
Software Engineering in Civic Tech
A Case Study about Code for Ireland

Antti Knutas
LUT University

School of Engineering Sciences
Lappeenranta, Finland

antti.knutas@lut.fi

Victoria Palacin
LUT University

School of Engineering Sciences
Lappeenranta, Finland
victoria.palacin@lut.fi

Giovanni Maccani
Maynooth University

School of Business
Maynooth, Ireland

giovanni.maccani@mu.ie

Markus Helfert
Dublin City University

School of Computing
Dublin, Ireland

markus.helfert@dcu.ie

Abstract—Civic grassroots have proven their ability to create
useful and scalable software that addresses pressing social
needs. Although software engineering plays a fundamental
role in the process of creating civic technology, academic
literature that analyses the software development processes
of civic tech grassroots is scarce. This paper aims to advance
the understanding of how civic grassroots tackle the different
activities in their software development processes. In this study,
we followed the formation of two projects in a civic tech group
(Code for Ireland) seeking to understand how their development
processes evolved over time, and how the group carried out their
work in creating new technology. Our preliminary findings show
that such groups are capable of setting up systematic software
engineering processes that address software specification,
development, validation, and evolution. While they were able to
deliver software according to self-specified quality standards, the
group has challenges in requirements specification, stakeholder
engagement, and reorienting from development to product
delivery. Software engineering methods and tools can effectively
support the future of civic technologies and potentially improve
their management, quality, and durability.

Index Terms—civic grassroots; civic tech; software engineering;
development processes; case study

I. INTRODUCTION

Technology has facilitated the evolution of public participa-
tion. It has enhanced the rise of civic grass rooted actions such
as activism, mobilizations, public campaigning and community
monitoring due to its power to connect people, improve cities
and to better governance [1]. It must be understood that every
interaction between people and a civic technology1 represents a
deliberate and intentional act of public participation, which can
take different forms (see Fig. 1), from merely allowing people to
consume information about matters they care about e.g. traffic
or pollution (data consumer); collect data about predefined
issues of common interest e.g. FixMyStreet (data provider);
collaborate with authorities to monitor issues - predefined by
authorities - (collaborators); co-create solutions for issues of
shared concern (co-creator); ideate civic action e.g. Code for
Ireland (ideator); or, disrupt established processes by passive
non-participation or negative participation (disruptor) [4].

Civic technology is currently an intense target of study
[5]. While extant literature seeks to understand the effect of
technology on people [3, 6] and to orchestrate civic engagement
[7, 8], research in the context of software engineering practices
in civic technologies remains under-explored [9, 10].

1Civic technology refers to the diverse ways in which people are using
technology to influence change in society [1, 2, 3].

Figure 1. Palette of Public Participation in Civic Technology adapted from [4]

In order to better understand how grassroots organizations
develop civic tech, we performed an in-depth qualitative study
of a civic tech group: Code for Ireland. In the study, we
followed the formation of two projects in Code for Ireland,
seeking to understand how their development processes
evolved over time, and how the group carried out their work in
creating new technology. We want to understand if a systematic
process similar to a software engineering process emerges,
and what kind of process the group adopts. From existing
studies on open source software projects [11], we know
that volunteer-based communities can set up processes with
characteristics of software engineering processes, including
the systematic use of theories, methods, and tools to achieve
desired levels of quality, acceptability, and maintainability [12].

To accomplish our goals, we framed our research as
an interpretive case study [13, 14] using the constructive
grounded theory research method [15]2. Our main contribution
is providing a situated, systematic explanation of one civic
technology software engineering process phenomenon.

To address this gap in knowledge, we have formulated the fol-
lowing exploratory research question for our study: What soft-
ware creation processes emerge in grassroots-driven civic tech-
nology groups? As secondary results 1) we also relate our re-

2In this context theory is defined as a set of testable abstract statements
that define and explain relationships among constructs, as set of prescriptive
instructions on how something should be done, and as a set of abstract
statements providing a lens for viewing or explaining a part of a phenomenon
[16]. A situational theory emerging from the research process is not necessarily
a ”grand theory” explaining the entire phenomenon [17].

41

2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Society (ICSE-
SEIS)

978-1-7281-1762-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-SEIS.2019.00013

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

sults to established literature on software engineering and civic
technology processes, and 2) provide actionable knowledge in
the form of recommendations to emerging grassroots civic tech
organizations using lessons learned and established literature.

The paper is structured as follows. In the next section, we
perform a literature review on related civic technology studies.
In section three we detail the research setup and in section
four our analysis and findings. We discuss the findings in
section four and conclude with section five.

II. RELATED RESEARCH ON CIVIC TECHNOLOGY

Since 2014, the term civic technology, also known as
”civic tech”, started to increasingly appear in discussions
about public participation and governance, rapidly surpassing
terms like e-governance, e-democracy, gov2.0 or gov.3.0 [2].
Civic tech is a term that refers to the diverse ways in which
people are using technology to influence change in society
[1]. The breadth of civic technologies is wide and comprises
a large pool of technologies for i) governance (e.g. MySociety,
SeeClickFix), ii) collaborative consumption (e.g. Airbnb,
TaskRabbit), iii) community action (e.g. citizen investor,
GeekCorps), iv) civic media (e.g. Wikipedia, Global Voices)
and v) community organizing (e.g. Whatsapp groups) [1].

Researchers across many fields of software engineering have
been studying civic technologies from different perspectives,
for instance: a) examining the role of information technologies
in governance [18]; b) supporting participatory democracy
practices of technology in society [19]; c) understanding the
role of software in society [20]; d) exploring the dynamics
of the collaborative use of software [21], e) developing agile
methods and techniques to support software development in
society [22, 9] and, more recently f) architecting smart cities,
open data with and for people [23]. In other related fields, such
as HCI, the focus has turned onto examining the a) dynamics
of technology in public life, b) civic discourse on social
media, c) civic engagement, d) data literacy, e) social justice
and f) trust, often using in-the-wild approaches of systems
in communities [3, 6]. In addition, both SE [24, 25, 26] and
human-computer interaction (HCI) [27, 28, 29] share a recent
turn of interest onto sustainability matters, which has a close
link with civic tech, as the focus is put on the environment,
peoples’ behavior and the role of technology [3].

People have influenced the development of cities around
the world by orchestrating grassroots initiatives through which
they take action and solve issues they care about. These
groups have affected positive change in neighborhoods as
well as at a larger scale. For instance, Safecast3 was created
by a group of people that wanted accurate and real-time
measures of radiation. They created open hardware devices
to allow people to measure radiation on the go. By now,
Safecast has become the go-to solution for radiation measures
worldwide (all supported by a large pool of volunteers across
the globe). Civic technology groups have a rich variety of
goals, from city-driven projects [30], issue-centric initiatives
[8] to user-driven groups, such as hackerspaces and fablabs
[31]. Different ways to arrange public participation in the
creation of civic tech have been developed, such as the City

3https://blog.safecast.org

in Common framework [8], the MK:Smart project [32], and
Code for Europe-style open innovation intermediates [33].

III. RESEARCH SETUP

The purpose of this research project is to investigate the
software creation processes in grassroots-driven groups who
create civic technology, about which our literature review
informs a substantial lack of theoretical insights specifically
related to this recent academic conversation. We assume that
grassroots civic software creation contexts happen through an
apparently natural process, but a complex one, and contingent
on several social actors and activities. Therefore, we consider
an interpretive perspective the most suitable for this project.

Given the nature of this study, we found a qualitative
approach to data collection and analysis appropriate. Given that
these software creation processes are explored from the mean-
ing given by the people that are actively involved in constructing
such reality, qualitative research methods are appropriate as
they are “designed to help researchers understand people and
the social and cultural contexts within which they live” [34].

Case study research was found to be the most suitable for
the purposes of this research. It is a qualitative approach in
which the investigator explores a bounded system (a case in
a specific setting/context) over time, through detailed, in-depth
data collection involving multiple sources of information, and
reports a case description and case-based themes [13, 35, 36].

A. Case: Code for Ireland
The case we studied is concentrated on a grassroots group

creating civic tech, Code for Ireland, which describes its
mission as ”developing innovative and sustainable solutions
to real-world problems faced by communities across Ireland,
by fostering collaboration with civic-minded individuals,
businesses and public sector organizations.” The group is
led by volunteers, coordinated online through services such as
Meetup.com, and not officially registered. We coined a term

”organically grown civic tech” to describe the group because
the current iteration of Code for Ireland was formed by a group
of motivated citizens coming together. They have not registered
as a formal organization, they operate without the intention
of making a profit, and use only volunteered or donated
resources. Furthermore, there is no city organization, academic
body, or other influential stakeholders backing the group. If
evaluated with the palette of public participation (Fig. 1), they
are ideators or people who are taking civic actions in their
hands and orchestrating the creation of civic tech.

Code for Ireland was selected as the case study for this
research for several reasons, including: (1) the case is a clear
example of grassroots civic software development (i.e. the
phenomenon of interest); (2) since the very first contact with
the case, a significant interest was observed from the group
members to take part of this study, which ensured us the
possibility of conducting interviews; (3) their willingness
to share experiences, and access to relevant documents and
material; (4) the group and its people are based in a location that
allowed us long-term engagement and to conduct observations;
and (5) unlike similar groups, Code for Ireland has been
operating for more than 5 years, and thus ensured maturity
in relation to the richness of the participants’ experiences.

42

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

Figure 2. Case study context

Table I
CODE FOR IRELAND PROJECTS INCLUDED IN THE STUDY

Project Partic-
ipants

Stage Description

Transparent
Water

4 core
team; 1
mentor;
1-2
others

Achieved
minimum vi-
able product;
preparing
for a
beta release.

The project aims to open
up water quality data from
Irish Water with an app. Main
features include geolocation-
based data summaries
and service notifications.

Identifying
Vacant
Homes

Fluc-
tuating;
2-3
(core
team);
1
mentor

Undergoing
a restart after
a switch of
development
team.

Collecting information
on vacant homes through a
mobile app and then providing
summaries of this data to the
official vacant home project.

The structure of the case study is described in Fig. 2, which
is similar to a single case study with multiple embedded units
of analysis [36]. In the figure, we specify three essential units:
(1) The group, which is all of Code for Ireland. (2) Teams,
who work on (3) projects. The group can have several ongoing
projects, with each team working on one or several projects
simultaneously. In this case, we studied a single organization
and the two projects the group was working on. These are
Transparent Water, which is concentrated on making water
quality data available; and Vacant Homes, which focuses on
developing a mobile app to identify apartments that could be
rented to alleviate the current housing crisis in Dublin. The
projects are expanded on in Table I.

B. Data Collection
Inductive qualitative case study researchers usually combine

multiple data collection methods [13, 37, 38, 39] and keep
the design of the process flexible to “provide stronger
substantiation of constructs” [37, pp. 538]. While observation
was a natural source for collecting data during the time we
spent on site, documents and semi-structured interviews were
chosen as the other main sources for the data collection process.

The research and data collection occurred during 2018 over
a nine-month period. We interviewed4 six participants from

4Interview guide available at https://doi.org/10.5281/zenodo.2565435

two projects. Additionally, a researcher participated in the
activities of the group, including weekly online stand-ups
and monthly in-person meet-ups for a total of 40 attended
events, with events lasting from one to three hours on average.
This involvement allowed exclusive access to the digital
cooperation platforms of the group. Data from interviews was
transcribed on the same day in which these were undertaken.
Data from observation was stored in field notes.

In case study research, consideration must be given to
construct validity, internal validity, external validity, and
reliability [35, 39]. We ensured construct validity through a
validation effort conducted by presenting the findings back
to the participants, and through building a chain of evidence
throughout the coding process. Internal validity was ensured
by including more than one researcher in the coding process.

IV. CASE ANALYSIS AND FINDINGS

In this section, we present our data analysis process and
summarize results from each stage of analysis. We analyzed the
data using the grounded theory research method [40, 17, 15],
following the existing empirical software engineering literature
in adapting it for case study analysis [36] and used e.g. by
Kasurinen et al. [41]. Grounded theory has been useful in
developing context-based, process-oriented descriptions and
explanations of phenomena [17].

There are variations on how to approach grounded theory
research, as evidenced by a split between Strauss and Glaser
in their research methodology publications. In this paper,
we follow Charmaz’s [15] constructivist grounded theory,
which acknowledges that when interacting and interviewing,
knowledge is built together with the participants and the
researcher. This approach was chosen because the researcher
spent an extended period interacting with the researched
civic tech group. We also used Charmaz’s guidelines for
ethnographic research for analyzing the data from research
participation in Code for Ireland activities and the approach
by Vaast et al. [42] when analyzing publicly available social
media and online software repository data.

The grounded theory approach [15] we selected has three
stages, with each stage leading towards the increasing depth
of analysis and generalization. The three stages [17] are
summarized in Table II and their results are expanded on in
the following subsections.

A. Open Coding: Identifying Actors, Concepts and Categories

We started the open coding phase by coding the interviews
line by line using the Dedoose Computer Assisted Qualitative
Data Analysis Software. The start of our coding process
was informed by the process coding family [40], which was
selected as it best matched our research questions. With this
open coding process we identified initial concepts present in
the interviews and online material and defined 372 codes to
describe them. During subsequent iterations these codes were
grouped into eleven top categories, which are pre-process5,
team formation & selling the idea, group goals / decisions,
personal motivations, challenges, problem / opportunity,

5When we discuss a concept identified through the coding process, the
word is italicized.

43

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

Table II
THREE MAJOR STEPS OF GROUNDED THEORY RESEARCH WITH INCREASING

DEPTH OF ANALYSIS [17]

Open
coding (de-
scription)

Describing conceptual
constructs involved in the phenomenon and their properties.

Selective
coding
(inter-
pretation)

Defining and explaining the interactions between
the conceptual constructs. Refining and generalizing.
Understanding and explaining the area under investigation.

Theoreti-
cal coding
(for-
mulating
a theory)

Formulation of a descriptive theory. Aim is to create
inferential and/or predictive statements about the phenomena.
Achieved by defining relationships between individual
interpretive constructs. E.g. associations, influences or causal.

requirements definition, task division & decisionmaking, design
& engineering activities, evaluation, and post-process.

When analyzing the interview data, we identified four
main type of participants: Mentor, core group, a regular
contributor, and visitors. Mentor spars with the group without
directly influencing the decision-making process. The core
group emerges from regular contributors by their activity and
commitment, and has the most influence, mainly because they
are the major contributors. If a project manager is selected,
the project manager is first among equals, others willingly
following the project manager’s lead. Most interviewed core
group members and contributors had a software technology
career background, and all were from technical fields, such as
statistics and project management. None of the participants had
previously participated in the open source software community,
though some had worked with open data initiatives.

“[...] but also when people were committed, they
were motivated that they were part of something
like task or group that like solving real challenging
problems.” —Interviewee D4

During the last iteration of open coding, we selected the
civic tech software creation process as our core category,
which is the central phenomenon around which all the other
categories are related [43]. In the next part, selective coding,
we relate other discovered code categories to the core category.

B. Selective Coding: Identifying the Civic Tech Software
Development Process

In this section, we refine the data by taking the discovered
codes, further categorizing them into hypernyms with the help
of the process coding family and then establishing causal or
semantic relationships [44] between the concepts. We started
selective coding by identifying the iterative process of the
group’s project structure and abstracting it. It is presented in
Fig. 3 and consists of monthly meetups, which lead to new
team composition, who meet weekly to design or to evaluate
outputs. They are guided by a mentor in this process, until the
new team selects a project manager or a core group emerges.
In one sense the process is iterative, but we have chosen to
depict it as a spiral because some stages are not repeated.
Furthermore, the project can change shape and direction
rapidly if necessary and so desired by the team.

Figure 3. Overall project progress structure in Code for Ireland

Monthly meetups are the main structured social event
around which new teams and projects form. The meet-ups
allow evaluating new ideas and getting input in the form of
new members, ideas, and priorities. Motivation and the selling
the idea are big part of the initial meet-up. The mentor leads
the first meet-up and presents projects to newcomers. The orga-
nization, Code for Ireland in this case, often has some ongoing
projects or new ones waiting for implementation. The mentor
tries to make sure that individual goals match with the available
projects and then facilitates the newly formed team’s decision-
making process until they create their own internal structure.

“I would say they definitely start mostly with the
meet-up. They would come to a meet-up, get to know
us during the meet-up and say, ‘Okay, I’m happy
I’m interested in working a lot, continue working
on it.’ In some free time I’ll have just– I don’t know
if I have a lot of free time but I’ll see how much
I can do and then go from there.” —Interviewee D5

The first monthly meetup results in initial consensus on
group goals, which is based on negotiation between team
members and their motivations. Weekly meetups are the
second major event around which the teams are structured.
The meetups and project structure are loosely inspired by
agile methodology. The team members negotiate between task
assignment before dispersing to perform individual work.

“It’s an agile approach and – if the team consensus
says to go down a different direction, that’s the
direction it goes down.” —Interviewee D3

Weekly online stand-up meetings and individual work
balance the team decision-making process and getting things
done, and establish the basic loop of work. The teams meet
weekly or less often (but more often than the monthly personal
meeting) to design and evaluate. After the weekly meeting,
members disperse into smaller units, like pairs or individuals,
and work to accomplish the agreed on goals. The loop
between shared design and individual work and the outputs
of each stage are depicted in Fig. 4.

“–We do like a week-by-week. We have a weekly
review call where we talk about, ’Okay, this is where

44

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

Figure 4. The teams’ iterative plan-consensus-action-evaluation loop

we’re currently at, this is how much, what everyone’s
done.’ Everyone does a stand up in a way and so
what they’ve accomplished in the last week or 10
days and then we go from there, ’Okay, see, this is
what we need to go forward, this is our current status
it might depend on hosting, what technologies do we
still need, what could be added, what functionality,
where do we go from there?’ ” —Interviewee D5

One major characteristic of this loop is opportunistic design
and opportunistic evaluation. The goals are not only evaluated
based on what needs to be done based on requirements but what
can be done. This is because the group is dependent on volun-
teers and voluntarily contributed resources, such as server space
or meeting locations. For example, if a team gains a member
with competence in a new beneficial technology, the use of that
technology might be re-negotiated into team goals. The team
also recognizes that some features might not meet original goals,
but might decide to work towards a minimum viable product
despite the challenges and work on recruiting in the meanwhile.

Technological tools play a major role in facilitating
team functionality. Communication channels such as Slack
and WhatsApp and commit access to define team membership
in one sense. If a team member is part of all shared online
systems that enable them to contribute, that essentially signifies
team membership. Furthermore, they store and communicate all
group artifacts, and in some cases act semi-independently after
programming and exert influence over the process. For example,
software artifact production is facilitated through GitHub, which
is a platform for storing and managing software source code.
The platform facilitates source code peer review and can also
perform automated quality control operations after each new
commit. In one of the projects, the core group has decided on
automatic style guide checking through linter software and that
each new commit has to be peer reviewed in a code review pro-
cess in GitHub. Technically anyone can contribute new source
code, even a complete newcomer. However, the contribution has
to 1) match existing group goals, 2) pass automatic evaluation
against pre-existing unit tests and the automated style guide,
and 3) pass a peer review by more experienced contributors.

“At the moment, I would say it [our process] is lean-
ing heavily towards being more technically evaluated.

Every bit of code we write is reviewed. It’s reviewed
manually by another member of the team before it
can get into the mainline development branch. It’s
also run– We also have an automated test that run
against those that check the code quality and just
whether it works at a basic level.” —Interviewee D6

By programming decisions and quality control checks into
automated tools, the team codifies earlier decisions and invests
power in them. This is one of the reactions the team has taken
to address the uncertain project stability and variable levels
of commitment of each team member.

The approach to stakeholder involvement is a mix of open
source approaches and a variant of agile. Like in many open
source projects, all contributions and contributors are welcome.
Unlike in large open source projects, the current group
structure aims for closer, agile-style involvement and attempts
to involve contributors in socially structured activities, such as
the meet-ups, instead of just accepting software contributions.
However, unlike in many agile processes such as SCRUM,
there is no strict gate-keeping structure.

“I wouldn’t call it sprints, I would say we work
quite agile. I wouldn’t call it sprints but we do kind
of do like a week-by-week.” —Interviewee D5

The group works with the intention of being part of a larger
ecosystem of other, related groups, and sharing source code
and adapting the shared solutions of other groups to local
contexts. However, generalizing the solutions has proven to
be challenging, considering the localized nature of problems
they are addressing. They still participate in the network in
the sense that they use open source -licensed software, openly
publish their software artifacts, and publicize information about
their solutions to other groups within the ”Code for” network.

C. Theoretical Coding: Abstracting the Development Process
and Defining the Associations

In this section, we present an abstracted form of the civic
tech software development process, analyze how the unique
operating environment and other characteristics affect it, and
further refine relationships between the concepts and actors.

1) Grassroots-driven Civic Technology Software
Development Process
The civic technology group has a systematic development
process with four major stages: Requirements and goals
planning, architecture and data structure planning, iterative
development that starts with prototyping, and evaluation.
They are iterative and agile, with a possibility to return and
adjust any stage after evaluation. We call it systematic and
iterative because the group engaged in explicit meta-level
process selection and development stage before engaging
in actual software development. However, the process has
some inflexibilities, because the group has less cohesion and
face-to-face time. Due to those issues, the group relies more
on the established processes and silos of responsibility.

The development process and the flow between process
stages are visualized in Fig. 5. The large arrows denote
transitions between project stages and the thin arrows
denote flow of information between stages that do not have
direct transitions. We detail each major stage in the group’s
development process further as follows.

45

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

• Goal and requirements planning, and task allocation. The
unique characteristics of this stage that there is no formal
requirements engineering process. The planning starts as
a brainstorming session that tries to fit the identified needs
with participant motivations. The planning leads results in
the group vision, which is an informal agreement on what the
project goal is and how it should be accomplished. From there
each task is allocated a task lead, who takes responsibility for
ensuring that each part of the project is finished. The tasks are
distributed based on individual interests and competencies.

• Architecture and data structure design. The design process
starts with architecture and data structure development. This
is because the group aims for the parallel development of
various software components that interact with standardized
data structures and application programming interfaces. In
order to enable parallel development, the group started both
projects with architecture and data structure design.

• Prototyping. After planning and architecture design, the lead
for each part designs a prototype that is evaluated against
the group vision. The prototyping process and evaluation can
also lead to new planning and task allocation if new needs
or required features are identified. The use of prototypes is
mainly internal and less used after the first design iterations.

• Development. The development process follows an iterative
plan-consensus-action-evaluation loop that was described in
Fig. 4. It should be noted that as many features as possible
are developed in parallel, and evaluated individually. The
development of quality control features such as unit tests
and continuous integration pathways also proceeds simulta-
neously with development activities. Development is then
continuously informed by automatic testing. The automatic
testing feedback is personal, as opposed to group evaluation
and peer review, which is performed together with the team.

• Evaluation. Evaluation is performed in two ways. The
first one is the evaluation of the technical quality of new
software contributions. It is carried out in GitHub and
facilitated by GitHub’s code review process, which allows
other team members to evaluate summaries of automated
testing results and review proposed changes to source code.
This code review process can lead to acceptance or rejection
of new contributions. The second type of evaluation is a
shared, qualitative evaluation of overall software quality and
functionality against the group vision. There are no formal
quality requirement criteria, and the evaluation depends on
the core group on agreeing whether the task outcomes meet
the desired level of quality. This type of evaluation leads
back to the re-negotiation of short term goals and new task
allocations. Some evaluations also affect group vision.

The team members adopt different roles in the process, with
the core group driving most of the processes forward and work
being coordinated by a project manager if one has been selected.
The mentor adopts a larger role in the planning and evaluation
phases and acts as a kind of a sparring partner. The mentor never
questions the goals themselves, allowing the team to be self-
directed, but challenges the team in terms of rigor in develop-
ment, realism in implementation goals, and evaluation methods.

More casual team members contribute to planning and
development to the extent they can. However, more casual

participants are invited to participate more, and one recurring
meta-level discussion in the group is to how better give tasks
to and benefit from the less committed participants.

2) Unique Characteristics Grassroots-driven Civic Tech-
nology Software Construction Process
Many of the group members have described methods they
have adopted as agile. This is probably because agile is one
of the most popular development methods in the local small
to medium software companies, where most of the group’s
participating developers come from. However, there are also
apparent differences to agile approaches. For example, before
engaging in development activities, the team members to nego-
tiate motivations, roles, and goals without much external input.
Also, after basic structures and processes have been set up,
there is an unwillingness to go back and change things, because
that would involve a full re-negotiation many group structures.

In both projects the major effort was to create a minimum
viable product that would demonstrate group capabilities
in order to gain more credibility in the eyes of external
stakeholders. For example, the mentor has mentioned that
the current environment has an over-abundance of charitable
and volunteering organizations. The drive to gain demonstrable
outputs and more credibility was a driving meta-level goal. It
could be said that the process to achieve a minimum viable
product is an extended vetting process, with projects that are not
able to reach this stage eventually starting to flounder and team
members move to work on other projects or leave the group
altogether. At the moment of writing, the Transparent Water
project was closest to reaching the minimum viable product.

Two major characteristics of the process of an individual
project, as presented in Fig. 3, are constant renegotiation of
goals and opportunistic evaluation. Both monthly meetups and
weekly online standups involve a constantly re-establishing
consensus. For example, if an expert that was championing
some particular technology leaves the group and later a person
endorsing another technology joins the team, it is likely that the
team will eventually shift to use the new one. This project drift
is related to opportunistic evaluation and occasionally causes
tension against the drive to achieve a minimum viable product.

The major unique characteristics of the software construction
process that are caused by volunteer-based workers, fluid group
structure, drive to acquire more resources, opportunistic evalua-
tion, and constant re-negotiation of goals are summarized below.
• Internal stakeholders with development goals driven by

team member motivations. All stakeholders are considered
internal to the project, in the sense that all concerned
parties are invited to participate in the project. The current
participants are mostly software engineers or from technical
backgrounds, which causes the projects to be considered
from a mostly technical background.

• Skeptical external stakeholders. Grassroots-driven develop-
ment does not have backing from large civic, academic or
industrial organizations. Civic organizations can be unused
or negative to civic participation, such as Irish Water in
Dublin. One of the major challenges in new civic tech groups
is to gain credibility and sell the idea of civic participation
to civic organizations. For example, what is technically
supposed to be open data, it is in practice closed from the
stakeholders whom the civic authority deems ”not worthy.”

46

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

Figure 5. The iterative stages of the civic tech group’s software development process

• Meritocratic involvement. The more a participant does and
the more they demonstrate competence, the more authority
that participant gains. When a participant does more and
contributes more, they acquire more responsibility and
influence based on the respect and voluntary investment of
authority from others. This is emphasized in requirements
definition and evaluation. This leads to a emerging hierarchy,
who can steer the group through challenges. The more
fluid the team becomes, the more a single person such as
a project manager gains responsibility.

• Civic ghosting and the challenge in harnessing casual
participation. Some aspects of development are slowed by
mismatches in communicated and intended participation. The
unavoidable challenge caused by volunteering participants
is that some participants simply disappear without any
communication or ghost.

• Opportunistic decision-making and flexibility in evaluation
in the sense of skills, resources, and goals (“what we can do
at the moment”). The team decides the next course of action
partly based on previous goals, and partly based on reflection
of team capabilities. Some essential tasks are delayed because
they are seen to be unachievable for now. Furthermore,
project stages stretch or shorten depending on how much
time and resources the volunteer participants have currently.

• Uncertain project stage duration and project inertia. Any
project stage or iteration has no specific duration because
the effort volunteers and other stakeholders can put in varies
constantly. The project scope, duration, or goals are adjusted
to reflect new resources and capabilities. Furthermore, the
longer something has been a certain way, the more entrenched
it becomes. This is can be a positive aspect, for example when
the group has decided on well-functioning architecture and
beneficial online tools. On the other hand, re-work and refac-
toring previous contributions are seen as less valuable, espe-
cially with the goal of achieving a minimum viable product.

• Short-term perception. The opportunistic decision-making,

fluidity in team structure, and the drive to achieve a
minimum viable product discourage long-term planning.

V. DISCUSSION

The first question is whether a grassroots-driven civic tech
group can set up a software engineering process. If we compare
the discovered process against four fundamental characteristics
of software engineering processes as defined by Sommerville
[12, p. 9]: Software specification, development, validation, and
evolution, we find out that the process has each of the char-
acteristics. Even though the emphasis is on development and
validation, both specification and evolution aspects are present.

If the group’s process is a software engineering process,
the question remains what kind of process it is, in relation to
existing literature. Perng and Kitchin [45] discussed Code for
Ireland from a civic and cultural perspective and defined Code
for Ireland as a civic hacking group, where ”civic hacking
binds together elements of civic innovation and computer
hacking, with citizens quickly and collaboratively developing
technological solutions” [45, pp. 2]. Based on our findings,
we partly agree with this definition, though our discovery
is that the group has evolved to a phase where they have
systematized their process, and it has rigor beyond hacking.

Compared to existing software engineering processes defined
in established literature [12, 46], the group’s process is unique.
It resembles agile methods most closely, conforming to the prin-
ciples of the agile manifesto6, with emphasis on individuals and
interactions, working software, collaboration over contracts, and
responding to change over following a plan. The significant dif-
ference is that the team is most commonly distributed, and has
encountered difficulties often present in distributed development
[47], such as communication challenges, lack of control, and
lack of trust. We discuss the actions a distributed agile group
can take to address these issues [47] in the next subsection.

6http://agilemanifesto.org/

47

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

A taxonomy of agile principles by Conboy [48] defines
agility as creation of, proaction in advance of, reacting to, and
learning from change. Agile methods should also contribute
to perceived economy, quality, and simplicity. When using the
taxonomy to evaluate the group’s software engineering process
in terms of agility, the group still has some issues in aspects
of learning, creation, proactivity, and quality. Many of these
challenges arise from the group’s unique operating environment,
but some could be addressed by improvements in the process.
We discuss these in more detail in the next subsection.

When considering a wider context, the group had difficulties
in external stakeholder engagement. Their issues are similar to
ones discovered by Lee et al. [10]. They discuss the civic app
development efforts in the US, where programming contests and
opening up of datasets were used to encourage the development
of applications to address civic challenges. According to Lee et
al., the first generation of efforts failed because of difficulties in
value capture and lack of involvement within city departments.
The motivation of citizens as participants was not fully under-
stood and there was resistance from within the government
to participate. The challenges Code for Ireland has faced are
similar. While the participants in Code for Ireland are strongly
motivated, the response to attempts of stakeholder engagement
from civic authority stakeholders ranged from neutral to
negative. In the second generation of civic app approaches [10],
the engagement issues were addressed by legislation to force
civic bodies to engage, providing support to bottom-up engaged
communities, and bringing in entrepreneurs and venture capi-
talists to judging panels to evaluate most promising app ideas.

Additionally, when participants in Code for Ireland reflected
on their processes, they identified issues with engaging
newcomers and non-technically oriented participants. In these
matters, lessons could be learned from the engagement aspects
of academically-led co-creation and co-design approaches
[7, 8, 32], innovation accelerators [33], and open source
software communities [11].

A. Lessons Learned and Recommendations for Practise
Perhaps the most significant challenges the group faced

were due to the nature of the group and the operating
environment. All participants were inhabitants of Dublin who
wanted to effect change in their environment by the creation of
digital services. This means that all development efforts were
volunteered and any resources used were free or sponsored.
The group was held back by a lack of engagement by the civic
sector, which was a factor out of their control. However, some
issues could be addressed by improvements in the development
process and a more systematic approach to both citizen and
civic stakeholder engagement. We list some of the main
challenges and proposed remedies from literature as follows.
• Civic ghosting and engaging newcomers. By using shared

duties and methods such as pair programming, which has
been found to increase agile learning in development pro-
cesses [48], the group would address several issues: Harden
any single feature under development against a participant
disengaging from the group, increasing learning across
silos, and helping new, inexperienced members to become
fully contributing participants. Furthermore, having shared
repositories, encouraging documentation and knowledge

sharing, and concentrating on well-understood functionality
can make achieving development goals easier [47].

• Transitioning from planning to development to release.
Planning iterations [47] and explicit retrospectives [48] can
help development groups to shift gears when transitioning
between development stages. While the lack of resources can
make every moment feel important, it is important to take a
moment to re-evaluate processes and goals. At the same time,
goals should be clear and documented in shared knowledge
repositories. Documentation is more important in distributed
development groups than in other agile approaches [47].

• Group cohesion and trust. Without an external motivator
such as income, the group is dependent on internal
motivation to work together. As some of the participants
were new to volunteering-based work, organizing and
harnessing volunteer work was a challenge. In distributed
teams, Ramesh et al. [47] recommend building trust and
community by distributed partners, sponsor visits, and
building a cohesive team culture. Furthermore, clear and
constant communication by easy to access methods, social
media presence, or even a regular physical meeting location
will promote team communication and identity.

• External mentoring and support. Paradoxically, a
grassroots-driven approach does not ensure a wider
citizen engagement. The group faced issues that have
solutions proposed by researchers, especially in community
engagement [32] and hand-off [8]. In this, the group could
benefit from mentoring and lessons learned in the civic
technology and HCI research community.

• Towards a Civic Tech Toolkit. Although several frameworks
from projects in partnerships with citizens [7, 8, 10] have
outlined potential life-cycles to enhance social technology
development. Their application seems to be currently limited
to academic contexts. The creation of a civic tech toolbox
similar to the current toolkits for orchestrating citizen
sensing7 or hackathons8 could help to solve this issue by
allowing civic groups to discover, use, re-use and share
content and knowledge relevant for their causes.

While the group cannot address the lack of engagement
from civic organizations, Lee et al. [10] have listed actions
civic organizations have taken that allowed grassroots civic
technology groups to thrive. They included (1) legislation
to force civic bodies to publish data in a timely manner, (2)
publishing problem statements by cities to direct developer
attention, (3) stronger management and direct coordination by
city administrations, and (4) common app and crowd-sourced
data repositories, along with bottom-up engaged communities.

VI. CONCLUSIONS

In this paper, we investigated and described the software
engineering process of a grassroots-driven civic technology
group, and presented how the process resembles and diverges
from agile approaches. Our preliminary findings show that
such groups are capable of setting up systematic software
engineering processes that address software specification,

7Making Sense Toolkit: http://making-sense.eu/publication categories/toolkit
8The Hackathon Toolbox: https://www.thecodeship.com/general/hackathon-

toolbox-essential-tools-practices

48

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

development, validation, and evolution. However, while
they are able to deliver software according to self-specified
quality standards, the group has challenges in requirements
specification, stakeholder engagement, and reorienting from
development to product delivery. The challenges they face
are due to the civic environment, nature of participants, and
issues in distributed development processes.

Grassroots-driven civic technology groups can deliver
software, but our findings show that even if they have software
engineering professionals as volunteers, they could benefit
from improvements to their process. For example, they could
utilize an existing community engagement process [8, 7, 32],
and address issues in distributed development [47] and agility
[48]. In this, the group could benefit from being mentored by
a more experienced civic technology organization, even though
that can increase the risk of the group becoming dependent
on the mentor. However, many of the challenges the group
faced were because of civic organizations and lack of support.
If these were addressed from the civic side, such as in the US
[10], it would allow an increased number of grassroots-driven
civic technology groups to thrive.

We extended the current body of knowledge by presenting
a case study of how a grassroots-driven civic tech software
process emerges in the absence of a major academic, civic
or industrial stakeholder. The way grassroots-driven civic
technology group evolves is unique from existing top-down,
orchestrated frameworks and will help both understand and
better involve civic volunteer stakeholders in future efforts.
As an additional contribution, this study demonstrates the
suitability of interpretive case studies to inductively generate
knowledge surrounding software creation processes.

We acknowledge a potential limitation for this study in the
use of only a single case in the study. While generalized out-
comes from one case study are achievable [17, 35, 37], the de-
bate is still ongoing. However, some case study methodologists
argue that multiple case study is a more viable option to provide
stronger assertions [39]. Our future research will involve more
cases. As a result, we expect further aspects and stronger
assertions to emerge when conducting analysis across cases.

ACKNOWLEDGEMENTS

The work of the first author was supported by the Ulla
Tuominen Foundation. This work was supported, in part, by
Science Foundation Ireland grant 13/RC/2094. We thank Lero,
the Irish Software Research Centre, for their support.

REFERENCES

[1] Knight Foundation, “The Emergence of Civic
Tech : Investments in a Growing Field,” 2013.
[Online]. Available: http://www.knightfoundation.org/
media/uploads/publication pdfs/knight-civic-tech.pdf

[2] T. Steinberg, “‘civic tech’ has won the
name-game. but what does it mean?” 2014,
(Accessed on 09/12/2018). [Online]. Available:
https://www.mysociety.org/2014/09/08/civic-tech-has-
won-the-name-game-but-what-does-it-mean/

[3] K. Boehner and C. DiSalvo, “Data, design and civics: An
exploratory study of civic tech,” in Proceedings of the

2016 CHI Conference on Human Factors in Computing
Systems. ACM, 2016, pp. 2970–2981.

[4] M. Palacin-Silva and J. Porras, “Shut up and take my
environmental data! a study on ict enabled citizen science
practices, participation approaches and challenges.” in
ICT4S, 2018, pp. 270–288.

[5] J. Saldivar, C. Parra, M. Alcaraz, R. Arteta, and
L. Cernuzzi, “Civic technology for social innovation,”
Computer Supported Cooperative Work (CSCW), vol. 27,
no. 3-6, pp. 1215–1253, 2018.

[6] I. G. Johnson, J. Vines, N. Taylor, E. Jenkins, and J. Mar-
shall, “Reflections on deploying distributed consultation
technologies with community organisations,” in Proceed-
ings of the 2016 CHI Conference on Human Factors in
Computing Systems. ACM, 2016, pp. 2945–2957.

[7] M. A. Ferrario, W. Simm, P. Newman, S. Forshaw,
and J. Whittle, “Software engineering for’social good’:
integrating action research, participatory design, and
agile development,” in Companion Proceedings of the
36th International Conference on Software Engineering.
ACM, 2014, pp. 520–523.

[8] M. E. Balestrini, “A City in Common: Explorations
on Sustained Community Engagement with Bottom-up
Civic Technologies,” Doctoral, UCL (University College
London), Apr. 2017.

[9] K. Gama, “Preliminary findings on software engineering
practices in civic hackathons,” in Proceedings of the 4th
International Workshop on CrowdSourcing in Software
Engineering. IEEE Press, 2017, pp. 14–20.

[10] M. Lee, E. Almirall, and J. Wareham, “Open data and
civic apps: first-generation failures, second-generation
improvements,” Communications of the ACM, vol. 59,
no. 1, pp. 82–89, 2015.

[11] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and
K. Lakhani, “Understanding free/open source software
development processes,” Software Process: Improvement
and Practice, vol. 11, no. 2, pp. 95–105, 2006.

[12] I. Sommerville, Software engineering, 9th ed. Boston:
Pearson, 2011, oCLC: ocn462909026.

[13] G. Walsham, “Interpretive case studies in is research:
nature and method,” European Journal of information
systems, vol. 4, no. 2, pp. 74–81, 1995.

[14] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Software Engineering, vol. 14, no. 2, p. 131,
Apr. 2009.

[15] K. Charmaz, Constructing Grounded Theory, 2nd ed.
SAGE Publications Ltd, Mar. 2014.

[16] S. Gregor, “The nature of theory in information systems,”
MIS quarterly, pp. 611–642, 2006.

[17] C. Urquhart, H. Lehmann, and M. D. Myers, “Putting
the ‘theory’back into grounded theory: guidelines for
grounded theory studies in information systems,” Informa-
tion systems journal, vol. 20, no. 4, pp. 357–381, 2010.

[18] M. Borg, T. Olsson, U. Franke, and S. Assar,
“Digitalization of swedish government agencies-a
perspective through the lens of a software development
census,” arXiv preprint arXiv:1802.00312, 2018.

49

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

[19] J. Holston, V. Issarny, and C. Parra, “Engineering
software assemblies for participatory democracy: The
participatory budgeting use case,” in Proceedings of the
38th International Conference on Software Engineering
Companion. ACM, 2016, pp. 573–582.

[20] P. Newman, M. A. Ferrario, W. Simm, S. Forshaw,
A. Friday, and J. Whittle, “The role of design thinking
and physical prototyping in social software engineering,”
in Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, vol. 2. IEEE, 2015,
pp. 487–496.

[21] M. Franzago, D. Di Ruscio, I. Malavolta, and H. Muccini,
“Collaborative model-driven software engineering: a
classification framework and a research map,” IEEE
Transactions on Software Engineering, 2017.

[22] T. Memmel, F. Gundelsweiler, and H. Reiterer, “Agile
human-centered software engineering,” in Proceedings of
the 21st British HCI Group Annual Conference on People
and Computers: HCI... but not as we know it-Volume
1. British Computer Society, 2007, pp. 167–175.

[23] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja,
“Software engineering for the internet of things,” IEEE
Software, no. 1, pp. 24–28, 2017.

[24] C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook,
B. Penzenstadler, N. Seyff, and C. C. Venters, “Sustainabil-
ity design and software: The karlskrona manifesto,” in Pro-
ceedings of the 37th International Conference on Software
Engineering-Volume 2. IEEE Press, 2015, pp. 467–476.

[25] B. Penzenstadler, L. Duboc, C. Venters, S. Betz, N. Seyff,
C. Wnuk, R. Chitchyan, S. Easterbrook, and C. Becker,
“Software engineering for sustainability: Find the leverage
points!” IEEE Software, 2018.

[26] B. Penzenstadler and C. Venters, “Software engineering
for sustainability: Tools for sustainability analysis.”
Routledge, 2017.

[27] C. DiSalvo, P. Sengers, and H. Brynjarsdóttir, “Mapping
the landscape of sustainable hci,” in Proceedings of
the SIGCHI conference on human factors in computing
systems. ACM, 2010, pp. 1975–1984.

[28] M. Silberman, L. Nathan, B. Knowles, R. Bendor,
A. Clear, M. Håkansson, T. Dillahunt, and J. Mankoff,
“Next steps for sustainable hci,” interactions, vol. 21,
no. 5, pp. 66–69, 2014.

[29] B. Knowles, O. Bates, and M. Håkansson, “This changes
sustainable hci,” in Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems.
ACM, 2018, p. 471.

[30] Y. Hou and C. Lampe, “Sustainable hacking:
characteristics of the design and adoption of civic
hacking projects,” in Proceedings of the 8th International
Conference on Communities and Technologies. ACM,
2017, pp. 125–134.

[31] I. Capdevila, “How can city labs enhance the citizens’
motivation in different types of innovation activities?”
in International Conference on Social Informatics.
Springer, 2014, pp. 64–71.

[32] D. Gooch, M. Barker, L. Hudson, R. Kelly, G. Kortuem,
J. V. D. Linden, M. Petre, R. Brown, A. Klis-Davies,

H. Forbes et al., “Amplifying quiet voices: Challenges and
opportunities for participatory design at an urban scale,”
ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 25, no. 1, p. 2, 2018.

[33] E. Almirall, M. Lee, and A. Majchrzak, “Open innovation
requires integrated competition-community ecosystems:
Lessons learned from civic open innovation,” Business
Horizons, vol. 57, no. 3, pp. 391–400, 2014.

[34] M. D. Myers and others, “Qualitative research in
information systems,” Management Information Systems
Quarterly, vol. 21, no. 2, pp. 241–242, 1997.

[35] R. K. Yin, “Case study research: Design and methods,
essential guide to qualitative methods in organizational
research,” Applied Social Research Methods Series, vol.
219, 2009.

[36] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case
study research in software engineering: Guidelines and
examples. John Wiley & Sons, 2012.

[37] K. M. Eisenhardt, “Building theories from case study
research,” Academy of management review, vol. 14, no. 4,
pp. 532–550, 1989.

[38] K. M. Eisenhardt and M. E. Graebner, “Theory building
from cases: Opportunities and challenges,” The Academy
of Management Journal, vol. 50, no. 1, pp. 25–32, 2007.

[39] R. E. Stake, Multiple case study analysis. Guilford
Press, 2013.

[40] B. G. Glaser, Theoretical sensitivity: Advances in the
methodology of grounded theory. Sociology Pr, 1978.

[41] J. Kasurinen, O. Taipale, and K. Smolander, “Test case
selection and prioritization: risk-based or design-based?”
in Proceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement. ACM, 2010, p. 10.

[42] E. Vaast and C. Urquhart, “Building Grounded Theory
with Social Media Data,” in Routledge Companion to
Qualitative Research in Organization Studies, R. Mir
and S. Jain, Eds. Routledge, Sep. 2017.

[43] A. Strauss and J. M. Corbin, Basics of qualitative
research: Grounded theory procedures and techniques.
Thousand Oaks, CA, US: Sage Publications, Inc, 1990.

[44] J. P. Spradley, The Ethnographic Interview, 45219th ed.
New York: Harcourt, Brace, Jovanovich, Apr. 1979.

[45] S.-Y. Perng and R. Kitchin, “Solutions and frictions in
civic hacking: collaboratively designing and building
wait time predictions for an immigration office,” Social
& Cultural Geography, vol. 19, no. 1, pp. 1–20, 2018.

[46] T. Dybå and T. Dingsøyr, “Empirical studies of agile
software development: A systematic review,” Information
and Software Technology, vol. 50, no. 9, pp. 833–859,
Aug. 2008.

[47] B. Ramesh, L. Cao, K. Mohan, and P. Xu, “Can distributed
software development be agile?” Communications of the
ACM, vol. 49, no. 10, pp. 41–46, 2006.

[48] K. Conboy, “Agility from first principles: Reconstructing
the concept of agility in information systems development,”
Information Systems Research, vol. 20, no. 3, pp. 329–354,
2009.

50

Authorized licensed use limited to: Maynooth University Library. Downloaded on March 23,2021 at 16:17:16 UTC from IEEE Xplore. Restrictions apply.

