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A B S T R A C T

Satellite derived bathymetry (SDB) enables rapid mapping of large coastal areas through measurement of optical
penetration of the water column. The resolution of bathymetric mapping and achievable horizontal and vertical
accuracies vary but generally, all SDB outputs are constrained by sensor type, water quality and other en-
vironmental conditions. Efforts to improve accuracy include physics-based methods (similar to radiative transfer
models e.g. for atmospheric/vegetation studies) or detailed in-situ sampling of the seabed and water column, but
the spatial component of SDB measurements is often under-utilised in SDB workflows despite promising results
suggesting potential to improve accuracy significantly. In this study, a selection of satellite datasets (Landsat 8,
RapidEye and Pleiades) at different spatial and spectral resolutions were tested using a log ratio transform to
derive bathymetry in an Atlantic coastal embayment. A series of non-spatial and spatial linear analyses were
then conducted and their influence on SDB prediction accuracy was assessed in addition to the significance of
each model's parameters. Landsat 8 (30m pixel size) performed relatively weak with the non-spatial model, but
showed the best results with the spatial model. However, the highest spatial resolution imagery used – Pleiades
(2 m pixel size) showed good results across both non-spatial and spatial models which suggests a suitability for
SDB prediction at a higher spatial resolution than the others. In all cases, the spatial models were able to
constrain the prediction differences at increased water depths.

1. Introduction

The rapid expansion of the Irish economy is putting unprecedented
pressure on the coastal marine area and its resources (Connolly and
Cummins, 2001). The Census 2016 (CSO, 2017) summary results
showed that in Ireland 40% of the total population reside within 5 km
of the coast. These circumstances demand efficient coastal management
procedures able to protect the sustainable use of these environments.
Timely and accurate environmental information such as bathymetry is
necessary to support effective resource policy and management for
coastal areas and assure human security and welfare. Several techni-
ques have been developed to derive depth values used to produce
bathymetric maps. Globally, single and multibeam echo sounders pro-
vide the most accurate and reliable method to derive depth (e.g. Horta
et al., 2014). However, this technique is costly, slow, weather-depen-
dent and large survey vessels are unsuited for operations in shallow

waters. Airborne bathymetric LiDAR represents an alternative to vessel
campaigns and its suitability has been demonstrated in coastal areas
(Chust et al., 2010). This method is rapid, unhindered by maritime
restrictions but performs poorly in turbid waters, as demonstrated by
tests performed by the national marine mapping programme, INFOMAR
(Coveney and Monteys, 2011).

Satellite-derived bathymetry (SDB) is emerging as a cost-effective
alternative methodology that provides high resolution mapping over a
wide area, rapidly and efficiently. Multispectral satellites of several
spectral and spatial resolutions have been assessed for this purpose
worldwide (e.g. Lyons et al., 2011; Poursanidis et al., 2019). Deriving
bathymetry from multispectral satellite imagery applies the principle
that light penetration of the water column at different wavelengths is a
function of the properties of sea-water and was first proposed as a po-
tential optical alternative for bathymetric surveys in the 70s (Lyzenga,
1978). However, it is noted that depth penetration is limited by water
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turbidity and these methods require calibration, particularly in areas of
variable seabed type (Bramante et al., 2013; Vahtmäe and Kutser,
2016). Coastal environments are highly dynamic and heterogeneous,
and therefore more studies are needed to ensure robust methodologies.
Development of applications utilising satellite imagery will help EU
member states like Ireland to leverage their investment in this tech-
nology.

The frontier of SDB research has advanced from basic linear func-
tions into band ratios of log transformed models (Lyzenga, 1981), non-
linear inverse models (Stumpf et al., 2003) and physics-based methods
similar to radiative transfer models (Dekker et al., 2011). Empirical SDB
prediction methods have been assessed for deriving bathymetry in Irish
waters in previous tests (Coveney and Monteys, 2011; Monteys et al.,
2015; Casal et al., 2019) and although SDB performance varies de-
pending on the approach, the prediction differences were approxi-
mately 10% of water depth, and were influenced by water type and by
sensor types.

In this study, we apply and extend a proven empirical approach
(Stumpf et al., 2003) to a selection of multi-resolution imagery pro-
ducts: Landsat 8, RapidEye and Pleiades. The potential of these sensors
has been individually reported in other studies (e.g. Collin et al., 2018;
Hedley et al., 2018; Pacheco et al., 2015; Traganos and Reinartz, 2018;
Sagawa et al., 2019). However, in this study, we incorporate multiple
spatial, spectral and radiometric resolutions to ascertain their influence
on bathymetric accuracy both prior and post image-corrections. In
particular, satellite-derived relative depth (SDRD) was determined
using the three satellite-based products where different spatial filters,
pre-processing steps, atmospheric corrections and multispectral band
combinations were investigated. This operation resulted in 23 different

formulations of SDRD, each of which was assessed for use as a potential
predictor variable in the study's SDB predictions models. The ground-
reference water depth was provided via airborne bathymetric LiDAR.

Bathymetry has an inherent, under-utilised spatial element that can
be exploited to improve SDB accuracy through application of spatial
prediction techniques (e.g. Chilès and Delfiner, 1999; Li et al., 2011).
We complement a previous empirical SDB prediction study for Irish
coastal waters (Monteys et al., 2015), through the application of (i)
linear regression (LR), a non-spatial predictor and (ii) regression kriging
(RK) (Hengl et al., 2003), a spatial predictor. Here prediction accuracy
is the focus, as similarly assessed in Monteys et al. (2015). Prediction
uncertainty accuracy assessments (e.g. prediction confidence intervals)
require more sophisticated predictors, using say, Bayesian constructions
(e.g. Rue et al., 2009; Biangiardo et al., 2013). Thus, for this study our
key objectives can be summarized as follows:

1. Statistically determine the best satellite-derived predictors of
bathymetry for each satellite product through linear correlation and
regression analyses.

2. Compare LR and RK for their SDB prediction accuracy, together with
the significance of each model's parameters found from (1).

3. Evaluate the importance of integrating seabed type and turbidity on
prediction accuracy.

4. Suggest steps to upscale to encompass an entire coastal bay in North
Atlantic waters.

The paper is structured as follows. Section 2 introduces the study
area and the study data sets. Section 3 defines the image processing
approach and the formation of image-based predictor variables, the

(a)
(b)

(c) (d)

Fig. 1. Tralee bay and satellite images selected for SDRD Study: (a) site located in south west corner of Ireland (via Google Earth) and (b) Landsat 8 - 30m spatial
resolution (c) RapidEye - 5m spatial resolution and (d) Pleiades - 2m spatial resolution. The presence of clouds in East of Tralee test site in the Pleiades image (2d)
results in a noted difference in contrast between this image and the others.
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statistical analyses to retain only the most informative predictor vari-
ables, and describes the two study prediction models, LR and RK.
Section 4 presents the results of the statistical analyses for the predictor
variables and the SDB predictive performances of LR and RK. Section 5
highlights the main findings, the implications of this study and is fol-
lowed by our conclusion.

2. Study area and data sets

2.1. Study area – Tralee Bay

Tralee Bay is located on the west coast of County Kerry, Ireland
(Fig. 1a). Several small rivers feed into the bay through the town of
Tralee and the River Lee, a large river also feeds into the bay increasing
turbidity in the area surrounding the mouth. Tralee bay is re-
presentative of many of the coastal embayments on the Irish west coast
where rivers enter the North Atlantic.

2.2. Multi resolution satellite imagery

Incorporating imagery from different satellite platforms enabled an
investigation of the influence of image resolution, offering a range of
spatial resolutions (pixel size), spectral resolutions (number of bands
and portion of spectrum covered), temporal resolutions (seasonal var-
iations) and radiometric resolutions (bit depth). As this research was
initiated prior to Sentinel 2a becoming fully operational, Landsat 8 was
the primary open data set utilised in our tests. Third Party Mission
imagery was provided by the European Space Agency (ESA), which was
available under license, and this enabled more tests than utilising the
open data alone. The final satellite datasets selected for the project
(Table 1) were Landsat 8 (30m spatial resolution with a coastal/aerosol
band), RapidEye (5m) and Pleiades (2 m) - all multispectral satellite
data sets with extensive archive coverage for Ireland.

For each Satellite data source, the choice of image was based on the
following criteria:

• Extent of cloud cover over and near the study area

• Visible effects of sun glint over water

• Visible effects of turbidity within bay.

• Date of Image acquisition.

• Tidal level during image acquisition.

Cloud cover was the most significant limiting factor in the selection
of satellite data. For example, in 2015 of the 69 Landsat 8 scenes cap-
tured over the survey area, only two dates were considered ‘cloud free’
and warranted further consideration. Data on tidal level was obtained
from Castletownbere Tide Gauge which is part of the Irish National Tide
Gauge Network and located approximately 65 km south of Tralee bay.

Considering the above criteria, an optimal image from each satellite
was chosen, the details of which are listed in Table 2. The Optimal
images are displayed in Fig. 1(b–d).

Satellite imagery available from free and commercial sources are
generally available with varying degrees of pre-processing. The degree
of processing applied to each image can range from raw, uncorrected
data up to a level where all possible corrections have been applied and
the secondary data generated. To ensure fair comparisons between each
multispectral image source, it was important that each image was
processed using the same technique. For this reason, the Landsat 8 data
used in this report was processed to ‘Level 1 T’, RapidEye was processed
to ‘3A’ and Pleiades to ‘ORTHO’ level – all of which are prior to ap-
plication of atmospheric correction. Each data source used a differing
naming convention to indicate the processing level, however, proces-
sing levels can be assumed as equivalent in terms of how raw data from
each source was converted to absolute radiance with precision terrain-
corrections. During radiometric correction for each data source,
radiometric artefacts and relative differences between bands were de-
tected and corrected. For each satellite source, the data was converted
to absolute radiometric values using calibration coefficients developed
specifically for that satellite. Each data source was geometrically cor-
rected using accurate Digital Surface Models and ground control points.
The only difference in the methodology used for geometric correction
between the data sources was in the kernel type used during resam-
pling. Unlike Landsat 8 Level 1 T data and RapidEye 3A data which use
a Cubic Convolution Resampling Kernel, Pleiades ORTHO is resampled
using a spline kernel (USGS, 2016) (BlackBridge, 2015) (ASTRIUM,
2012).

2.3. LiDAR and SONAR bathymetry data

Ground reference bathymetry data for Tralee Bay was acquired
between 2008 and 2014 by the INFOMAR program. In 2008 Tenix Laser
Airborne Depth Sounder (LADS) carried out a LiDAR survey of the bay
(5m spatial resolution) covering most of the bay and at 200% coverage
to allow multiple passes over the same area. Data was processed using
Tenix LADS proprietary hydrographic software and tidally corrected
using local tide gauges. Category Zone of Confidence (CATZOC) values
are used to indicate the accuracy of data presented on navigation
charts. The resulting dataset can be classified to CATZOC B type and the
survey report is provided as supplemental material with this paper. The
seabed between Kerry Head and Brandon Point was mapped via mul-
tibeam SONAR in 2009, 2011 and 2014 by the Celtic Voyager. The RV
Geo, RV Keary and Cosantóir Bradán mapped the shallower waters
along the coast of Tralee Bay in 2014. Sonar data meets IHO order 1
specifications with an overall vertical error of< 2% water depth and is
classified as CATZOC type A1.

Table 1
Details of satellites used in project.

Satellite Product ID Resolution Bands used in project (μm) Source

Landsat 8 LC08_L1TP_208024_20150419_20170409_01_T1 30m Costal Blue (0.435–0.451)
Blue (0.452–0.512)
Green (0.533–590)
Red (0.696–0.673)
Near-Infrared (0.851–0.879)

USGS Earth Explorer

RapidEye 23605785 5m Blue (0.440–0.510)
Green (0.520–590)
Red (0.630–0.685)
Near-Infrared (0.760–0.850)

RapidEye's EyeFind

Pleiades DS_PHR1B_201405291144248_FR1_PX_W010N52_0205_04866 2m Blue (0.43–0.55)
Green (0.50–62)
Red (0.59–0.71)
Near-Infrared (0.74–0.94)

AIRBUS GeoStore

(USGS, 2016) (BlackBridge, 2015) (ASTRIUM, 2012)
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2.4. Additional data

Further data is available on seabed-type, where four classes char-
acterizing different seabed properties in Tralee Bay may help explain
the variation in water depth. Seabed information was derived from the
seabed geological maps and databases published by Geological Survey
Ireland. These maps, produced by interpreting multibeam bathymetry
and backscatter data, inform about seabed-type and geomorphological
factors. Data points for Tralee bay (Fig. 2) showing similar character-
istics were grouped into four discrete classes (see Table 3). Sediment
samples were used to label these classes with geological descriptors.
Hardground (class 1) and Coarse (class 2) account for 35% and 35.1%,
respectively of the Bay's seafloor. Fine-grained sediments (classes 3 and
4) account for over 29.9%. The difference in fine-grained sediment can
primarily be attributed to two distinct backscatter acoustic signatures,
which are typically related to sediment properties. “Fine sediments II”
could be finer grained sediments than “Fine sediments I”, but due to
insufficient sediment samples to confirm this trend these were left as
undifferentiated.

In addition, it is always possible to use the coordinate data (Eastings
and Northings) to help explain variation in water depth. Thus, seabed-
type and the coordinates, together with satellite derived data are all
employed as potential predictors of bathymetry using the study models.

3. Methodology

3.1. Data processing

Each of the following steps used to process the data were under-
taken in the open source R statistical programming language version R
3.5.1(R core team, 2013).

3.1.1. Atmospheric correction
In this paper we applied Dark Object Subtraction (DOS) atmospheric

correction, since the absence of thick clouds casting shadows over deep
water (as evident in Fig. 1b–d) eliminated the possibility of applying the
method proposed by Hernandez and Armstrong (2016) – previously
identified as optimal when atmospherically correcting imagery for de-
riving bathymetry.

DOS is an image-based atmospheric correction method which as-
sumes that within an image there is a dark object that has near zero
reflectance because of shadow or deep water. In its simplest im-
plementation, this involves subtracting all values in the image by the
minimum value in the image. However, some authors (e.g. Chavez,
1988) recommends the user manually select the minimum value upon
examination of the DN histogram of the image. This method assumes a
near zero reflectance and so a 1% reflectance is assumed which was
calculated for each band by (Chavez, 1988; Zhang et al., 2010):

=L E cosθ
πd

0.01 sunλ
1% 2 (1)

where, Esunλ=Exo-atmospheric solar irradiance; and θ= the solar
zenith angle. Once calculated the surface radiance for each band was
found by:

= − −L L L dcoor satλ darkλ (2)

where, Lsatλ= the radiance recorded at the sensor; and Ldarkλ=the
radiance of the dark object.

Table 2
Details of satellite data used in project.

Satellite Acquisition data Satellite acquisition time Time of low tidea Visible turbidity Visible sun glint

Landsat 8 19/04/2015 11:34 11:45 Moderate Low
RapidEye 16/06/2010 12:48 12:45 Moderate to low Moderate
Pléiades 29/05/2014 11:34 11:30 Moderate Low

a Water Level based on Ordnance Survey Ireland Datum - Malin Head.

Fig. 2. Seabed classes for Tralee bay – derived from multibeam and backscatter data and subdivided into 4 classes ranging from hardground to fine sediments.

Table 3
Seabed-type and descriptions.

Class Name Description Topography

1 Hardground Rock outcrops and coarse gravel Rough
2 Coarse Gravel and sand Medium
3 Fine sediments I Featureless mixed fine sediments Smooth
4 Fine sediments II Featureless mixed fine sediments Smooth
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3.1.2. Sun-glint correction
Sun-glint can have an impact on the accuracy of depth derivations.

Sun-glint is the reflection caused by light intersecting a surface at a
favourable angle and as a result, is reflected directly to the sensor.
Overwater waves are one of the main contributing factors to creating
the conditions required for sun-glint (Kay et al., 2009). In each of the
images used in this study, the effect of sun-glint was visibly noticeable
and so a technique developed by Hedley et al. (2005) to correct its
effect was employed. This technique assumes that in deep water, light
with a wavelength> 700 nm was almost completely absorbed by
water. As a result, reflectance recorded in a region of deep water using a
near-infrared band should have the same value as the minimum value
within that region. Therefore, any deviation from this is an indication of
the degree by which sun-glint is impacting the reflectance at any point
over water. Following this assumption, each band can be corrected by
determining the slope of a LR between it and the NIR band and applying
the following formula (Hedley et al., 2005):

′ = − −L (VIS) L (VIS) b [L(NIR) L (NIR)]i i 1 min (3)

where, b1= the slope of the LR line; Li(VIS)= the original value for the
visible band; L(NIR)= the value for the NIR band; and Lmin(NIR)= the
minimum value in sample area for the NIR band.

3.1.3. Empirical determination of satellite derived relative depth (SDRD)
An empirical method that has demonstrated potential to estimate

water depth in Irish waters (Monteys et al., 2015) is that developed by
Stumpf et al. (2003):

= −Z m ln nR λ
ln nR λ

m( ( ))
( ( ))

w i

w j
1 0

(4)

where: Z= the estimated depth; m1= a tuneable constant to scale the
ratio; m0= the offset for a depth where Z is equal to zero; Rw(λi) = the
reflectance of blue band; Rw(λj)= the reflectance at green band; and
n= a fixed constant to ensure that the logarithm is positive and that a
positive linear response with depth is produced.

This empirical method applies a LR to relate known depth mea-
surements to the SDRD values (Stumpf et al., 2003). Using this method,
SDRD maps were generated by calculating the log ratio of the blue and
green bands of the recorded image. Here multiple derivations of SDRD
were found using the Landsat 8, RapidEye or Pleiades imagery, where
in turn, different spatial filters, different pre-processing steps, different
atmospheric corrections and different multispectral band combinations
were used (i.e., that presented above). This resulted in a total of 23
different formulations of SDRD for use as potential predictors of
bathymetry in each of the study prediction models.

3.1.4. Accounting for turbidity
Water turbidity can have a significant impact on water leaving ra-

diance and thus the derived depth (e.g. Casal et al., 2019). Water tur-
bidity can result in higher water-leaving radiances across the visible
and Near Infrared (NIR) portions of the spectrum, overestimating
depths in shallower areas (Bramante et al., 2013) and underestimating
depths in deep areas (6 m–10m) (Casal et al., 2019).

To remotely quantify turbidity levels, the Normalized Difference
Turbidity Index (NDTI) developed by Lacaux et al. (2007), was calcu-
lated for potential use as a predictor of bathymetry and was divided
into 5 equal interval classes to provide an indicator of water quality. In
clear water, green light with a wavelength between 0.5 μm and 0.6 μm
will have a much greater spectral response than red light with a wa-
velength of roughly between 0.6 μm and 0.7 μm. An increase in tur-
bidity results in a change in the ratio of the response between green and
red light and in cases of extreme turbidity, red light may even have a
greater response than green light (Lacaux et al., 2007). The NDTI can be
defined as:

= − +NDTI (ρred ρgreen)/(ρred ρgreen) (5)

3.1.5. Data integration with INFOMAR bathymetry
The geo-referenced SDRD and NDTI values were then combined

with the INFOMAR bathymetric LiDAR data. To further ensure no
anomalies were introduced into the analysis by including data over land
or in areas prone to high degrees of turbidity such as the river mouth,
all data above the high-water mark as defined by Ordnance Survey
Ireland vector shapefiles and all ground reference data with elevation
values above ground level were removed.

3.1.6. Summary and further data processing
The full study data set thus consisted of a single response variable

(LiDAR-B) together with six distinct predictor variables, as detailed in
Table 4. The spatial resolution of the full study data was 5m (reflecting
the point density of the LiDAR-B data) with n=4,464,329 observa-
tions. Fitting prediction models to such a massive spatial dataset pre-
sents a problem computationally (e.g. Cressie and Johannesson, 2008),
and for this reason, the study prediction models (LR and RK) were
specifically chosen to reflect this (see Sections 3.2 and 3.3). To better
approximate a smaller ground-truth dataset and demonstrate the utility
of SDB for application anywhere, use of the full data set was

Table 4
Summary of response and predictor variables.

Variable Variable description

Response variable
LiDAR-B INFOMAR bathymetry based on LiDAR survey

Predictor variables (SDRD with Landsat 8)
LS8-CB Coastal aerosol band only
LS8-B Blue band only
LS8-G Green band only
LS8-L-CBG Log ratio using coastal aerosol/green bands
LS8-L-BG Log ratio using blue/green bands
LS8-DOS-L-CBG Log ratio using coastal aerosol/green bands

(Atmospherically Corrected)
LS8-DOS-L-BG Log ratio using blue/green bands (Atmospherically

Corrected)

Predictor variables (SDRD with RapidEye)
RE-B Blue band only
RE-G Green band only
RE-L-BG Log ratio using blue/green bands
RE-3X3-B 3×3 low-pass filter applied to blue band only
RE-3X3-G 3×3 low-pass filter applied to green band only
RE-3X3-L-BG 3×3 low-pass filter applied and log ratio using blue/green

bands
RE-DOS-L-BG Log ratio using blue/green bands (Atmospherically

Corrected)
RE-DOS-3X3-L-BG 3×3 filter & log ratio using blue/green bands

(Atmospherically Corrected)

Predictor variables (SDRD with Pleiades)
PL-B Blue band only
PL-G Green band only
PL-L-BG Log ratio using blue/green bands
PL-3X3-B 3×3 low-pass filter applied to blue band only
PL-3X3-G 3×3 low-pass filter applied to green band only
PL-3X3-L-BG 3×3 low-pass filter applied and log ratio using blue/green

bands
PL-DOS-L-BG Log ratio using blue/green bands (Atmospherically

Corrected)
PL-DOS-3X3-L-BG 3×3 filter applied and log ratio using blue/green bands

(Atmospherically Corrected)

Predictor variables (Turbidity)
LS8-NDTI NDTI from Landsat 8 imagery
RE-NDTI NDTI from RapidEye imagery
PL-NDTI NDTI from Pleiades imagery

Predictor variable (Seabed-type)
Four classes of seabed-type (Table 3)

Predictor variables (Coordinates)
Easting Easting coordinate
Northing Northing coordinate
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unnecessary, and as such, the full data set was sub-sampled via random
sampling to a smaller, more manageable size.

Furthermore, as it was necessary to objectively evaluate the pre-
diction models, the decimated data set was split into a calibration
(training) and validation data set, with a 40:60 split, where the speci-
fied split was judged to provide reasonably well-informed model cali-
brations but not at the expense of too few validation sites. This resulted
in a decimated data set size of n=4462 (0.10% of full data set), a
calibration data set of size of n=1768 (0.04% of full data set) and a
validation data set size of n=2678 (0.06% of full data set). In addition,
it was considered inappropriate to attempt to predict LiDAR-B at depths
below 12m because the imagery data will not accurately represent such
depths in all the satellite scenes evaluated for a valid cross-comparison
exercise (Monteys et al., 2015). In this respect, the calibration and
validation data sets were further processed to remove observations with
LiDAR-B values deeper than 12m. This resulted in a revised decimation
data set size of n=3041 (0.067% of full data set), a revised calibration
data set of size of n=1214 (0.027% of full data set) and a revised
validation data set size of n=1827 (0.04% of full data set). These final
data sets are mapped in Fig. 3. It is stressed that this study's reported
results were representative of numerous explorations with different
data decimations and different randomly-sampled calibration and va-
lidation data sets, where the decimated data sets were allowed to vary
in size from 0.05% (n=2232) to 1% (n=44,643) of the full data.

3.2. Statistical analyses

For the statistical analyses, objectives were to determine the
strongest relationships between LiDAR-B and: (i) each of the SDRD
variables derived from the Landsat 8, RapidEye or Pleiades products;
(ii) the NDTI from the satellite products; (iii) seabed-type; and (iv) the
coordinates. This was achieved through basic assessments of: (a) nor-
mality, to gauge where a Box-Cox transform (Box and Cox, 1964) is
appropriate; (b) linear correlations (r) and associated scatterplots; (c)
conditional boxplots for categorical variables, LS8-NDTI, RE-NDTI, PL-
NDTI and Seabed-type; and (d) ‘in-sample’ non-spatial and spatial LR
fits. For assessment (d), ‘in-sample’ LR fits are opposed to ‘out of
sample’ LR fits where they are calibrated with the calibration data to fit
‘out-of-sample’ at the validation data sites.

Parameters of the non-spatial LR were estimated through ordinary
least squares (OLS), whilst the parameters of the spatial LR were esti-
mated using restricted maximum likelihood (REML) to account for a
spatially-autocorrelated error term (as modelled via a given variogram).
The OLS and REML LR fits were conducted using the linear mixed
model function in the R nlme package (Pinheiro et al., 2018), where
model fit statistics of R2 (fit with the highest R2, the best) and AIC (fit
with the lowest AIC, the best) are reported for comparison. The results
of these statistical analyses were used to determine the final predictor
variable sub-sets for retention in the two ‘out-of-sample’ prediction
models (LR and RK), where comparisons of prediction accuracy with
respect to the predictor variables from different imagery products were
undertaken. Observe that REML LR fits are computationally intensive,
but with small calibration data sets (n < 5000, say) they can provide
directions and insights for predictor variable retention for much larger
calibration data sets, leading up to the full data set.

3.3. Methods for spatial prediction

The study prediction models consist of LR and RK only, both of
which were calibrated to predict LiDAR-B informed by some combi-
nation of the SDRD data, the NDTI data, seabed-type and the co-
ordinates. For computational reasons, RK has been chosen over its close
counterpart of kriging with an external drift (KED), where RK and KED
have the following properties.

Both RK and KED are LR-based geostatistical predictors, designed to
account for spatial autocorrelation effects in the error term via the re-
siduals of a LR trend fit, where RK in this study, is viewed as a statis-
tically sub-optimal but computationally simpler version of KED. RK is

Fig. 3. LiDAR-B maps for the (a) calibration and (b) validation data sets – depths in metres (m).

Fig. 4. Simplified workflow processing steps for the generation and validation
of the spatial prediction models used in this study.
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an explicit two-stage procedure, where the LR predictions are found
first, then added to the ordinary kriging (OK) predictions of the LR
residuals. For this study, RK is statistically sub-optimal since: (1) its LR
trend component is estimated via OLS, (2) its residual variogram
parameters are estimated via a weighted least squares (WLS) model fit
to the empirical variogram (Zhang et al., 1995), and (3) a local (non-

unique) kriging neighbourhood of the nearest 20% of the residual data
is specified (see Rivoirard, 1987).

Conversely, KED can be viewed as statistically optimal, where the
LR trend and residual variogram parameters are estimated concurrently
(i.e. an implicit single-stage procedure) using REML and provided a
global (unique) kriging neighbourhood is specified. In this form, KED

Fig. 5. Relationships for LiDAR-B with: (a) coordinates and Landsat 8 SDRD predictors, and (b) Northings and RapidEye SDRD predictors.
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presents a problem computationally but is required for best linear un-
biased prediction (BLUP), whereas the chosen specifications of RK (i.e.
the OLS trend fit, the WLS variogram fit and the local kriging neigh-
bourhood) are each chosen to alleviate computational burden, whilst
still providing tolerable levels of prediction accuracy (i.e. as would be
expected from a corresponding KED fit). Theoretical details, equivalents
and comparisons for explicit RK models and implicit KED models can be
found in Bailey and Gatrell (1995); Hengl et al. (2003). For this study's
RK models, an isotropic exponential variogram model was specified;
and the various components of an RK calibration were achieved using
gstat (Pebesma, 2004) and geoR (Ribeiro and Diggle, 2001) R packages.

The following set of diagnostics was used to assess LR and RK pre-
diction accuracy. For observed z(xv) and predicted z (x )v LiDAR data at
a validation location xv, overall prediction accuracy was measured by:

∑= −
=

M z zMPD (1/ ) { (x ) (x )}
v

M

v v
1 (6)

∑= −
=

M z zRMSPD (1/ ) { (x ) (x )}
v

M

v v
1

2

(7)

∑= −
=

M z zMAPD (1/ ) | (x ) (x )|
v

M

v v
1 (8)

where expressions (6), (7) and (8) are the mean prediction difference
(MPD), the root mean squared prediction difference (RMSPD) and the
mean absolute prediction difference (MAPD), respectively; and where
M is the size of the validation data set. All such diagnostics should tend
to zero for accurate and unbiased prediction. The correlation coefficient
between z(xv) and z x( )v is also found where a positive value tending to
one is sought, but noting that this diagnostic is scale-invariant, so
consistent over- or under-prediction would not be captured. Minimum
and maximum absolute prediction differences (APDs) are also given,
and all diagnostics are supplemented with plots and maps to provide
detailed context. Observe that the prediction difference is defined as the
difference between the observed LiDAR-B data and the predicted LiDAR-
B data by either LR or RK. A simplified workflow for the implementa-
tion of the study's spatial prediction models is given in Fig. 4.

Fig. 6. Relationships for LiDAR-B with: (a) Northings and Pleiades SDRD predictors, and (b-e) LS8 NDTI, RE NDTI, PL NDTI and Seabed-type predictors, via
conditional boxplots.
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Table 5
Preliminary (‘in-sample’) non-spatial LR (OLS) and spatial LR (REML) fits, with ***, ** and * indicating significance at p=0.001, 0.01 and 0.05 levels, respectively.

Estimator Landsat 8 LR:
Estimate and significance

RapidEye LR:
Estimate and significance

Pleiades LR:
Estimate and significance

OLS REML OLS REML OLS REML

Coefficients
Intercept 1160*** 2531 320.8*** 3490 273.4* 3049
LS8_DOS_L_BG −4.885*** 0.3455 – – – –
RE_DOS_3X3_L_BG – – −13.149*** −1.630*** – –
PL_DOS_3X3_L_BG – – – – −1.115*** −1.731***
LS8-NDT1 2 1.702*** 0.579*** – – – –
LS8-NDT1 3 3.146*** 1.236*** – – – –
LS8-NDT1 4 3.643*** 1.563*** – – – –
LS8-NDT1 5 4.194*** 1.950*** – – – –
RE_NDTI 2 – – 2.177*** 0.413*** – –
RE_NDTI 3 – – 3.325*** 0.832*** – –
RE_NDTI 4 – – 4.003*** 1.057*** – –
RE_NDTI 5 – – 5.185*** 2.440*** – –
PL_NDTI 2 – – – – 1.737*** 0.404***
PL_NDTI 3 – – – – 3.736*** 1.243***
PL_NDTI 4 – – – – 4.137*** 2.215***
PL_NDTI 5 – – – – 5.503*** 3.892***
Northing −0.000*** −0.000 −0.000*** −0.001 −0.000* −0.000
Seabed-type 2 −0.979*** −0.573*** −0.978*** −0.629*** −1.175*** −0.582***
Seabed-type 3 −2.379*** −1.023*** −3.085*** −1.059*** −2.651*** −0.947***
Seabed-type 4 −1.931*** −0.768*** −1.890*** −0.802*** −1.908*** −0.760***

Fit statistics
R2 (OLS only) 0.63 – 0.70 – 0.66 –
AIC 4467.0 1786.1 4213.5 1824.0 4352.9 1732.8

Fig. 7. Variogram models estimated by WLS (for RK) and by REML (for spatial LR) for each satellite product. Empirical residual variograms= red circles; WLS
variogram model fits to empirical residual variograms= red lines; REML model fits= blue lines (note these fits are entirely independent of the empirical residual
variograms). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 6
Prediction accuracy diagnostics for LR and RK, and all three satellite products. Key: Landsat 8 (LS8), RapidEye (RE) and Pleiades (PL).

Diagnostic Minimum APD Maximum APD MPD

Model/product LS8 RE PL LS8 RE PL LS8 RE PL

LR 0 0 0.001 4.368 4.430 4.170 −0.049 −0.043 −0.081
RK 0 0 0 2.879 5.024 4.756 0.027 0.017 0.003

Diagnostic MAPD RMSPD Correlation

Model/product LS8 RE PL LS8 RE PL LS8 RE PL

LR 1.252 1.088 1.182 1.514 1.346 1.445 0.787 0.836 0.809
RK 0.436 0.668 0.595 0.637 0.905 0.797 0.967 0.938 0.950
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4. Results

4.1. Statistical analyses

We first report the results of the statistical analyses using the study
calibration data set only. All variables displayed reasonable normality,
so in the interest of model parsimony, no variables were transformed to
such. For data relationships, the linear correlation coefficients and as-
sociated scatterplots are given in Figs. 5 and 6(a), while conditional
boxplots are given in Fig. 6(b–e).

The exploratory analysis also allowed us to assess the impact of the
atmospheric correction on the relationship of LiDAR-B to SDRD - and in
each case the atmospheric correction provided no worthwhile im-
provement in the r values (−0.53 moving to −0.54 for Landsat 8 after
DOS, −0.42 moving to −0.45 for RapidEye and −0.48 moving to
−0.46 for Pleiades). Additionally, the decrease in reflectance from
single bands provided the weakest relationship. It was found that
LS8_DOS_L_BG was the most strongly correlated Landsat 8 SDRD vari-
able with LiDAR-B (r=−0.54). Similarly, RE_DOS_3X3_L_BG and
PL_DOS_3X3_L_BG provided the strongest correlations for RapidEye and
Pleiades, respectively (r=−0.54 and r=−0.53). As there was a high
degree of collinearity among the SDRD predictors from each satellite
product group, only the above variables were retained and used in any
one LR/RK fit. In addition, the Northing coordinate was negatively and
moderately correlated to LiDAR-B (r=−0.36), and was also retained,
reflecting the north-south orientation of Tralee Bay. From the condi-
tional boxplots, LS8-NDTI, RE-NDTI, PL-NDTI (the satellite-derived
turbidity measures) and Seabed-type, could all strongly discriminate
across the range of LiDAR-B values; and were thus, all worthy of

retention.
The results of the ‘in-sample’ OLS and REML LR fits are given in

Table 5. The residual variograms for the three REML LR fits are given in
Fig. 7, which all displayed clear spatial dependence. These are also
given with the WLS estimated residual variograms used in RK, where
some degree of similarity between the WLS and REML variogram fits is
expected. Observe that the parameters from the REML variogram could
have been used in the RK fit instead of those from the WLS variogram,
but the objective here is ultimately to provide computationally feasible
solutions for large data sets. There was no evidence to suggest a non-
spatial LR would suffice over a spatial LR for inference, or over RK for
prediction (i.e. as would be the case if the residual variograms were flat,
with each indicating random variation).

From Table 5, the RapidEye product provided the best SDRD and
NDTI predictors in terms of the best fitting OLS LR model (R2= 0.70),
but conversely yielded an increase in AIC of
1824.0–1732.8= 91.2 units over the Pleiades REML model, which
provided the most parsimonious LR fit (i.e. with the lowest AIC at
1732.8). Landsat 8 provided the weakest OLS fit (R2= 0.63), but not
the weakest AIC results (as its REML fit reduced AIC over RapidEye).
Lending weight to pursuing a spatial analysis, all REML LR fits provided
large reductions in AIC over their OLS LR counterparts.

Interestingly, all predictor variables tended to be highly significant
in the OLS LR fits, while the intercept and Northings tended to insig-
nificance in the corresponding REML LR fits. This reflected improved
specification in the REML case, where the Northings acted as a useful
surrogate spatial effect in the OLS case, but where its predictive value
reduced in the REML case. Furthermore, for the Landsat 8 case only, its
SDRD predictor moved from being significant in the non-spatial case, to

Fig. 8. Observed versus predicted LiDAR-B for LR and RK, and all three satellite products (Landsat 8, RapidEye and Pleiades). Shown with ideal performance 45° line
(black line), associated 2m prediction difference lines (dashed red lines) and a 0m threshold line (dashed blue line). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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insignificant in the spatial case. Given these analyses, it was decided
that the LR and RK prediction models would take the following three
functional forms:

−

= − −f
LiDAR B

(SDRD (LS8_DOS_L_BG), Northings, LS8 NDTI, Seabed type)
(9)

− =

− −

fLiDAR B (SDRD (RE_DOS_3X3_L_BG), Northings

, RE NDTI, Seabed type) (10)

− =

− −

fLiDAR B (SDRD (PL_DOS_3X3_L_BG), Northings

, PL NDTI, Seabed type) (11)

Observe that Northings and LS8_DOS_L_BG (for the Landsat 8
models) were retained as they were still considered informative to ‘out-
of-sample’ prediction, and it would still be considered a significant
predictor in RK as RK's trend component is the ‘in-sample’ OLS LR fit.

4.2. Prediction model performance

The prediction accuracy performance of the two prediction models
and the three satellite products are summarized via the single-figure
diagnostics in Table 6, together with plots and maps in Figs. 8 to 11. On
viewing the diagnostics in Table 6, some clear trends emerge, where the
most accurate model was RK with Landsat 8 products. For all three
satellite products, RK always out-performed LR, both in terms of
average bias (MPD) and average prediction accuracy (MAPD, RMSPD).
Interestingly, with LR only, prediction using RapidEye followed by
Pleiades, both outperformed prediction with the Landsat 8 products.
However, when residual spatial information was considered with RK,
this behaviour was reversed, where prediction was most accurate using
Landsat 8 products, then Pleiades, then RapidEye. This behaviour ap-
pears unusual, but can in part, be explained by high prediction

differences with RK informed by the Pleiades and RapidEye products
(see Maximum APDs) - higher than that found with the corresponding
LR model. However, for prediction using the Landsat 8 products, RK
significantly reduced high prediction differences over its LR counterpart
(see Maximum APDs). Tentatively, this suggests that prediction using
the relatively high-resolution Pleiades and RapidEye products is more
prone to spatial anomalies, than that found with the comparatively low-
resolution Landsat 8 products.

These effects are more clearly seen in the observed versus predicted
scatterplots of Fig. 8, where obvious outlying points were evident for
RK using the RapidEye and Pleiades products. Prediction with the Ra-
pidEye products also resulted in impossible (positive) LiDAR-B predic-
tions with both LR and RK. RK clearly performed better than LR as
points are more clustered around the 45° line. These results were con-
trary to the in-sample results of Section 4.1 with the OLS and REML LR
fits but should not be viewed as unusual given the assessment here was
out-of-sample (i.e. with the validation data) and the results were not
always linear in behaviour. Further, differences in the in-sample LR
results were often marginal. Our study therefore demonstrates that
clearly, prediction model choice was always of more importance than
satellite product choice. In terms of spatial performance, the observed
data and the predictions are mapped in Fig. 9, and the corresponding
prediction differences are mapped in Fig. 10 for all six model/satellite
product combinations. From Fig. 9, all three RK models appear to re-
flect the spatial characteristics of the observed LiDAR-B data reasonably
well, but some impossible predictions occur in the shallows. The pre-
diction difference maps (Fig. 10) clearly depicts where the RK models
out-perform the LR models, especially in the western shallow areas.
Finally, Fig. 11 plots the observed LiDAR-B data versus the prediction
differences, where all three LR fits tend to over-predict in shallow
waters but tend to under-predict in deep water. This characteristic
disappears with all three RK fits.

Fig. 9. Observed LiDAR-B maps and LiDAR-B prediction maps for LR and RK, and all three satellite products. Key: Landsat 8 (LS8), RapidEye (RE) and Pleiades (PL)
(depths in metres).
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5. Discussion

The extraction of bathymetric information from optical remote
sensing data can be generally divided into two main approaches: em-
pirical approaches and “physics-based” model-inversion approaches.
Among the empirical approaches, one of the most commonly used is the
band ratio regression model (Stumpf et al., 2003). However, in recent
years, new studies have focused on enhancing empirical model per-
formance, for example, through spatial rather than standard, non-spa-
tial modelling (e.g. Su et al., 2015; Monteys et al., 2015; Chybicki,
2018). Following this trend, this study assessed an empirical modelling
framework through the incorporation of spatial autocorrelation effects.
This was specifically achieved via a REML estimated LR model for in-
ference (i.e. significance of predictor variables) and also by an RK
model for prediction (that was designed to save on computational
costs). Both models were applied to a selection of satellite products
(Landsat 8, RapidEye and Pleiades) each with different spatial and
spectral resolutions in order to better constrain SDB prediction accu-
racy. The temporal offset between the images and the ground reference
LiDAR ranged from a few months to a number of years and therefore
this represents a potential error source and does not allow for a defi-
nitive comparison. Delays in finding cloud free images with minimal
evidence of turbidity also influenced the temporal offset. However, the
bathymetric LiDAR dataset was selected for this study as it provided

complete coverage of the whole bay with overlaps for verification. It
was considered sufficiently accurate for SDB comparison as similar
temporal offsets between satellite imagery and reference LiDAR have
been incorporated successfully in SDB studies before (Vinayaraj et al.,
2016) and when compared with subsequent localised SONAR surveys in
later years for Tralee bay, it displayed no significant variation. The
LiDAR dataset also enables testing of consistency across images, parti-
cularly regarding water depth intervals.

In terms of SDB prediction performance, LR models using the
RapidEye and Pleiades products showed smaller and more consistent
prediction differences than that found with Landsat 8; however,
Landsat 8 models seemed to work better than RapidEye and Pleiades
models locally in the deeper parts of the bay (water depths> 10m)
(Fig. 9). All three LR models tended to over-predict in shallow waters
but tended to under-predict in deeper waters, but importantly, this was
not the case for RK, where this prediction bias was not present (Fig. 10).
Conversely, for the RK models, Landsat 8 marginally outperforms Ra-
pidEye and Pleiades based on the prediction accuracy diagnostics
(Table 6) and on the prediction difference plots (Fig. 11). Performance
was also assessed at different water intervals and as a general indication
of the success of the methodology for the whole test site.

Fig. 10. Prediction difference maps for LR and RK, and all three satellite products. Key: Landsat 8 (LS8), RapidEye (RE) and Pleiades (PL) (differences in metres).
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5.1. Water depth intervals

5.1.1. 0–4m
In very shallow water depths (< 4m water depths) the trends ob-

served across all three satellite images indicate a similar over-prediction
pattern generally increasing with depth (see the observed versus LR
predicted and observed versus LR prediction difference plots in Figs. 9
and 10). The pattern observed is inverse to the 4 to 12m interval. The
most plausible explanation for this effect is the degree of influence in
the observed seafloor reflectance values. Reflectance values from the
visible bands can carry significant reflected light from the seafloor
contribution. Seafloor variability at the pixel scale can occur primarily
due to changes in seafloor type, variations in slope or aspect; or when it
is covered by algae or other non-geological factors. Local seafloor
variation is present in the study area as observed, for instance, in the
high resolution bathymetry images of the seafloor that appear with
glacially shaped terrain characteristics. The reflectance response, at the
pixel scale, from the three platforms are expected to differ substantially
and are difficult to quantify. The same issue was reported by other
studies using only LR models (e.g. Vahtmäe and Kutser, 2016; Casal
et al., 2019). Algae and rocky bottoms present a darker signal compared
to deep water areas having an influence on the performance of the
model.

5.1.2. 4–8m
As the bay deepens the trend in model performance gradually

changes from over-prediction to prediction values clustered around the
45° trend line with minimal prediction difference. The influence of the
seafloor gradually diminishes and other factors linked to water prop-
erties might now play a more important role. In deeper waters (water
depth > 6m) the results show prediction differences gradually

increasing towards negative values. This trend towards under-predic-
tion possibly reflects a depth threshold where the contribution of the
seafloor is negligible or absent. A similar depth limit has been reported
in other studies carried out on the Irish coast using empirical methods
but without a spatial component and also using Sentinel-2 data (Casal
et al., 2019). This confirmatory evidence suggests that around this
depth (~6m) lies a critical limit for SDB prediction using non-spatial
LR models in similar regions on the Irish coast.

5.1.3. 8–12 m
The central and deepest part of the study area, where water depths

ranged between 8 and 12m had generally low prediction differences for
all three RK models, whereas for the LR models, relatively high pre-
diction differences were present, representing a continued tendency to
under-predict (Fig. 10). This behaviour is reinforced in the observed
versus predicted scatterplots for LR (Fig. 8 - top panel), where the
scatterplot trends have a slope change when compared to that at 4 to
8m depths. This slope change is most pronounced in the Landsat 8 LR
model. This change can be attributed to the non-linear relationship
between reflectance versus water depth as the plateau reflects a water
depth threshold caused by the combination of an absence of seafloor
component and maximum light penetration.

5.2. General bay discussion

The distribution of the prediction differences in the North East
corner of the bay displayed high spatial variability, both with large
negative and large positive prediction differences. This was true both
for LR and RK. This high variability in prediction accuracy can be at-
tributed primarily to local changes in seabed type between rock out-
crops and fine-grained sediments. The influence of hardgrounds (rock

Fig. 11. Prediction differences for LR/RK versus observed LiDAR-B for all three satellite products (Landsat 8, RapidEye and Pleiades). Plots are given with (dashed
blue) lines at regular 2m depth intervals of the observed LiDAR-B data to aid interpretation. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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outcrops and mixed gravelly sediments) has already been described in
other studies carried out on the Irish coast (also using spatial prediction
models) as a source of high prediction difference (Monteys et al., 2015).
The inclusion of seabed class in the prediction models helps to under-
stand its influence on prediction accuracy and the local limitations in
the overall bathymetry results. In general, the LR models exhibited
large positive prediction differences (+2m) around the edges of the
bay, particularly in areas characterised by hardgrounds and coarse
gravel (Seabed class 1). Fine-grained sediments (Seabed classes 3 and 4)
presented lower prediction differences. For the spatial RK models, this
non-conformity was partially addressed, however large prediction dif-
ferences were still present due to local variability driven by seabed
type. For further avenues of research, firstly an investigation making
SDRD itself more spatially-explicit would be worthwhile. Secondly, for
upscaling the study results to the whole bay (i.e. use the full data set),
tools providing cloud-based computing like Google Earth Engine should
be explored further, as demonstrated in Traganos et al. (2018). Com-
putational savings could also be achieved via mathematical adjustments
to the LR and RK models (e.g. Cressie and Johannesson, 2008). On the
other hand, Sentinel-2 data with improved technical capabilities in
comparison to Landsat-8 (such as higher spatial resolution and 13
spectral channels ranging from the Visible and the Near-Infrared (VNIR)
to the Shortwave Infrared (SWIR)), becomes a potential dataset that
could provide new advancements in the performance of SDB and in the
generation of more detailed and accurate satellite derive bathymetry
maps.

6. Conclusions

In this study, methods for improving accuracies of satellite derived
bathymetry (SDB) were explored using three satellite datasets and two
linear prediction models, one non-spatial (linear regression), the other
spatial (regression kriging). For the satellite derived relative depth
(SDRD) predictor variables, a total of 23 different constructions were
evaluated, with different spectral band combinations, spatial filters and
log ratios. Turbidity and seabed type were also assessed as predictors of
bathymetry. By using LiDAR derived bathymetric maps as ground re-
ference data, we can conclude that:

1. All three satellite products provide robust and meaningful results to
assess SDB prediction accuracy at different spatial and spectral re-
solutions in the test area, Tralee bay.

2. SDB predictions using Landsat 8 products showed the most accurate
results when using the spatial, RK model, but returned the largest
prediction differences with the non-spatial, LR model.

3. Pleiades products returned good results both with the LR and the RK
models, suggesting a certain suitability for SDB at high spatial re-
solutions.

4. In all cases, the spatial RK model was able to constrain SDB pre-
diction differences as water depth increased, whereas the non-spa-
tial LR performed poorly in this respect.
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