil function is considered to be given
only by a circ function with a radius r ≤ 1∕λ; i.e., it is assumed
that the optical system introduces a spatially frequency cutoff
less than or equal to the maximum permissible bandpass as de-
scribed in Section 2. In this case, it is clear that complex transfer
function of the original specimen, F �k�, is available up to some
bound, and therefore, it is possible to simulate the process of
optical Rheinberg illumination on that original specimen so
long as the algorithm parameters are chosen judiciously.
This will be true so long as jαj � rs < r for all pinhole positions
α, where r and rs denote the radius of the pupil function as-
sociated with the recording microscope and the simulated mi-
croscope, respectively. It is clear that in order for the conditions
of the special case to be met it is necessary that r > rs and there-
fore, the special case requires that the processed (color stained)
image must be of lower resolution than the recorded image. In
the next section results are shown for a number of diatom cells
for both the general case and the special case.

4. RESULTS

A. Recording of Quantitative Phase Images
All of the quantitative phase images that were used to generate
the results in this paper were recorded using an off-axis digital
holographic microscope with the same architecture as that de-
scribed in detail in [25]. This system uses a coherent laser with
wavelength 633 nm. The CCD camera has pixel pitch equal to
4 μm in both spatial dimensions and a total pixel count given
by 1024 × 1024. The complex transmittance is obtained by
spatial filtering the real image in the DFT domain as outlined
in [17]. The images were in general not recorded at the exact
image plane; the images were refocused using numerical propa-
gation, specifically, using the spectral method outlined in
[22,23] and making use of autofocusing as described in [25]
in order to determine the precise propagation distance.
Aberration compensation was performed using the method de-
scribed in [21], which involves capturing the complex transmit-
tance of the illuminating beam (subject to the same processing

as described for the sample) and dividing this into the complex
transmittance recorded from the sample. This produces the fi-
nal transmittance, which is input to the algorithm described in
Section 3. Quantitative phase images are recorded of two dia-
tom cells using two different microscope objectives (MOs): a
20× MO with NA � 0.45 and an oil immersion 63× with
NA � 1.4. In the subsections that follow the results are pre-
sented for seven different Rheinberg illuminations applied to
these quantitative phase images. The diatom cells are mounted
in Naphrax diatom mountant (Brunel Microscopes, UK),
which has a refractive index of 1.73.

B. General Case: Simulation of Rheinberg
Illumination to Complex Transmittance Recorded
from a Diatom Cell with 20 × ∕0.45 Magnification
Here, the results are presented for simulated Rheinberg illumi-
nation of the complex transmittance recorded from a diatom
cell using a 20 × ∕0.45 MO. The raw hologram contains
1024 × 1024 pixels of size 4 μm and, therefore, the DFT of
this image contains 1024 × 1024 pixels of size 0.244 mm−1.

Taking into account the 20× magnification, the sampling
interval of the image is given by 0.2 μm and the DFT has a
sampling interval of 4.88 mm−1. The complex valued real im-
age comprises a circular section in the DFT plane with a radius
of 120 samples. Therefore, r � 120 × 4.88 mm−1 and the full
spatial frequency bandwidth of intensity of the real image is
given by 2r, which is approximately 1171.2 line pairs per milli-
meter (lpm). This is approximately in agreement with the
Rayleigh criterion [35,36], which predicts an optical resolution
(the smallest distance between two observable points) to be
equal to 0.61 × λ∕NA � 0.858 μm. Spatial filtering involves
isolating the area of approximately 240 × 240 samples within
the DFT that contains the real image and preforming an inverse
DFT. This complex image is then subject to numerical propa-
gation and aberration compensation as described in the pre-
vious section; these two processes have no effect on the
bandwidth of complex image, i.e., the DFT of the final com-
plex transmittance image still comprises a circular support of
radius r. The intensity and phase components of this complex
transmittance image are shown in Figs. 3(a) and 3(b), respec-
tively, following interpolation up to a size 2000 × 2000 by zero
padding the DFT. A point of note is that this complex DFT
must be zero padded up to a width that is at least double the
bandwidth of the complex transmittance (i.e., at least 480 sam-
ples in this case) in order to guarantee that the intensity image
shown in Fig. 3(a) is well sampled in the Nyquist sense [39].

Figure 3(d) shows the result of simulated Rheinberg illumi-
nation for the color filter illustrated in Fig. 3(c). As discussed in
the previous section, this filter is simulated to exist in the back
focal plane of the microscope condenser lens positioned for
Kohler illumination. Each point source in the back focal plane
of the condenser is transformed to a plane wave illumination in
the sample plane. In order to reduce computational complexity
the simulation involves only nine point sources in total, com-
prising eight red point sources at positions �αR1, αR2,…, αR8�
located around a center green point source at position
αG1 � �0, 0�. Based on the discussion in Sections 2 and 3 we
can expect this will result in the superposition of nine indepen-
dent image intensities. Each of these nine images is obtained by
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spatial filtering different regions of the DFT of the complex
transmittance function, as illustrated in Fig. 3(e), before
returning to the spatial domain via an inverse DFT and taking
the intensity of the resulting complex image. The overall algo-
rithm describing this process is discussed in Section 3.A and
illustrated in Fig. 2. More detail on the color filtering process
that takes place is provided in Fig. 4. For comparison, Fig. 4
also contains three equivalent images of a small region of the
cell relating to (f ) the intensity, (g) the phase, and (h) the

Rheinberg image. It is clear that the color image provides supe-
rior contrast than the other two images. Figure 4(a) illustrates
the spatial frequency filtering that takes place in the simulation
that produces the color stained image shown above in Fig. 3(d).
The DFT of the complex transmittance [with amplitude and
phase shown in Figs. 3(a) and 3(b)] is shown in the figure; in
total 650 × 650 samples are shown. The signal energy is con-
tained in a circular area with radius r � 120 samples. The si-
mulated color filter is shown as large red and green spots in the
image, which represent point sources in the spatial frequency
domain. The number, color, and position of these point sources
are decided by the user. Also decided by the user, is the numeri-
cal aperture of the microscope being simulated, which in simple
terms means that the user selects the radius of the circular fil-
ters, rs, to be applied in the DFT domain. In this case it was
chosen that rs � r and, therefore, each circular mask used in
the algorithm has the same radius as P�k�. Since, for the single
green filter, all of the signal energy is encompassed, it can be
expected that the green image will be exactly equivalent to the
gray-scale intensity image shown in Fig. 3(a), with no loss in
resolution. For each of the red masks, only a part of the signal
energy will contribute to the resulting intensity. It can be ex-
pected, therefore, that each of the red images will contain re-
duced resolution when compared to the green image. However,
each of these eight red images will contain information that
relates to different higher spatial frequency bands, none of
which overlap with the low-frequency content at the center
of the DFT; this is guaranteed if each red filter position obeys
the following relationship: jαRij > r. In this case jαRij is

Fig. 4. Illustration of the color filtering that takes place in simulat-
ing Rheinberg illumination. (a) The general case: this image relates to
the results shown in Fig. 3. The DFT of the complex transmittance
that is input to the color staining algorithm is shown in the figure; the
signal energy is contained in the center. The simulated color filter is
shown as large red and green spots in the image, which represent point
sources in the spatial frequency domain that are selected by the user.
The user selects the radius of the circular filters, rs , to be applied in the
DFT domain. In this simulation, rs � r. For each of the red masks,
only a part of the spatial frequency support of the complex transmit-
tance will contribute to the resulting intensity. The center positions of
the red filters are chosen such that none of the red masks will overlap
with the center of the DFT, which guarantees that regions with only
low-frequency content, such as the background, will appear as green.
(b) Illustrates the special case where each of the masks lies entirely
within the spatial frequency support of the complex transmittance;
the resulting image is shown later in Fig. 9 and discussed in
Section 4.C.

Fig. 3. Results for quantitative phase image of a diatom cell re-
corded with 20 × ∕0.45 MO. Shown here are the (a) intensity and
(b) phase images of the recorded complex transmittance. (c) An illus-
tration of the Rheinberg filter that is simulated to be in the back focal
plane of a microscope condenser lens, which is made up of eight red
point sources located around a center green point source. (d) The re-
sulting image from simulated Rheinberg illumination. (e) Illustrates
the filtering process that takes place in the DFT domain, for each
of the independent point sources in the filter. This filtering process
is illustrated in more detail in Fig. 4(a). Parts (f ), (g), and (h) show
the same image region for the image intensity, phase, and Rheinberg
illumination cases, respectively.
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selected to be 130 samples for each of the red filters. Thus, it
can be expected that the color stained image will contain no red
component in areas of the image that contain only low frequen-
cies, such as background areas.

In this example the DFT was zero padded up to a size of
480 × 480 samples, which guarantees that the intensity image
shown in Fig. 3(a) is well sampled in the Nyquist sense. In
terms of the algorithm illustrated in Fig. 2, it is more efficient
to maintain a small image size. Not shown in Fig. 2 is the in-
terpolation of the color image as a final step, which can be ap-
plied arbitrarily by the user. Interpolation up to a larger size,
such as the 2000 × 2000 image shown in Fig. 3(d), can be ap-
plied to each of the final red, green, and blue images that are
output by the algorithm. Four more color stained images of the
same QPI are shown in Fig. 5, where in each case different color
filters are applied, shown in the top left of each figure. In all
cases it was chosen that rs � r and jαj was chosen to be 130
samples for all of the various filters, except for the green filter
placed at the origin. The resulting filtering that takes place in
the DFT domain is illustrated in the bottom right of each fig-
ure. In all four cases the color filters contain three different col-
ors—blue, green, and red—and in all cases a single green spot
in the center is used to create the low spatial frequency back-
ground, similar to the previous case shown in Fig. 3. For the
four cases, the surrounding multiple blue and red spots empha-
size different image features related to different subcellular
structure. In Fig. 5(a), the filter contains a single red point
source and a single blue point source in the left and right of
the horizontal spatial frequency axis, prospectively. Regions

of the image that contain local frequency components that
are captured in the corresponding circular filters will be stained
with red and blue accordingly. Local spatial frequency can be
related to the rate of change of the phase [36]; in this context, it
can be inferred that image pixels with negative and positive
phase gradients in the horizontal direction will be stained with
blue and red color, respectively. There is clear evidence of pre-
dominantly red and green regions in the image, and these areas
can be compared with the quantitative phase image in Fig. 3(b)
in terms of phase gradient. Figure 6(a) provides an upsampled
image of a cropped area of the image and there is clear evidence
of color staining of subcellular features. In Fig. 5(b) the result is
shown for which the filter contains a single red point source and
a single blue point source in the upper and lower parts of the
vertical spatial frequency axis, respectively. The resulting color
stained image clearly shows red and blue color variation asso-
ciated with subcellular features that are oriented in the vertical
direction; features with phase gradient that are positive and
negative are coded with red and blue color, respectively, and
these features are clearly visible in Fig. 6(b). In Fig. 5(c)
[and Fig. 6(c)] the color filter is made up of two red point
sources placed in the horizontal dimension and two blue in
the vertical. In this case image regions containing either positive
or negative horizontal spatial frequencies will contain red stain-
ing, while blue staining will be applied to areas containing spa-
tial frequency content in the vertical direction. Finally, in
Figs. 5(d) and 6(d) the result is shown for a filter containing
a circular distribution of red point sources, around which is
another circular distribution of blue point sources. In this case,
it can be expected that the blue stain will appear in image re-
gions containing only higher frequencies in the image, while
the red stain will appear in a lower band of spatial frequencies,
but not so low as to extend to the origin.

Fig. 5. Results of different simulated Rheinberg illuminations ap-
plied to the same QPI shown in the previous example. The color filter
used in each simulation is shown the top left of each image, and the
corresponding filters that are applied in the DFT domain are illus-
trated in the bottom right corner of each image. The individual parts,
(a), (b), (c), and (d) are discussed in the text. The subsections from
each of these images are shown in Fig. 6.

Fig. 6. Sections of images taken from Fig. 5 allowing for clearer
inspection of the color staining of subcellular features, for each of
the four color filters.

3110 Vol. 58, No. 12 / 20 April 2019 / Applied Optics Research Article



C. General Case: Simulation of Rheinberg
Illumination to Complex Transmittance Recorded
from a Diatom Cell with 63 × ∕1.4 Magnification
Here, the results are presented for simulated Rheinberg illumi-
nation of the complex transmittance recorded from a diatom
cell using a 63 × ∕1.4 MO. As before, the raw hologram con-
tains 1024 × 1024 pixels of size 4 μm and, therefore, the DFT
of this image contains 1024 × 1024 pixels of size 0.244 mm−1.
Taking into account the 63× magnification, the sampling in-
terval of the image is given by 63.49 nm and the DFT has a
sampling interval of 15.372 mm−1. The real image comprises a
circular area in the DFT plane with a radius of 120 samples.
Therefore, the full spatial frequency bandwidth of the real im-
age is given by 2 × 120 × 15.372 mm−1, which is approximately
3689.28 lpm. This is in agreement with the Rayleigh criterion,
which predicts an optical resolution to be equal to 0.276 μm.
Once again, the area of approximately 240 × 240 samples so
cropped from the DFT, which contains the real image an in-
verse DFT, is performed. The resulting complex image is then
subject to numerical propagation and aberration compensation.
In all of the following simulations, the same values for rs and α
are selected as for the corresponding cases in the previous ex-
ample. The intensity and phase components of this complex
transmittance image are shown in Figs. 7(a) and 7(b), respec-
tively, following interpolation up to a size 2000 × 2000 by zero
padding the DFT. Figure 7(d) shows the result of simulated
Rheinberg illumination for the color filter illustrated in
Fig. 7(c). The corresponding filtering that takes place in the
DFT domain is illustrated in Fig. 7(e). As for the previous case,
Figs. 7(f )–7(h) compare the intensity image, the phase image,
and the Rheinberg image for a region of the cell. Once again it
is clear that the color image provides for higher-quality visuali-
zation of the cell structure. Four more color stained images of
the same QPI are shown in Fig. 8, where in each case different
color filters are applied, shown in the top left of each figure; the
same color filters are used as in the previous example. The re-
sulting filtering that takes place in the DFT domain is illus-
trated in the bottom right of each figure.

D. Special Case: Simulation of Optical Rheinberg
Illumination of the Original Sample
All of the results presented so far have resulted from simulation
using rs � r, i.e., there is no loss in resolution for the (back-
ground) image. The other color images that are superimposed
will all contain only part of the spatial frequency support, and
will therefore have a reduced resolution; however, it must be
noted that these color images will contain information from
different spatial frequency bands. In Section 3.A this was in-
troduced as the general case, which was equivalent to recording
a material hologram of the complex transmittance and placing
this in an optical microscope with a given Rheinberg filter and a
specified NA. In Section 3.B it was proposed that it is possible
to simulate optical Rheinberg simulation of the actual original
sample under certain conditions. In light of the discussion thus
far, these conditions can now be summarized as follows: all of
the circular filters that are applied in the DFT domain must lie
entirely within the spatial frequency support of the recorded
complex transmittance, which is ensured with appropriate
choice of rs and the various pinhole positions.

The result of color staining of the first QPI under the con-
ditions of the special case is shown in Fig. 9(a). The color filter
is shown in the top left corner of the image and the correspond-
ing filtering masks applied to the DFT are illustrated in the
bottom right corner. These masks are more accurately illus-
trated in Fig. 4(b). In this case rs is chosen to be 60 samples
and jαRij is chosen to be 70 samples for all of the red pinholes.
The resolution of the resulting image is, therefore, increased to
1.71 μm. This resolution is the same for each of the eight red
images that are superimposed as well as the green background
image, although each of these independent images will contain

Fig. 7. Results for quantitative phase image of a diatom cell
recorded with 63 × ∕1.4 MO. (a), (b) Intensity and phase images
of the recorded complex transmittance. (c) Illustration of the
Rheinberg filter used in the simulation. (d) Color stained image.
(e) Illustration of the filtering process that takes place in the DFT do-
main, for each of the independent point sources in the filter. Parts (f ),
(g), and (h) show the same image region for the image intensity, phase,
and Rheinberg illumination cases, respectively.
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information from different bands within the spatial frequency
support of the image.

Figure 9(b) shows a similar result except that in this case an
additional six green pinholes are added to the Rheinberg filter.
The value of rs is chosen to be the same as that for the previous
example and the red pinholes have the same positions as before.
The additional six green filters have positions jαRij at a radius of
20 samples. Due to the partial independence of the seven green
masks in the DFT domain, a reduction in spatial coherence is
expected, although no improvement in resolution can be ex-
pected. A similar set of results for the second QPI is shown
in Figs. 9(c) and 9(d); the resolution of these images is equal
to 0.542 μm due to the different sampling interval for this case
(see Section 4.C). In order to highlight the reduction in spatial
coherence brought about by the inclusion of the six additional
green filters, sections from Fig. 9 are magnified and shown in
Fig. 10. In both bases there is clear evidence of a reduction
in the noise due to spatial coherence. It should be noted that
this has not resulted from a reduction in resolution; the compa-
rable images have identical resolution for the green component.
The reduction in coherence is due to the superposition of differ-
ent (partially) independent filters applied in the spatial frequency
domain, each containing (partially) different background im-
ages, which are then averaged together. This process could be
repeated indefinitely in order to further reduce the noise result-
ing from spatial coherence in the background image; however, in
order to increase the number of green images and to ensure the
independence of each of these, the value of rs would have to be
reduced, which in turn would reduce the final image resolution.

5. DISCUSSION

In this paper a novel label-free color staining algorithm is
proposed that can be applied to microscopic images of cells

Fig. 8. Results of different simulated Rheinberg illuminations ap-
plied to the same QPI shown in the previous example. The color filter
used in each simulation is shown in the top left of each image, and the
corresponding filters that are applied in the DFT domain are illus-
trated in the bottom right corner of each image.

Fig. 9. (a) Result of color staining of the first QPI under the con-
ditions of the special case. The color filter is shown in the top left
corner and the corresponding filtering masks applied to the DFT
are illustrated in the bottom right corner [note: these masks are more
accurately illustrated in Fig. 4(b)]. (b) Shows a similar result except in
this case a large number of green pinholes are used; due to the (partial)
independence of the corresponding masks in the DFT domain, a re-
duction in spatial coherence is expected. (c), (d) Same set of results for
the second QPI.

Fig. 10. Sections taken from corresponding images shown in the
previous figure, highlighting a reduction in spatial coherence (but
not resolution) due to the inclusion of additional independent filters.
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recorded using quantitative phase microscopy. It must be noted
that color coding in DHM/QPI is not new. Color coding of the
quantitative phase image is commonly found in the literature.
This approach usually involves simple thresholding, where
color contrast is applied directly to the phase image based on
the value of the phase. This approach should not be confused or
conflated with the method proposed here, which is based on
using a combination of different filters to generate different
red, blue, and green image components.

For the two diatom cells investigated in this paper, it has
been demonstrated that the color-coded Rheinberg image that
is generated by the proposed algorithm provides superior image
quality when compared with the image intensity as well as the
quantitative phase image. The contrast of the image is im-
proved as a result of the color information that is added to
the various subcellular features as a function of their spatial fre-
quency content. It is clear that the visualization of the cellular
structure has been enhanced for both cases. More work is
needed to investigate the potential of the technique for visual-
izing the structure of other types of cells, such as epithelial cells,
which are commonly of interest in clinical cytology.

An interesting point of discussion on the difference between
the optical and digital realizations of Rheinberg illumination re-
lates to wavelength and resolution. In the optical case, different
wavelengths are used to generate the different color components,
whereas for the proposed algorithm only one wavelength is used
to record the QPI images, and the different color images are gen-
erated using only this image as input. Since spatial resolution is
directly proportional to wavelength, it can, therefore, be ex-
pected that the color components of an optical Rheinberg image
may have different resolution to those of the simulated image,
assuming the same color filter is used for both cases.

We conclude this paper with a comment on the applicability
of the proposed algorithm in the life science community. A key
requirement of the algorithm is the availability of the complex
transmittance of the sample, which can be provided by digital
holographic microscopy (as used in this paper) or some other
form of quantitative phase imaging. In recent years, quantita-
tive phase imaging has been shown to be possible with white
light [15,16,26–31] and can be applied with existing commer-
cial microscopes. These methods will likely replace existing
phase contrast and DIC functionality in life science micro-
scopes for the reason that the complex transmittance of the
sample, available via QPI, permits other optical recording
modalities (that do not involve staining or fluorescence) to
be effectively simulated by numerically emulating the recording
system. Another technique that falls under the category of QPI
is lensless microscopy [32–34], which can recover the complex
transmittance from a wide field area that is equal to that of the
sensor [32–34]. It can be expected that the algorithm proposed
here will be applicable to wide-field complex images recorded
using this modality, and may, therefore, offer the potential to
provide label-free color staining of thousands of biological cells
within a large area (>20 mm2) with image resolution on a par
with that of high-NA modern microscope.

Funding. Science Foundation Ireland (SFI) (SFI/
CDA/3667).
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