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A B S T R A C T

It is important to consider nonlinear effects when designing controllers to maximise generated energy in wave
energy converters (WECs). Due to the substantial extra computation and complexity added when considering
nonlinearities in the controller calculations, quantifying the extent of nonlinearity in WECs’ behaviour is crucial
to avoid designing overcomplicated control strategies. This paper suggests two nonlinearity measures to quantify
the nonlinearity degree of wave-to-wire (W2W) models in steady-state, using the best linear approximation
identified through a minimisation problem as a benchmark. The first measure, referred to as the original non-
linearity measure, evaluates the nonlinear effects of the wave-absorber hydrodynamic interaction. The second
measure, referred to as the power nonlinearity measure, quantifies the nonlinear effects in power take-off (PTO)
systems, considering the quadratic response of the power signal. The degree of nonlinearity of two WEC models,
a partially-nonlinear hydrodynamic model with an ideal PTO model and a complete nonlinear W2W model, is
evaluated using monochromatic and polychromatic waves over a wide range of wave periods and heights,
covering the whole operational space of a WEC.

1. Introduction

Wave energy is one of the renewable energy sources that can sub-
stantially contribute to the future energy mix, due to the significant
potential, up to 32000 TWh/year (Mork et al., 2010), stored in ocean
waves. Nevertheless, none of the suggested prototypes has yet shown
economic viability.

Mathematical models that accurately describe the behaviour of
wave energy converters (WECs) are crucial for the design, simulation
and control of successful WECs. The energy maximising control pro-
blem can be particularly sensitive to model inaccuracies (Penalba et al.,
2017d ), since a controller based on an imprecise model can even force
the device to follow a trajectory that results in negative average ab-
sorbed power (Bacelli et al., 2015).

The vast majority of studies on energy maximising WEC control rely
on linear hydrodynamic models originally developed for offshore en-
gineering applications, which are based on boundary element method
(BEM) codes that assume small motions of the devices around the mean
position (Babarit and Delhommeau, 2015). However, the operation of
WECs and other offshore structures, such as large platforms, is funda-
mentally different. While the majority of the offshore platforms are
designed to remain still, WECs are designed to maximise energy ab-
sorption from ocean waves by encouraging device oscillations.

An alternative to BEM-based linear models are representative linear
models (Giorgi, 2017), which have been shown to be more accurate
than the BEM-based linear models, once the body motion becomes
significant (Davidson et al., 2015a). However, these representative linear
models only provide an average model over the full operational space
(Davidson et al., 2015a, 2015b).

In addition, due to the extreme variability of the wave resource,
WECs do not have specific operating points, meaning that standard set-
point following control strategies cannot be implemented. The absence
of operating points also precludes the use of the normally useful line-
arisation techniques (Cheng et al., 2010). Therefore, the use of non-
linear models is somewhat inevitable in wave energy controller
synthesis.

The sources of nonlinearities in wave energy systems are diverse,
including wave-absorber hydrodynamic interactions (where the ab-
sorber is referred to as the part of the WEC that interacts directly with
ocean waves) and power take-off (PTO) systems (Penalba et al., 2017a).
These nonlinearities can be either lossy or lossless. Nonlinear Froude-
Krylov (FK) forces, which are particularly relevant for point absorber
(PA) WECs (Giorgi et al., 2016; Penalba et al., 2017d) are the main
lossless nonlinear effects in wave-absorber hydrodynamic interactions,
which can, in certain situations, lead to parametrically excited motion
(Babarit et al., 2009; Tarrant and Meskell, 2016). With respect to the
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PTO system, compressibility effects in hydraulic systems are the main
lossless nonlinear effects.

Viscous effects are the primary lossy nonlinear effect in wave-ab-
sorber hydrodynamic interactions, which are especially relevant in os-
cillating surge wave converters (Giorgi et al., 2016). In addition, lossy
nonlinearities are also important in hydraulic PTO systems, particularly
when modelling the friction effects of the hydraulic cylinder and motor
(Penalba et al., 2017b).

Some of these nonlinearities have already been considered in the
design of nonlinear control strategies, as reviewed in (Faedo et al.,
2017). For example, (Li, 2017), includes nonlinear static FK forces
combining a pseudospectral method and differential flatness to effi-
ciently tackle the nonlinear programming problem. Another study
where nonlinear effects are considered in the controller is (Bacelli et al.,
2015), where nonlinear viscous forces and non-ideal PTO efficiencies
are incorporated. Hence, it is demonstrated that unless the controller is
provided with precise information about the WEC behaviour, including
accurate nonlinear effects, power production cannot be accurately
maximised and constraint fulfilment cannot be ensured. In addition,
nonlinear effects are exaggerated when implementing control, since
WECs are encouraged to maximise their motion to optimise generated
power (Giorgi et al., 2016).

However, including nonlinear effects in the controller significantly
complicates the design of the controller. The first implication is the
substantial increase in the numerical optimisation computation time,
challenging real-time operation. In addition, the optimisation problem
may become non-convex.

Therefore, identifying and quantifying nonlinear effects in WECs is
crucial in accurately designing control strategies without over-
complicating the optimisation problem. For this purpose, a nonlinearity
measure that quantifies the extent of nonlinear WEC behaviour, under
different operational conditions, is vital.

The present paper presents two different nonlinearity measures to
quantify nonlinear effects of the wave-absorber hydrodynamic inter-
actions and PTO systems. The reminder of the paper is structured as
follows: Different nonlinearity measures suggested in the literature are
described in Section 2, the selected nonlinearity measure is briefly
defined and its applicability for wave energy applications is analysed in
Section 3, an adaptation of the selected nonlinearity measure is defined
in Section 3.2, the case study and the results are presented in Sections 4
and 5, respectively, and conclusions of the study are finally drawn in
Section 6.

2. A survey of nonlinearity measures

The degree of nonlinearity of a system can be analysed through
nonlinearity tests, evaluating the deviation of a property that linear
systems hold. In this area, (Carter, 1987), describes coherence analysis
and (Haber, 1985) presents a variety of methods, such as a frequency
method analysing the presence of sub-harmonics, and methods based
on linear correlation and linear spectral density.

Alternatively, a nonlinearity measure can be employed, which,
unlike nonlinearity tests, provides a means to quantify the nonlinearity
degree of a nonlinear system. Several approaches to evaluate non-
linearity of dynamic systems have been suggested in the literature. A
review of these different approaches is presented in (Choudhury et al.,
2008), where different methods to evaluate nonlinearity are divided
into two main groups: time-series-based and model-based methods.

Time-series-based approaches only use the output time-series of a
process to evaluate nonlinearity. Indeed, one of the main benefits of
time-series-based approaches is that no identification of the process
model is required. Three main time-series-based methods have been
suggested: bicoherence-based (Emara-Shabaik et al., 1996; Choudhury
et al., 2004), surrogate data-based (Theiler et al., 1992), and harmonic
analysis approaches (Ruel and Gerry). Although time-series-based ap-
proaches only require the output data of the process to evaluate the

nonlinearity of the system, this output data often needs to be adjusted
(e.g. using correction factors that may include bias errors), or extended
(e.g. generating synthetic or surrogate data).

Conversely, model-based approaches quantify the nonlinearity de-
gree based on the input-output relationship of a nonlinear system. A
curvature measure was first presented in (Guay et al., 1995) and ex-
tended in (Guay and McLellan, 1997), where the nonlinearity of a
process is quantified by measuring the first and second order sensitiv-
ities of the process output signals. This sensitivity is measured by
analysing the contribution of the higher-order terms of the Taylor ex-
pansion of a nonlinear operator, relative to the contribution of the first-
order terms. Thus, the curvature measure requires a Taylor expansion of
the nonlinear system, which may be extremely complicated if the
nonlinear system consists of different interconnected nonlinear sub-
systems, as is the case in the current application.

Other model-based approaches suggested in the literature measure
the degree of nonlinearity by comparing the input-output behaviour of
a nonlinear system to the best linear approximation of that nonlinear
system. The first contribution to the identification of a best linear ap-
proximation is presented in (Desoer and Wang, 1980), and several au-
thors have used the same definition since then. The need of nonlinear
models for modelling and control applications is studied in (Nikolaou,
1993; Nikolaou and Hanagandi, 1994), where variations of the best
linear approximation are evaluated for different inputs. Similarly, the
best linear approximation for the worst input case is defined in (Allgöwer,
1995). A generalization of the approach suggested in (Allgöwer, 1995)
is presented in (Helbig et al., 2000), which can be applied both to
steady-state operation points and trajectory-dependent analyses.

A precise validated wave-to-wire (W2W) model, including all the
different conversion stages from ocean waves to the electricity grid, is
already available to analyse the input-output behaviour of a WEC
(Penalba and Ringwood, 2019). Therefore, the model-based approach,
suggested in (Helbig et al., 2000), appears to be a suitable measure to
start with.

3. Nonlinearity measures for wave energy system

3.1. Original measure definition

Here we summarise the definition of the nonlinearity measure
presented in (Helbig et al., 2000), which is a generic measure that can
be used for any finite-dimensional multi-variable dynamic system. In
the present paper, this nonlinearity measure is referred to as the original
nonlinearity measure and is applied to WEC models, which can be
described by a set of nonlinear ordinary differential equations.

Hence, a nonlinear WEC model can be represented by a state-space
description as follows,

= =
= ≤ ≤

t t t
t t t t t

x f x u x x
y h x u
˙ ( ) ( ( ), ( )), (0) ,

( ) ( ( ), ( )), 0 ,
N N N N N

N N N f

,0

(1)

where f is a vector field, h a vector function, and uN , xN , xN ,0 and yN
are the inputs, states, initial conditions and outputs of the nonlinear
system, respectively. The system can be evaluated for a finite or infinite
time interval ( ≤ ∞tf ). In this nonlinear system, uN consists of elements
of the spaceUa of admissible inputs, xN belongs to the spaceX , xN ,0 are
elements of the space of admissible initial conditions X a0, , and yN
consists of elements of a normed space of outputsY .

Let us define the nonlinear system presented in Equation (1) with a
nonlinear dynamic operator that maps input signals uN with xN ,0 initial
conditions into output signals yN as follows,

= Ny u x[ , ],N N N ,0 (2)

with U∈uN a, X∈xN a,0 0, , and Y∈yN .
To quantify the nonlinearity of the system defined with the operator

N, the best linear approximation needs to be identified for the same input
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and output dimensionality. As a consequence, a linear dynamic op-
erator L can be defined, where L is an element of the time invariant
linear spaceL . Thus, any L∈L maps the input signals uL with initial
conditions xL,0 into the output signals yL as follows,

= Ly u x[ , ]L L L,0 (3)

where U∈uL L, X∈xL L,0 0, , Y∈yL L, UL and X L0, are the spaces of ad-
missible inputs and initial conditions, respectively, and YL is the
normed space of outputs.

In the present study, authors are only interested in measuring the
nonlinearity of WECs’ response at steady-state. Due to the slow varia-
tion of the conditions in the ocean, the transient-state can be neglected,
as suggested in (Bacelli and Ringwood, 2015; Faedo et al., 2018a) for
energy maximisation control applications. Therefore, zero initial con-
ditions (ZICs) can be assumed ( = =x x 0N L,0 ,0 ).

Once the nonlinear and linear systems are defined, the original
nonlinearity measure is represented as follows,

S

L S

= −
∈ ∈

ϕ L N
N

u u
u

inf sup || [ , 0] [ , 0]||
|| [ , 0]||

,N L u( ,0) (4)

with

U Y= ∈ ∈S Nu u u{( , 0): , [ , 0] },a a (5)

where u refers to the common inputs for the linear and the nonlinear
systems,Y Y⊂a is the space of admissible outputs, and ⋅|| || is a suitable
norm. The nonlinearity measure in Equation (4) assumes the existence
of y and the boundedness of all norms for all S∈u( , 0) .

The nonlinearity degree of a nonlinear system is given by the nor-
malized largest difference between the nonlinear system and the best
linear approximation for the worst input. This nonlinearity measure al-
ways provides a value between 0 and 1, where 0 means that N behaves
as a linear system, and the closer to 1, the more nonlinear N is. A sui-
table norm applied in Equation (4) is the L2-norm.

The computation of the nonlinearity measure presented in Equation
(4) requires the solution of a practically infeasible infinite-dimensional
nonlinear min-max problem. Therefore, Equation (4) needs to be
transformed into a finite-dimensional optimisation problem, replacing
the inf-operator in Equation (4) with a min-operator. To that end, it is
necessary to represent the best linear approximation L as a weighted sum
of basis functions Li as follows,

∑=
=

L u
m

d L u[ , 0] [ , 0],j
i

w i i j
1

,
(6)

where R= … ∈d d dd [ , , , ]w w w m
m

w ,1 ,2 , is the vector of weights. The
space spanned by the Li basis functions should be dense in L . Fol-
lowing (Helbig et al., 2000), the linear operator L is represented by
linear transfer functions Li, with corresponding time constants Ti,

=
+

L s
T s

( ) 1
1

.i
i (7)

In addition, if an approximated spaceS S⊂c with a finite number
of elements is defined, the sup-operator in Equation (4) can be replaced
by a max-operator. Hence, the inf-sup problem becomes a min-max
optimisation problem.

Finally, the min-max optimisation problem is transformed into a
single convex minimisation problem with constraints:

S

S

R R
=

− ≤

∀ ∈

∈ ∈
−

θ z

s t z

u

min ,

. . 0,

( , 0) ,

N
z

L u N u
N u

j c

d,
[ , 0] [ , 0]

[ , 0]

c
m

j j

j

(8)

Once the finite dimensional problem is defined as a single convex
minimisation problem, this can be solved using state of the art opti-
misation solvers, such as those detailed in (Boyd and Vandenberghe,
2004). For further details about the transformation of the optimisation

formulation of Equation (4) into Equation (8), the reader is referred to
(Helbig et al., 2000).

3.2. A power nonlinearity measure

In wave energy systems, excitation force (Fex) is the typical input
(uN ) for WECs, while the output (yN ) is typically position (z), velocity
(ż) and/or generated power (Pgen), as illustrated in Fig. 1.

The original nonlinearity measure can quantify nonlinearities of the
WEC system when using z or ż as outputs. That way, θ can capture any
nonlinearity in the hydrodynamic model. However, generated power is
given as follows,

= −P zF˙ ,gen PTO (9)

where

= − − =F zK zB f z z˙ ( , ˙ ),PTO PTO PTO (10)

and BPTO and KPTO are the damping and the stiffness of the PTO model.
Hence, generated power is represented by a nonlinear combination

of the outputs, = ⋅P f z z z( ˙ , ˙ )gen
2 . Using Pgen as output, θ results biased by

the nonlinearities in the measurement and cannot provide the non-
linearity degree of the WEC system. However, the nonlinearity degree
of a WEC, including all the dynamics from waves to the electricity grid,
can only be assessed using Pgen as output. Therefore, for the nonlinearity
measure to be used for evaluating the nonlinearity degree of W2W
models, θ must be adapted. The adaptation of θ is referred to as the
power nonlinearity measure in the following. Fig. 1 illustrates the ap-
plication area of the original and power nonlinearity measures.

Since Pgen is obtained by multiplying ż and FPTO, the simplest way to
measure the nonlinearity of a system using Pgen as output is including
that multiplication between ż and FPTO in the nonlinearity measure.

Thus, two linear operators L1 and L2, which represent ż and FPTO,
can be defined so that the combination of any L∈L1 and any L∈L2
maps the input signals uL12, with initial conditions x L ,01 and x L ,02 into
the output signals yL12 as follows,

= [ ] [ ]L Ly u x u x, , ,L L L L L1 ,0 2 ,012 12 1 12 2 (11)

with U∈uL L12 12, X∈x x,L L L,0 ,0 0,1 2 12, and Y∈yL L12 12.
The new best linear system is then formed by the combination of two

linear operators (L Lu u[ , 0] [ , 0]1 2 ), so the power nonlinearity measure
can be defined as follows,

S

L S

= −
∈ ∈

ψ L L N
N

u u u
u

inf sup || [ , 0] [ , 0] [ , 0]||
|| [ , 0]||N

L L u, ( ,0)

1 2p

p1 2 (12)

with

U Y= ∈ ∈S Nu u u{( , 0): , [ , 0] }p a p (13)

where U Y× →L u[ , 0]: 0a a1 and U Y× →L u[ , 0]: 0a a2 are two linear
dynamic operators belonging to the space of linear operators L .
Similarly to the measure presented in Equation (4), Ua and Ya are the
spaces of admissible inputs and outputs of the two linear operators,

Fig. 1. Diagram of a WEC, illustrating the applicability of the original and power
nonlinearity measures.
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respectively. However, the combination of these two linear operators
defines a new space of admissible outputs Yp. In addition, The non-
linearity measure in Equation (12) assumes the existence of y and the
boundedness of all norms for all S∈u( , 0) .

Similarly to the measure presented in Equation (4), the computation
of the power nonlinearity measure needs an approximative computation
scheme, transforming the practically infeasible problem, into a finite
dimensional optimisation problem. Following Equation (14), with the
replacement of the inf- and sup-operators with min- and max-operators,
respectively, the power nonlinearity measure results in a single con-
strained minimisation problem as follows,

S

S

R R
=

− ≤

∀ ∈

∈ ∈
−

χ z

s t z

u

min

. . 0

( , 0)

N
z

L u L u N u
N u

j pc

d d, ,
[ , 0] [ , 0] [ , 0]

[ , 0]

pc
m

j j j

j

1 2

1 2

(14)

where S⊂Spc p is the approximated space with a finite number of
elements, and d1 and d2 vectors of weights of L1 and L2, respectively.
For further details about the final transformation, the reader is referred
to (Helbig et al., 2000).

That way, the best linear approximation obtained from the power
nonlinearity measure suggested in Equation (12) captures the quadratic
response of the power signal, and is able to provide the nonlinearity
measure expected for a linear model ( =χ 0).

It is important to note that this coverage of the quadratic response
does not distort the nonlinearity measure, since it only covers the
quadratic response corresponding to power. Other nonlinearity sources
are still captured by the power nonlinearity measure (see Section 5).

4. Case study

The nonlinearity measures described in Sections 3 and 3.2 are ap-
plied to assess the nonlinearity of the behaviour of a spherical heaving
PA of 5m diameter. This spherical PA is of particular interest due to its
non-uniform cross-sectional area, which leads to nonlinear FK forces
(Penalba et al., 2017d ). The natural period of this spherical PA is 3.17s,
is assumed to be deployed in deep-water, and is restricted to heave
motion only to simplify the analysis. Fig. 2 illustrates the diagram of the
WEC.

In the present paper, two models that include different nonlinear
effects are considered. On the one hand, a partially-nonlinear hydro-
dynamic model, referred to as NLHyd model in the following, is

analysed. The NLHyd model includes nonlinear FK forces and viscous
effects in the wave-absorber hydrodynamic interaction as follows,

∫
∫

= + − −

− − + +
−∞

∞
∞

−∞

∞

Mz t F t K t τ η τ dτ μ z t

K t τ z τ dτ F F

¨ ( ) ( ) ( ) ( ) ¨ ( )

( ) ˙ ( ) ,

d FK diff d

rad d PTO visc (15)

where zd, żd and z̈d are the displacement, velocity and acceleration of
the WEC, respectively, M is the mass of the WEC, Kdiff the diffraction
impulse response function (IRF), η the free-surface elevation, ∞μ the
added-mass at infinite frequency, Krad the radiation IRF.

Nonlinear FK forces and viscous effects are included using the al-
gebraic solution of the integral presented in (Giorgi and Ringwood,
2016a) and a Morison-like equation (Morison et al., ), respectively,

⎜ ⎟= − ⎡
⎣⎢

+ ⎤
⎦⎥

− ⎡
⎣⎢

⎛
⎝

+ − ⎞
⎠

⎤
⎦⎥

F F πρg σ z σ π
χ

ρga ωt z
χ

υ e2
3 2

2 cos( ) 1 ,FK g d
σ

σ

d
χσ

σ

σ3 2

1

2

1

2

(16)

= − − −F ρ C A t z η z η1
2

( )| ˙ ˙ |( ˙ ˙),visc d d d d (17)

where Fg is the gravity force, ρ the water density, g the acceleration due
to the gravity, a the wave amplitude, ω the wave frequency, χ the
wavenumber, Cd the drag coefficient, Ad the instantaneous cross-sec-
tional area of the device, and η̇ the velocity of the undisturbed wave
field. Integration limits = −σ z H1 and =σ η2 define the instantaneous
wetted surface, H is the draft of the device, σ and θ are the parametric
cylindrical coordinates of the algebraic solution, and x and z the Car-
tesian coordinates. The PTO system in the NLHyd model is represented
by Equations (10) and (9).

On the other hand, a complete W2W model, henceforth referred to
as NLW2W model, is considered. The NLW2W model combines the
hydrodynamic model incorporated in the NLHyd model with a high-
fidelity PTO model, where all the necessary nonlinear dynamics and
losses are included (Penalba and Ringwood, 2019). The PTO force in
the NLW2W model, including compressibility effects and friction losses
(Ffric), is calculated using Equations 18–20, rather than Equation (10).

= +F A p FΔ ,PTO p fric (18)

=
+

−p
β p

V A x
Q x A˙

( )
( ˙ ),eff

p p
p p

(19)

⎜ ⎟= + ⎡
⎣⎢

+ ⎛
⎝

− ⎞
⎠

⎤
⎦⎥

F σ x x F F
x
c

˙ sign( ˙ ) exp
| ˙ |

,fric v p p c st
p

st (20)

where Ap is the piston area, p the pressure in each chamber of the
hydraulic cylinder, pΔ the pressure difference between the chambers, xp
and ẋp the piston position and velocity, Q is the flow entering or exiting
the cylinder chamber, β p( )eff the effective bulk modulus and V the
minimum volume (calculated when the piston reaches its minimum or
maximum position) in the cylinder chamber. Friction in the cylinder is
included using the Stribeck model (Jelali and Kroll, 2012), for which σv
is the viscous coefficient, Fc the Coulomb friction force, Fst the static
friction force, and cst the characteristic velocity of the Stribeck curve.

The hydraulic motor, also represented in the NLW2W model, in-
cluding volumetric and mechanical losses via the Schlösser loss model
(Schlöesser, 1961; Schlösser, 1968), is modelled as follows,

= −Q αD ω p CΔ ,M ω M M Q1 (21)

= − + + +T αD p C C p C ω C ωΔ ( Δ ),M ω M T T M T M T M1 2 3 4
2 (22)

where α is the motor displacement fraction, Dω the displacement of the
hydraulic motor, ωM the rotational speed of the shaft, pΔ M the pressure
difference across the hydraulic motor, and CQ1, CT1, CT2, CT3 and CT4 the
parameters of the Schösser loss model.

Finally, the squirrel-cage induction generator in the NLW2W model
is incorporated using the equivalent two-phase (dq) equations (KrauseFig. 2. Illustrative diagram of the spherical heaving PA.
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et al., 2013) as follows,

= − + + +V R i ωλ L d
dt

i L d
dt

i i( ),sd s sd sq s sd sd rdm (23)

= + + + +V R i ωλ L d
dt

i L d
dt

i i( ),sq s sq sd s sq sq rqm (24)

= − − + + +R i ω ω λ L d
dt

i L d
dt

i i0 ( ) ( ),r rd r rq r rd sd rdm (25)

= + − + + +R i ω ω λ L d
dt

i L d
dt

i i0 ( ) ( ),r rq r rd r rq sq rqm (26)

where V is the voltage, i the current, R the resistance and λ the flux.
Subscripts s and r are used for the stator and rotor, while d and q refer to
the direct and quadrature axes, respectively. ω and ωr are the angular
speed of the reference frame and the rotor, respectively, and flux
linkage expressions are given as,

= + +λ L L i L i( ) ,sd s sd rdm m (27)

= + +λ L L i L i( ) ,sq s sq rqm m (28)

= + +λ L L i L i( ) ,rd r rd m sdm (29)

= + +λ L L i L i( ) ,rq r rq sqm m (30)

where Ls and Lr are the stator and rotor leakage inductances, respec-
tively, and Lm is the mutual inductance. Flux linkages, voltages and
currents allow for the calculation of the electromagnetic torque (Te),
rotational speed of the rotor and generated electrical power can be
calculated,

= −T
N

λ i λ i
3

4
( ),e

p
sd sq sq sd (31)

= − −ω
N

J
T T B ω˙

2
( ),r

p
e M wind r (32)

= +P V i V i3
2

( ),gen sd sd sq sq (33)

where Np is the number of poles in the generator and Bwind the friction/
windage damping.

To asses the representative nonlinearity of a model, it is crucial to
carefully cover the operational space of the WEC. To that end, sea-states
(wave periods and heights) and implemented control strategies need to
be selected. Based on the wave resource in the Biscay Marine Energy
Platform (BIMEP) test site, located in the Bay of Biscay (Penalba et al.,
2017c), wave periods from 3s to 12s and wave heights from 1m to 5m
are analysed. Although real ocean waves are polychromatic waves, the
additional analysis for monochromatic waves provides insight into the
response of the WEC at each exciting frequency. Therefore, both
monochromatic and polychromatic waves are considered.

With respect to the control strategies, the nonlinearity degree of the
spherical WEC is assessed under a docile and a more aggressive control
strategy, resistive (ResC) and reactive control (ReacC), respectively.
The two control strategies are implemented using the control para-
meters BPTO and KPTO in Equation (10), with =K 0PTO in the ResC case.
Optimal control parameters for each sea-state are used, from (Penalba
and Ringwood, 2018).

5. Results

The nonlinear behaviour of the spherical WEC is first assessed with
monochromatic waves. In this case, the best linear approximation is
parametrized by 2 basis functions, using two time constants =T sπ

1
2
0.3

and =T sπ
2

2
2 . These time constants are selected to accurately char-

acterize the steady-state response of the device over the whole fre-
quency range, as demonstrated in (Faedo et al., 2018b), with one time
constant close to the resonant frequency (T2) and the second time
constant at a lower frequency (T1).

Before evaluating the nonlinear behaviour of the WEC over the
whole operational space, it should be noted that different values of the
nonlinearity measure can be obtained for the same model and opera-
tional conditions (identical input and control), depending on the output
signal selected for the evaluation. Fig. 3 (a), (b) and (c) illustrate the
best linear approximation and the nonlinearity measure of the NLW2W
model, when respectively using position (θpos), velocity (θvel) and power
(χ) to assess the nonlinearity degree under monochromatic waves (3s
period and 1m height, close to resonance). The highest value of the
nonlinearity measure is obtained with position as output ( =θ 0.56pos ),
higher than with power ( =χ 0.45), which includes all the nonlinearities
of the high-fidelity PTO model described in Equations 18–33. In addi-
tion, the nonlinearity degree is more than halved using velocity as
output compared to θpos ( =θ 0.21vel ).

This substantial difference between θpos and θvel appears due to the
specific nature of the nonlinearity in this particular case. The main
nonlinear phenomenon of the position signal is the asymmetry with
respect to the x-axis at the origin, which can be represented by a con-
stant offset in steady-state. However, because velocity is the derivative
of the position, the offset of the position vanishes in the derivation,
dramatically reducing the nonlinear behaviour.

The relevance of nonlinearities in different outputs depends on the
application of the nonlinear model. When nonlinearity is assessed for
energy maximising control applications in wave energy, the implication
of velocity nonlinearities may be significantly more influential than
position nonlinearities for two main reasons: On the one hand, velocity
components are lossy, which strongly affects the final energy genera-
tion, and, on the other hand, the control problem in wave energy is
commonly tackled optimizing the velocity trajectory, as reviewed in

Fig. 3. The best linear approximation and nonlinearity measures of the NLW2W model under monochromatic waves with 3s period and 1m amplitude, when using (a)
position, (b) velocity and (c) power.
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(Faedo et al., 2017). In addition, Fig. 3 (a) suggests that the position
nonlinearity is affine, which can be relatively simple to tackle from a
control perspective. Nonlinearities in the power signal are also im-
portant, since a precise description of the generated power is required
to accurately maximise energy generation of WECs.

Therefore, despite the lower nonlinearity measures obtained for
velocity and power, the present paper especially focuses on the velocity
and power nonlinearities due to their stronger implications for the

design of energy maximising control strategies for WECs.
The NLHyd model is first studied under ResC and ReacC over the

whole operational space using θvel, as illustrated in Fig. 4 (a) and (b),
respectively. The maximum θvel is very similar in both cases
( ∼θ 0.33vel

max ) and is given for the same input wave (4s period and 4m
height). In addition, θvel is highest with waves of 4s period for all wave
heights, which suggests that the natural period of the device (3.17s
using fully linear hydrodynamics) increases slightly due to the non-
linear effects in the wave-absorber interaction, as previously reported in
(Giorgi and Ringwood, 2016b).

However, θvel decreases substantially when moving away from the

Figure 4. θvel over the whole operational space for the NLHyd model under (a)
ResC and (b) ReacC.

Fig. 5. The difference between θvel under ResC and ReacC.

Figure 6. χ over the whole operational space for (a) the NLHyd and (b) the
NLW2W models under ReacC.

Table 1
Maximum and mean nonlinearity measures for the NLHyd and NLW2W models
when using different control strategies and outputs.

Monochromatic waves NLHyd NLW2W

max mean max mean

ResC Q 0.61 0.14 0.62 0.15
θvel 0.33 0.10 0.36 0.10
χ 0.46 0.15 0.51 0.17

ReacC θpos 0.66 0.16 0.69 0.20

θvel 0.34 0.13 0.37 0.14
χ 0.48 0.19 0.57 0.23
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resonant-period. For long and small off-resonance waves, θvel vanishes
under ResC, as illustrated in Fig. 4 (a), meaning that the WEC behaves
linearly under these specific conditions. In contrast, θvel never vanishes
in the case of ReacC, always staying above 0.1, as shown in Fig. 4 (b).
Differences between ResC and ReacC are illustrated in Fig. 5, showing
that θvel significantly increases far from the resonant-period due to
ReacC.

One can also note, in Fig. 4, that θvel increases with wave height,
which is to be expected, since higher waves imply greater motion and,
as a consequence, greater variations of the instantaneous cross-sectional
area. However, θvel is, in general, largest with wave inputs of 4m
height, while slightly decreasing for waves of 5m. This is due to the
specific characteristics of the spherical WEC selected for the analysis,
which has a draft of 2.5m. Thus, the device can exit the water with an
input wave of 5m height (2.5 m amplitude), reducing the power ab-
sorption from ocean waves. Therefore, a higher BPTO is required to

maximise power absorption, reducing the nonlinear behaviour of the
WEC.

Similar trends can be observed using power as output, as illustrated
in Fig. 6 (a) and (b) for the NLHyd and NLW2W models under ReacC,
respectively. While θvel

max remains similar for all the cases, χ max increases
considerably, between 10 and 20%, when nonlinear dynamics of the
PTO are included, as illustrated in Fig. 6. Table 1 presents the maximum
nonlinearity measures for all the different cases using monochromatic
waves.

However, maximum nonlinearity measures tend to describe the
behaviour of the WEC close to resonance, while the main differences
between the different controllers and models are observed far from the
resonant-period, as shown in Figs. 4–6. To illustrate an overall non-
linearity measure, mean values of the nonlinearity measures over the
whole operational space are also considered. Table 1 shows these mean
values, which are all similar under ResC, regardless of the model.
Conversely, mean nonlinearity measures increase up to 25% from ResC
to ReacC, where the highest mean nonlinearity measure is given by the
NLW2W model under ReacC ( =χ 0.23mean ).

Nevertheless, real ocean waves are never monochromatic and,
therefore, the same analysis is also carried out for polychromatic waves,
based on the JONSWAP spectrum (Hasselmann, 1973). The same
nonlinearity measures can be applied with polychromatic waves, but
the best linear approximation is parametrized using 5 basis functions
with appropriately distributed time constants between 0.1s and 16s.
Fig. 7 illustrates the best linear approximation and θvel for the NLHyd
model using a polychromatic input wave of 8s peak period (Tp) and 2m
significant wave height (Hs) under ResC.

In the case of polychromatic waves, the operational space is defined
using peak periods and significant wave heights. Fig. 8 illustrates θvel for
the NLHyd model under ResC over the whole operational space.

Compared to the same case with monochromatic waves, illustrated
in Fig. 4 (a), there exist three main differences. Firstly, θvel

max is sub-
stantially larger in polychromatic waves, approximately 40% higher.
Second, although θvel decreases when moving away from the resonant-
period, the nonlinear behaviour of the WEC never vanishes completely
as in the case with monochromatic input waves. Finally, θvel varies very
little with wave height.

Maximum and mean nonlinearity measures for each case using
polychromatic waves are presented in Table 2. Mean nonlinearity
measures increase significantly (up to 30%) from monochromatic to
polychromatic input waves, meaning that nonlinear effects are more
significant in polychromatic waves. Measures θvel

max and χ max also in-
crease significantly for all the cases, while θpos

max remains relatively

Fig. 7. The best linear approximation and θvel for a polychromatic input wave
( =Tp 8s and =Hs 3m) under ResC.

Fig. 8. θvel over the operational space for the NLHyd model under ResC and
polychromatic waves.

Table 2
Maximum and mean nonlinearity measures for the NLHyd and NLW2W models
when using different control strategies and outputs.

Polychromatic waves NLHyd NLW2W

max mean max mean

ResC θpos 0.61 0.20 0.56 0.21

θvel 0.49 0.18 0.59 0.22
χ 0.45 0.17 0.49 0.26

ReacC θpos 0.63 0.21 0.62 0.21

θvel 0.52 0.19 0.56 0.21
χ 0.61 0.24 0.68 0.29

Figure 9. χ over the operational space for the NLW2W model under ReacC and
polychromatic waves.

M. Penalba, J.V. Ringwood Ocean Engineering 171 (2019) 496–504

502



unchanged.
Nonlinear effects are strongest in polychromatic waves when ReacC

is implemented in the NLW2W model, similarly to monochromatic
waves. Fig. 9 illustrates χ over the whole operational space when ReacC
is implemented in the NLW2W model, where χ max unexpectedly ap-
pears at =T s3p and =H m1s . At such a low energetic sea-state, the
power absorbed by the WEC can hardly overcome the high inertia of the
electric generator shaft. Therefore, the electric generator operates as an
electric motor most of the time, consuming energy from the electricity
grid even with appropriately optimized control parameters (Penalba
and Ringwood, 2018), which results in a highly nonlinear response.

6. Conclusion

The paper evaluates a popular linearisation-based nonlinearity
measure, the original nonlinearity measure, and shows its effectiveness
in the wave energy application domain. An important modification is
made so that the calculation of the nonlinearity measure itself does not
include nonlinearity for power calculations. Therefore, the adapted
power nonlinearity measure may be valuable in other power system
applications.

Specifically, from the results presented in the paper, we can con-
clude the following:

• Both original and power nonlinearity measures increase for operation
around the resonant period of the device. This is due to an increase
in nonlinear Froude-Krylov forces resulting from larger variations in
the cross-sectional area (larger displacements relative to the free-
surface elevation). In addition, velocity-dependent nonlinearities,
such as viscous losses in the hydrodynamic model and increased
friction effects in the hydraulic cylinder, are enhanced around the
resonance points.

• For the model that combines nonlinear hydrodynamic interactions
with a high-fidelity power take-off, there is an increase in the power
nonlinearity measure by 20% over the case for the hydrodynamic
model only, over the full operational space, indicating that the pri-
mary nonlinearity in the system is hydrodynamic.

• Due to its increased aggressiveness, the reactive controller elicits a
greater nonlinear response than the resistive controller, due to only

the nonlinearities in the wave energy converter model, again related
to increases in the wave energy converter displacement and velo-
city, for the reactive control case. This may suggest that, under re-
active control, a nonlinear wave energy converter model may need
to be considered in the control design process. The same can be
applied to other type of control strategies, such as latching control,
where the motion of the wave energy converter is enhanced to
maximise energy absorption from ocean waves. This is especially
pertinent, since the system sensitivity function (i.e. the sensitivity of
the closed-loop system, containing both wave energy converter and
controller, to errors in the wave energy converter model) is large for
the reactive control case.

In particular, the system sensitivity, calculated using a linearised
wave energy converter model (G s( )), is defined (Ringwood et al., ) as
follows:

= =
+

S s dT s
dG s

G s
T s G s H s

( ) ( )
( )

( )
( )

1
1 ( ) ( )

.G
T

(34)

where T s( ) is the closed-loop transfer function, and Hs describes the
wave energy converter controller transfer function, as shown in Fig. 1,
defined in time-domain form in Equation (10). Fig. 10 illustrates an
example sensitivity function, comparing resistive and reactive control,
and includes the block-diagram of the closed-loop system of a wave
energy converter. The large sensitivity values for the reactive control,
particularly off-resonance, indicate the need for an accurate model.
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