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Abstract—As the physical makeup of cellular basestations evolve
into systems with multiple parallel transmission paths the effort
involved in modelling these complex systems increases consider-
ably. One task in particular which contributes to signal distortion
on each signal path, is the power amplifier. In power amplifier
(PA) modelling, Recursive Least Squares (RLS) has been used
in the past to train Volterra models with memory terms. The
Volterra model is widely used for modelling of PAs. In this paper
we present a comparison of the stability performance for a PA
model during training for various model memory lengths, model
orders of non linearity and signal sample rates. This examination
provides a technique to avoid instability occurring during the
adaptive training of dynamic nonlinear behavioural models.

I. INTRODUCTION

Radio transceivers are increasing in complexity as a result
of a more demanding and technology driven population [1].
There are a number of basestation architectures proposed to
meet the demand for such increases in data rates. Power
Amplifiers (PA’s) are a crucial component in the architecture
of a transceiver chain, responsible for increasing the power
of a signal to ensure accurate and reliable transmission. PA’s
display non linear behaviour - accuracy and efficiency are
a historical trade off. Distributed arrays of PAs are needed
for many of the proposed architectures for future wireless
networks. Behavioural modelling of PA’s is an essential tech-
nique of testing PA behaviours under various circumstances.
Extracting accurate models reduces the cost of hardware
implementation testing.

Behavioural modelling of PA’s is crucial in RF system mod-
elling. One main objective in modelling these systems is to
identify the most computationally efficient structure which
can accurately characterise the behaviour. The Volterra series
calculates each interaction of its inputs up to a defined order
of non-linearity, as the number of inputs or the order of non-
linearity increases the number of coefficients increases rapidly.
Rules of thumb have been used in order to quantify the non-
linear orders and methods such as Lipschitz numbers can be
employed to dimension the memory depth needed for the PA
model [2]. Similarly, more compact model structures derived
from the Volterra model, such as the memory polynomial
model or modified Volterra series, can be capable of modelling
complex non-linear systems with memory. A system with

finite order of non-linearity with finite memory depth can be
described in the time domain compactly by equation 1.

y(n) =
P∑

p=1

yp(n) (1)

Where,

yp(n) =
N−1∑
i1=0

· · ·
N−1∑
iP=0

hp(i1, · · · , ip)
p∏

i=1

x(n− ir)

Where x(n) and y(n) is the input and output signal to
the system respectively. hp(i1, ..., ip) represents the filter co-
efficient expansion utilising, p, the highest order for the non-
linearity of the Volterra series expansion. N represents the
maximum memory tap length chosen [3].

Small increments in either the order of nonlinearity or memory
depth can greatly increase the number of model coefficients,
which in turn can severely reduce the computational efficiency
of the model as the nonlinear order or memory depth of
the system to be modelled increases. However, the opposite
scenario where the nonlinear order or memory depth can be
reduced will greatly reduce the computational effort required.
As research into wireless communication networks progresses
beyond 5G standards, researchers must be aware of how all
characteristics may be modelled in order to maximise system
efficiency, reducing latencies in PA characterisation and im-
plementation of adaptable digital pre-distortion is also desired.
One drawback with adaptive techniques is the instability of the
coefficients during the training of the model.

The following aspects are considered in this paper: a Volterra
model’s ability to capture the input to output relationship of
experimentally measured PA signals with a suitable accuracy.
Secondly, the effect on the model accuracy when higher and
lower sample rates are used for the signals. Finally the effect
of memory length on the model’s training stability when an
adaptive training routine is employed.

II. THE POWER AMPLIFIER MODEL

Under certain operating conditions PAs exhibit dynamic and
non linear operation. As such they may be closely modelled
using non linear filters [4], [5], due to their similarity in
behaviour. In order to model a nonlinear PA with memory
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Figure 1. PA model

effects, a suitable order of non-linearity, memory length and
a training routine must be selected. In order to test a cumber-
some adaptive non-linear filter model, the Volterra series was
selected for this work and the adaptive training routine to learn
the model coefficients is Recursive Least Squares (RLS).

The operation of a digital filter is to take input signal samples
x(n), combine the current sample and previous samples,
weight all of them and sum the resulting products. Similarly a
non linear filter contains weights H(n), which are multiplied
by the selection of input samples and the various combinations
of the samples. The objective is for the output d̂(n) to be
adequately comparable to the desired output signal d(n). The
system alters parameters of the model, continuously updating
for each new sample point, to minimise the error function
given by e(n) = d(n)− d̂(n).

A. Training algorithm and figure of merit

RLS was chosen as the training method alongside the Volterra
model for this paper [6]. The exponentially weighted RLS
algorithm can be adequately described in terms of its cost
function as RLS filter coefficients,

# »

H(n) adapt based on the
cost function J(n), which can be seen in equation 2.

J(n) =
n∑

k=1

λ(n−k)(d(k)− # »

HT (n)X(k))2 (2)

Where λ is an exponentially weighted factor, 0 < λ < 1,
controlling the convergence speed of the function, referred
at times as the forgetting factor. RLS filter coefficients are
determined such that the weighted average of the squared
estimation error is minimised from time k = 1 to k = n
[6].

Root Mean Squared Error (RMSE) was chosen as the figure of
merit for this investigation due to its computational efficiency.
RMSE can be calculated by equation 3.

RMSE =

√∣∣∣(d(n)− d̂(n))∣∣∣2 (3)

RMSE is a commonly used figure of merit which is used in
this work to provide a measure for the goodness of fit between
a theoretical model and experimentally measured signal. It
has been used previously in studies in which the relative
performance of neural networks is compared [7] [8].

III. THEORETICAL COMPUTATION

Eigenvectors are vectors that have both direction and magni-
tude. The direction of the eigenvectors tend towards the point
of convergence [9], between two data points, or sampled points
in the case of this paper. Once the point of convergence, or
minimum error, is reached the eigenvectors and values may
become oscillatory [10], continuing to attempt to point in the
direction of largest variance. In this paper we use observations
of this relationship as an indicator of the onset of instability
during the training of model coefficients.

The input signal training data length, before the onset of
instability, is reduced when more memory taps are added to
the model. The decrease in the length of the training before the
onset of instability can be traced to C(n). C(n) is iteratively
updated using C(n) = λC(n− 1) +Rxx

Where C−1(n) represents the auto-correlation matrix of the
input signal, and P (n) is the cross-correlation vector of
the input signal x(n) and desired signal d(n), both are
exponentially weighted correlation matrices that are updated
continuously to provide consecutive values of

# »

H(n) [6]. For
every update of H(n), the more memory taps that are present
in the model being trained, the more eigenvectors of C(n) are
summed together. As the training routine advances to reach
the minimum error e(n) at a certain point the summation of
the eigenvectors will tend towards the next area of greatest
variance which will be an unstable condition.

Since there are no set limits for the number of memory taps
which can be added to the nonlinear model, care must to be
taken to avoid the onset of instability during training.

The signals examined in Figure 5 were that of the same order
of nonlinearity, only differing in memory length. The memory
tap lengths used in the models trained cause an un-rectifable
oscillation, and this is a demonstration of the reduction of
the input training signal length before instability. Table III
depicts the maximum signal lengths before instability for a
range of memory tap lengths. The non linear order of the
model and sampling frequency was maintained for the results
shown in Table III. It is evident from the plot that there exists a
relationship between the input signal training length reduction
to the memory tap length. The influence of increasing the
number of memory taps is much greater than that caused by
increasing the order of non linearity of the model seen in Table
I.

Where Rxx is the input signal auto-correlation matrix given
by Rxx, or, E{x(n)xT (n)}. With a memory length of one,
the auto-correlation matrix takes into account one previous
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value of x(n) and x(n − 1). Using N memory taps leads to
an accelerated convergence of the minimum error.

Aggregating the new values of C(n) causes summation of the
eigenvalues, which represent the variance of the data along
the eigenvector directions. When the minimum error value, or
point of convergence, is reached the eigenvalues continue to
alter the values of

# »

H(n) to orient to the direction of greatest
variance. As the eigenvalues are aggregated, this leads to a
sharp increase in the error signal e(n) toward the next area of
greatest variance, to a unit vector scalar multiple of the largest
eigenvector, which converges to ∞ [11].

C(n) =
N∑
1

n∑
k=1

λ(n−k)x(n)xT (n)

A limit for convergence can be set as:

0 <
N∑

M=1

T{Rxx} <
2

λL
(4)

Where T{Rxx} is the summation of the diagonal eigenvalues
of the auto-covariance matrices representing the convergence
parameters of d̂(n). λL is the largest eigenvalue associated
with the model equation 4 ensures that the eigenvectors remain
oriented toward the initial area of greatest convergence, the
minimum error, not permitting re-orientation to a unit vector
scalar multiple of the largest eigenvector.

IV. EXPERIMENTAL RESULTS

This study utilises a wideband code division multiple access
(WCDMA) 5MHz bandwidth single carrier signal sent through
a Doherty PA at 2.6GHz. The input signal is set in order to
drive the PA into saturation and both the input and output
are sampled at 30.72 MHz. Figure 2 presents the transmitted
and received signals by the Volterra model used in this
investigation, given by equation 1.

Training an accurate PA model requires a training signal of
adequate length. While the training signal length needs to be
long enough to allow the algorithm to converge on values for
model coefficients, the model may become unstable during
training. Figure 3 displays the problematic nature of training
a model while attempting to use too many sample points. The
model depicted in Figure 3 was of order two and three memory
taps. The model error estimate e(n) becomes unstable after
approximately 13, 800 time samples.

Data provided for this experiment was procured by training
the model using an increasing signal length until it becomes
unstable. The number of samples was then reduced by one
hundred sample points until the model became stable again,
RMSE was calculated at that point. Investigation was focused
on identifying the signal training length for which the training
becomes unstable. Noise is present in the measured signals

Figure 2. Input and output signals sent through Doherty PA

Figure 3. Error from training versus time samples

however its effect on the overall performance of the model is
negligible. In this work a limited set of experiments to transmit
and receive signals from/to a PA were conducted. It is intended
to carry out a more comprehensive set of experimental tests
to obtain a more populated sample set than seen in 5.

A. Non linear order

Increasing the order of non-linearity of the model lead to
a decrease in the length of the input training signal before
the onset of instability during training. Figure 4 depicts the
decrease in the training signal length due to non linear order,
it shows the relationship for the model orders of nonlinearity
from one to seven, and memory lengths, one to seven.

Table I shows the reduction of the maximum signal length
needed to maintain stability with varying memory order.
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Table I
SIGNAL LENGTH BEFORE INSTABILITY COMPARISON TO MODEL ORDER

OF NON LINEARITY

Non linear order Maximum signal length(samples)
2 14100
3 12900
5 6600
7 6400

Figure 4. Maximum signal length before instability versus model order of
non linearity

B. Sampling frequency investigation

Increasing and decreasing the sampling frequency altered
the length of training signal before onset of instability. All
sampling frequencies set in this work adhered to the Nyquist
criterion. Table II presents the alteration in signal length
stability utilising the same order, memory length and starting
sample point for all of the sample rates tested.

Table II
SIGNAL LENGTH BEFORE INSTABILITY COMPARISON TO SAMPLING

FREQUENCY

Sample frequency(MHz) Max signal length(samples) RMSE
7.68 14200 0.0263
15.36 14100 0.0147
30.72 14200 0.0331
61.44 14100 0.0339
122.88 13800 0.0307

Table II presents the variation in the RMSE calculation be-
tween each signal sampling rate. Increasing the sample rate,
intuitively, should reduce the error as the signal is sampled
more frequently, this is not the case. Down-sampling the signal
introduced a lower error at a more comparable training length.

C. Memory tap length

Increasing the memory tap length of the model, it is notable
that the length of the signal before instability reduces greatly.
Figure 5 compares the memory tap length effect on the training

Figure 5. Maximum training signal length versus memory length

Table III
TRAINING SIGNAL LENGTH RELATIONSHIP TO MEMORY TAP LENGTH

Memory tap length Maximum signal length (samples)
1 13400
2 11400
3 7800
4 7100
5 7000
6 5800
7 5200

signals length before instability. The RMSE of each signal
varies but the number of training samples before the onset of
instability decreases substantially.

V. CONCLUSION

In conclusion, this paper provides a definitive early stopping
technique to avoid instability of a nonlinear dynamic model
during training. The model parameter which has the largest
influence on reducing the length of the training signal before
the onset of instability, for adaptive nonlinear modelling, is
the memory tap length. Model non-linear order and sampling
frequency had an effect on the achievable RMSE but showed
less variation in training signal length before instability than
the model memory tap length.
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