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Abstract— The roadmap to a successful commercialisation of
wave energy inherently incorporates the concept of an array
or farm of Wave Energy Converters (WECs). These interacting
hydrodynamic structures require an optimised process that can
ensure the maximum extraction of time-averaged energy from
ocean waves, while respecting the physical limitations of each
device and actuator characteristics. Recently, a novel optimal
control framework based on the concept of moment, for a
single WEC device, has been introduced in [1]. Such a strategy
offers an energy-maximising computationally efficient solution
that can systematically incorporate state and input constraints.
This paper presents the mathematical extension of the optimal
control framework of [1] to the case where an array of WECs
is considered, providing an efficient solution that exploits the
hydrodynamic interaction between devices to maximise the total
absorbed energy.

I. INTRODUCTION

Wave energy technology has undergone a strong develop-
ment over the past years, in line with a growing interest from
both the academic and industrial communities in the progress
of such a vast renewable energy field. Though the energy
from ocean waves has one of the highest power densities
[2], the current high installation, operation, maintenance,
and decommissioning costs are hindering these novel wave
energy extraction technologies to reach a commercialisation
stage. As discussed in [3], the roadmap to a successful
commercialisation of Wave Energy Converters (WECs) nat-
urally embodies the development of so-called WEC arrays
or farms, which effectively incorporates several devices in
a common sea area. Hence, any realistic effort to commer-
cialise a novel WEC technology requires both a single WEC
and a WEC farm development process.

To further reduce the levelised cost of energy, it is well-
known that WECs require an optimised process that ensures
extracting the maximum time-averaged power from ocean
waves [4]. Moreover, any realistic formulation must take
into account the inherent physical limitations of both the
device and the Power Take-Off (PTO) system (actuator) such
that the energy extraction is maximised while minimising the
risk of component damage. A pioneering yet unconstrained
approach to the control of WEC farms can be found in
the early study [5]. Not far in time from this publication,
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[6] incorporates constraints in the motion (amplitude and
velocity) of the device, providing a first practical result on
constrained control of arrays. More contemporary studies,
such as [7], utilise direct transcription techniques to solve
for the optimal control law under a numerical scheme (the
reader is referred to [4] for a comprehensive list of optimal
control strategies considered for this application).

Recently, a novel energy-maximising optimal control
framework for a single WEC has been presented in [1]. This
formalism is based on the concept of moment (discussed in
Section II), and allows mapping the original optimal control
problem into a concave Quadratic Program (QP). Then, a
computationally efficient calculation of the optimal control
law is achieved by state-of-the-art QP solvers [8]. Though
[1] accomplishes the energy-maximising objective subject
to motion constraints, the mathematical formalism considers
only the single-input, single-output (SISO) case, hindering
the application of the strategy to the case where an array
of WECs is considered. Note that, though one can apply
the SISO case of [1] to each isolated device of the array
(ignoring the interactions between the WECs composing the
farm), this has been already shown to be suboptimal in [7].
In fact, [7] shows that a significant improvement in power
absorption can be achieved by considering the corresponding
hydrodynamic interactions between devices in the control
problem.

Following the roadmap for a successful WEC commer-
cialisation, and given the desirable properties of the moment-
based strategy, we present an extension of the moment-based
energy-maximising optimal control framework of [1] to the
multiple-input, multiple-output (MIMO) case, for which the
hydrodynamic interactions between devices are exploited to
extract the maximum energy from a given wave field, subject
to both state and input constraints. We show that the desirable
properties of the moment-based strategy discussed in [1] are
retained in the WEC array case.

The remainder of this paper is organised as follows. Sec-
tion II discusses key concepts behind the moment-matching
framework for both SISO and MIMO systems. Section III
formally introduces the energy-maximising problem for ar-
rays, while Section IV details the moment-based analysis of
the constrained optimal control formulation. Finally, Section
V discusses an application case for a particular array layout,
whilst Section VI encompasses the main conclusions of this
study. Note that, for brevity, we do not present the proofs of
the propositions and lemmas proposed in this paper. These
are intended to be presented (along with complementary
theoretical results) in an extended version of this paper.
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A. Notation and Preliminaries

Standard notation is considered through this study, with
any exceptions detailed in this section. R+ (R−) denotes the
set of non-negative (non-positive) real numbers. C0 denotes
the set of pure-imaginary complex numbers and C− denotes
the set of complex numbers with negative real part. The
symbol 0 stands for any zero element, dimensioned according
to the context. The notation Nq indicates the set of all
positive natural numbers up to q, i.e. Nq = {1, 2, . . . , q}.
The symbol In denotes the identity matrix of dimension
n× n, while the notation 1n×m is used to denote a n×m
Hadamard identity matrix (i.e. a n × m matrix with all
its entries equal to 1). The spectrum of a matrix A ∈
Rn×n, i.e. the set of its eigenvalues, is denoted as λ(A).
The symbol

⊕
denotes the direct sum of n matrices, i.e.⊕n

i=1Ai = diag(A1, A2, . . . , An). The vectorisation of a
matrix M ∈ Rn×m is denoted as vec{M} ∈ Rnm. The
Kronecker product between two matrices M1 ∈ Rn×m and
M2 ∈ Rp×q is denoted as M1 ⊗ M2 ∈ Rnp×mq , while
the Kronecker sum is denoted as M1⊕̂M2. The Kronecker
delta function is denoted as i

jδ. The convolution between
two functions f(t) and g(t) over the finite range [0, t], i.e.∫ t
0
f(τ)g(t − τ)dτ is denoted as f ∗ g. The set of all real-

valued square integrable functions is denoted as L2(R). The
symbol eqij ∈ Rq×q denotes a matrix with 1 in the ij entry
and 0 elsewhere. The symbol εn ∈ Rn×1 denotes a vector
with odd entries equal to 1 and even entries equal to 0.

II. MOMENT-BASED THEORY

In this section we briefly recall some of the key concepts
behind the moment-matching framework, as in [9], [10].

Consider a finite-dimensional, SISO, continuous-time sys-
tem described, for t ≥ 0, by the state-space model

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, A ∈ Rn×n, B ∈ Rn
and C ∈ R1×n and assume that (1) is minimal.

Lemma 1: [9], [10] Consider system (1) and the au-
tonomous signal generator

ξ̇(t) = S ξ(t), u(t) = Lξ(t), (2)

with ξ(t) ∈ Rν , S ∈ Rν×ν , L ∈ R1×ν and ξ(0) ∈ Rν .
Assume that the triple (L, S, ξ(0)) is minimal, λ(A) ⊂ C−,
λ(S) ⊂ C0 and the eigenvalues of S are simple. Then, there
is a unique matrix Π ∈ Rn×ν which solves the Sylvester
equation

AΠ +BL = ΠS, (3)

and the steady-state response of the output of the intercon-
nected system (1)-(2) is yss(t) = CΠξ(t).

Remark 1: The minimality of the triple (L, S, ξ(0)) im-
plies the observability of the pair (L, S) and the excitability1

of the pair (S, ξ(0)).

1We refer the reader to [10] for the definition of excitability.

Definition 1: The matrix CΠ, with Π solution of the
Sylvester equation (3), is the moment of system (1) at the
signal generator (2).

Remark 2: From now on, we refer to the matrix Y = CΠ
as the moment-domain equivalent of y(t).

A. MIMO case

We now consider a finite-dimensional, MIMO, continuous-
time system described, for t ≥ 0, by the state-space model

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (4)

with2 x(t) ∈ Rn, u(t) ∈ Rq , y(t) ∈ Rq , A ∈ Rn×n, B ∈
Rn×q , C ∈ Rq×n and assume that (4) is minimal.

In the following, we present an adaptation of Lemma 1
for the MIMO case.

Lemma 2: Let each input ui(t) of system (4), with u(t) =
[u1(t), . . . , uq(t)]

ᵀ, be generated by the autonomous, single-
output signal generator3

ξ̇(t) = S ξ(t), ui(t) = Liξ(t), (5)

with ξ(t) ∈ Rν and Li ∈ R1×ν . Assume that the pair (Li, S)
is observable for all i ∈ Nq , λ(A) ⊂ C−, and S is as in
Lemma 1. Consider the autonomous multiple-output signal
generator

Ξ̇(t) = (Iq ⊗ S) Ξ(t), u(t) =

(
q∑
i=1

eqii ⊗ Li

)
Ξ(t), (6)

Ξ(t) ∈ Rqν and assume that the pair ((Iq ⊗ S),Ξ(0)) is
excitable. Then, there is a unique matrix Π ∈ Rn×qν which
solves the Sylvester equation

AΠ−Π(Iq ⊗ S) = −B

(
q∑
i=1

eqii ⊗ Li

)
. (7)

and the steady-state response of the output of the intercon-
nected system is yss(t) = CΠΞ(t).

Remark 3: Analogously to the SISO case, the moment for
system (4) is computed in terms of the unique solution of a
Sylvester equation, i.e. equation (7).

III. ENERGY-MAXIMISING CONTROL FORMULATION

The control problem for an array of N devices can be
informally posed as follows: compute the optimal control
input (PTO force) acting on each device ui(t) such that
the time-averaged energy absorbed by the (complete) WEC
array is maximised over a time interval of length T . To state
this energy-maximising criterion in terms of an objective
function, we note that the useful energy converted by the
totality of the PTOs composing the array can be computed
as

J =

N∑
i=1

1

T

∫ T

0

ui(τ)ẋi(τ)dτ =
1

T

∫ T

0

P (τ)dτ, (8)

2We focus on square systems, motivated by the WEC application.
3Although we assume the same dynamic matrix S for all ui to simplify

the notation, each input can be driven by an independent signal generator,
i.e. ξ̇i = Siξi, ui = Liξi.
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where ẋi and P denote the velocity of the i-th device and
the total instantaneous power of the WEC array, respectively.
The calculation of such an optimal control law is non-trivial,
mainly due to the irregularity of the poly-chromatic input (the
wave excitation force) to the system.

A. Equations of motion of an array of WECs

This section introduces the basics behind linear modelling
of arrays of wave energy converters in the time-domain.
The modelling assumptions considered are consistent across
a wide variety of WEC control and estimation applications
presented in the literature, as detailed in [4].

The linearised equation of motion for an array of N wave
energy converters can be expressed in time-domain according
to Newton’s second law, obtaining the linear hydrodynamic
formulation:

Mχ̈(t) = Fr(t) + Fh(t) + Fe(t)− U(t), (9)

where M =
⊕N

i=1mi is the mass matrix of the buoy with
mi the mass of the i-th device, and each element of the
vectors χ,Fe,Fh,Fr ∈ RN contain the excursion xi(t), the
excitation force fei(t), the hydrostatic restoring force fhi

(t)
and the radiation force fri(t) acting on the i-th device (i ∈
NN ) of the array, respectively. The vector U(t) is composed
of the PTO forces exerted on each device ui(t).

The linearised hydrostatic force Fh(t) can be written as
−Shχ(t), where Sh =

⊕N
i=1 shi and each shi > 0 denotes

the hydrostatic stiffness of the i-th WEC. The radiation force
Fr(t) is modelled from linear potential theory and, using
Cummins’ equation [11], is

Fr(t) = −µ∞χ̈(t)−
∫ +∞

0

K(τ)χ̇(t− τ)dτ, (10)

where4 µ∞ = limω→+∞ Ã(ω), µ∞ > 0 represents
the added-mass matrix at infinite frequency and K(t) =∑N
i=1

∑N
j=1 e

N
ij ⊗kij(t) ∈ RN×N , kij(t) ∈ L2(R), contains

the (causal) radiation impulse response of each device (if
i = j) and each interaction due to the radiated waves created
by the motion of other devices (if i 6= j). The linearised
equation of motion of the WEC can be expressed as

(M+µ∞)χ̈(t)+K(t)∗ χ̇(t)+Shx(t) = Fe(t)−U(t). (11)

The system described by the Volterra integro-differential
equation (11), for the WEC case is internally stable and
strictly passive with respect to the output, for any physically
meaningful values of the parameters and the mapping K(t)
involved, see [12].

B. Optimal control formulation and motion constraints

As discussed previously in Section I, any optimal con-
trol approach should consider both motion and actuator
constraints, since the unconstrained optimal solution that
maximises energy absorption (in the monochromatic input
case) is often unrealistic in terms of displacement and PTO
force requirements [4], [12].

4See [12] for the definition of Ã(ω).

We consider herein constraints on the displacement and
velocity of each WEC composing the array, xi(t) and ẋi(t),
respectively, and each PTO force ui(t), which can be com-
pactly written, for all i ∈ NN , as
|xi(t)| ≤ Xmax,

|ẋi(t)| ≤ Vmax,
|ui(t)| ≤ Umax,

∀t ∈ R, (Xmax, Vmax, Umax) ∈ R+3

.

(12)
Given the objective function defined in (8), the governing

dynamics of the WEC array in (11) and the set of motion
and input constraints defined in (12), the energy-maximising
optimal control problem can be stated as

Uopt(t) = arg max
U(t)

J

subject to:{
WEC array dynamics (11),
Motion constraints (12).

(13)

IV. MOMENT-BASED WEC ARRAY FORMULATION

To use the theoretical framework recalled in Section II
on this WEC array case we need to re-write the equation
of motion presented in (11) in a suitable structure. The
following state-space representation is therefore proposed:

ϕ̇(t) = Aϕϕ(t) +Bϕu(t), yϕ(t) = Cϕϕ(t) = χ̇(t), (14)

where ϕ(t) = [φ1, . . . , φN ]ᵀ ∈ R2N is the state-vector of
the continuous-time model, with φi = [xi(t), ẋi(t)]

ᵀ. The
function u(t) ∈ RN , assumed to be the input to the system
(14), is defined as

u(t) = Fe(t)−K(t)∗ χ̇(t), (15)

Under this assumption, the matrices in (14) can be written,
in compact form, as

Aϕ =
N∑
i=1

N∑
j=1

eNij ⊗Aϕij
, Bϕ =

N∑
i=1

N∑
j=1

eNij ⊗Bϕij
,

Cϕ = IN ⊗ [0 1],

(16)

with each Aϕij ∈ R2×2, Bϕij ∈ R2 defined as

Aϕij
=

[
0 i

jδ

−Mijshi
0

]
, Bϕij

=

[
0
Mij

]
, (17)

where Mij is the ij-th element of the inverse generalised
mass matrix (M + µ∞)−1.

Within the moment-based framework, each i-th entry of
the vectors Fe and U are expressed as the output of the signal
generators

ξ̇i(t) = S ξi(t), fei(t) = Lei ξi(t), ui(t) = Lui ξi(t), (18)

where the dimension of S, Lei and Lui are as in (2), ξi(t) ∈
Rν and the pairs (Lei , S) and (Lui , S) are observable. Given
the characteristics of λ(S), we consider the finite set F =
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{ωp}fp=1 ⊂ R and write the matrix S in a real block-diagonal
form as

S =

f⊕
p=1

[
0 ωp
−ωp 0

]
, (19)

where ν = 2f , f ≥ 0 integer. Finally, both the excitation
force and control force vectors are expressed as the solution
of the autonomous multiple-output signal generator as

Ξ̇(t) = (IN ⊗ S) Ξ(t),

Fe(t) =

(
N∑
i=1

eNii ⊗ Lei

)
Ξ(t) = Le Ξ(t),

U(t) =

(
N∑
i=1

eNii ⊗ Lui

)
Ξ(t) = Lu Ξ(t),

(20)

where, without loss of generality, the initial condition of the
signal generator is chosen as Ξe(0) = εNν .

With this selection of matrices the moments of system
(14), driven by the signal generator (20), can be computed
by solving the Sylvester equation (see Lemma 2)

AϕΠϕ +Bϕ(Le − Lu −Z) = Πϕ(IN ⊗ S), (21)

where Πϕ ∈ R2N×Nν and Z is the moment-domain equiva-
lent of the radiation matrix convolution term. The moment-
domain equivalent of the velocity can be expressed in terms
of the solution of (21) straightforwardly as V = CϕΠϕ.
Moreover, the term Z depends on Πϕ, hence we cannot yet
solve (21). In the following, we first define the quantity Z
and we then provide an explicit solution for (21).

Proposition 1: The moment-domain equivalent of the
convolution integral in (10) can be computed as

Z =

N∑
i=1

N∑
j=1

eNijV (IN ⊗Rij) , (22)

where each Rij ∈ Rν×ν is a block-diagonal matrix defined
as

Rij =

f⊕
p=1

[
i
j rωp

i
jmωp

−ijmωp
i
j rωp

]
, (23)

with
i
j rωp

= B̃(ωp)ij ,
i
jmωp

= ωp

[
Ã(ωp)ij − µ∞ij

]
, (24)

where Ã(ω)ij is the added-mass matrix, B̃(ω)ij is the
radiation damping matrix5 of the device at each specific
frequency induced by the eigenvalues of S, and µ∞ij is the
ij-th entry of the matrix µ∞.
Using the analytical definition of the moment-domain equiv-
alent of the convolution term in (22) we state the following
proposition that addresses the explicit computation of the
moment equivalent V .

Proposition 2: Under the internal stability of (14), the
moment-domain equivalent of the output yϕ of system (14)
can be uniquely determined as

vec{V} =
(
IN ⊗ ΦR

ϕ

)
vec {Le − Lu} , (25)

5See [12] for the definition of B̃(ω).

where
ΦR
ϕ = (Iν ⊗ Cϕ)Φ−1ϕ (Iν ⊗Bϕ),

Φϕ =
(
S ⊕̂Aϕ

)
+

N∑
i=1

N∑
j=1

Rᵀ
ij ⊗−Bϕe

N
ijCϕ,

(26)

with Φϕ ∈ R2Nν×2Nν and ΦR
ϕ ∈ RNν×Nν .

With the result of Proposition 2, we address the formula-
tion of (13) using a moment-based approach. In particular,
we show that the objective function J significantly simplifies
under this framework.

Proposition 3: Consider the expression for the instanta-
neous power P in (8) and the representation for ui as in
(18). Define the set F considered to compute S in (19) as
F = {pω0}fp=1. Then, the absorbed power J over the time
period [0, T ], with T = 2π/ω0, can be computed as

J =
1

2

N∑
i=1

ViLᵀ
ui

(27)

where Vi denotes the moment-domain equivalent of the
velocity of the i-th device.

Remark 4: The selection of the set F = {pω0}fp=1 is a
standard assumption for the numerical generation of ocean
waves [13].
Proposition 3 shows that, under our moment-based strategy,
the objective function of (8) can be computed as the sum
of N inner-product operations in R1×Nν . Furthermore, we
show in the following that, under the presented moment-
based strategy, the (motion unconstrained6) optimisation
problem of (13) has a strictly concave QP formulation.

Proposition 4: Consider the (motion unconstrained)
energy-maximising optimal control problem (13). Then,
under the same assumptions of Proposition 3, the optimal
control law Uopt = Lopt

u Ξ can be uniquely computed in the
moment-domain as

Lopt
u = arg max

Lu

−1

2
vec{Lu}ᵀ

(
IN ⊗ ΦRᵀ

ϕ

)
vec{Lu}+

1

2
vec{Le}ᵀ

(
IN ⊗ ΦRᵀ

ϕ

)
vec{Lu}.

(28)
Remark 5: Proposition 4 maps the original optimal con-

trol formulation of (13) into a standard (concave) QP pro-
gram, which can be efficiently solved using well-known QP
solvers, such as those described in [8].

A. Handling motion constraints in moment-domain
Following [1], we map the set of motion constraints to

their respective moment-domain equivalents7, i.e.

Eq. (12) 7→


∣∣Vi (IN ⊗ S−1)e(IN⊗S)tεNν

∣∣ ≤ Xmax,∣∣Vi e(IN⊗S)tεNν∣∣ ≤ Vmax,∣∣Lu e(IN⊗S)tεNν∣∣ ≤ Umax.
(29)

6This refers to the objective function (13) under the assumption that the
constraints in the motion of the device defined in (12) are not considered
in the formulation.

7Note that the moment-domain equivalent of the position xi(t) can be
expressed [14] as Vi(IN ⊗ S−1).
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and we enforce them only at a set of specified time instants
(sometimes referred to as collocation points), i.e. {ti}Nc

i=1.
Defining the vectors Λ ∈ RNNc×N2ν and ∆ ∈ R2NNc×N2ν

as

Λ =
[(
e(IN⊗S)t1εNν ⊗ IN

)ᵀ∣∣∣ . . . ∣∣∣(e(IN⊗S)t1εNν ⊗ IN
)ᵀ]

,

∆ =
[
Λ
∣∣∣− Λ

]
,

(30)

and substituting V using (25), the motion constrained energy-
maxisimising optimal control law can be fully written in
moment-domain as an inequality-constrained QP problem,
i.e.:

Lopt
u = arg max

Lu

−1

2
vec{Lu}ᵀ

(
IN ⊗ ΦRᵀ

ϕ

)
vec{Lu}+

1

2
vec{Le}ᵀ

(
IN ⊗ ΦRᵀ

ϕ

)
vec{Lu}

subject to:
Aχvec{Lu} ≤ Bχ
Aχ̇vec{Lu} ≤ Bχ̇
AUvec{Lu} ≤ BU

where

Aχ = −∆
(
IN ⊗ (S−1 ⊗ IN )ᵀΦR

ϕ

)
,

Bχ = Xmax12NNc×1 −Aχvec{Le},
Aχ̇ = −∆

(
IN ⊗ ΦR

ϕ

)
,

Bχ̇ = Vmax12NNc×1 −Aχ̇vec{Le},
AU = ∆,

BU = Umax12NNc×1.

(31)

V. APPLICATION CASE

This section presents an application case to illustrate
the proposed strategy based on the square-type WEC array
layout studied in [15], and depicted in Figure 1. This farm is

Fig. 1. WEC array layout considered for the application example (adapted
from [15]).

composed by four identical cylindrical-type WECs arranged
in a square layout with a distance d = 20 [m] between
devices. Each cylindrical body has a diameter of 10 [m],
a draft of 10 [m] and a mass of 7.9 × 105 [kg]. For the
numerical study of this section we consider a JONSWAP
spectrum [16] for the generation of the irregular (poly-
chromatic) waves with a peak period of Tp = 10 [s],
significant wave height Hs = 3 [m] and peak enhancement
factor γ = 3.3. The value for f in (19) is chosen as 30,
following a similar analysis to the one proposed in [1]. We

consider the following values for the motion constraints:
Xmax = 1 [m], Vmax = 0.5 [m/s] and Umax = 0.7×106[N].
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Fig. 2. Motion results for devices 1 and 3 under the proposed moment-
based strategy. The left Y-axis (dark green) displays amplitude (dashed line)
and velocity (solid line), while the right Y-axis (red) depicts the wave
excitation force. The horizontal lines (violet) represent the value of each
corresponding motion constraint.

Figure 2 presents the motion results for devices 1 and 3 ob-
tained using the solution of the optimal control formulation in
(31). The left Y-axis (dark green) denotes amplitude (dashed
line) and velocity (solid line), while the right Y-axis (red)
characterises the excitation force values (dotted line, circular
marker). The constraint limits for both amplitude, Xmax,
and velocity, Vmax, are plotted along the time traces with
the corresponding line pattern (violet). It can be immediately
appreciated that the selected constraints are respected consis-
tently across the entire simulation time, proving an effective
handling of motion constraints for this MIMO moment-based
strategy. It is also interesting to note that the velocity of
the device when applying the computed optimal control law
seems to remain “in-phase”8 with the wave excitation force,
consistently with the well-known (unconstrained) theoretical
result on maximum power absorption for mono-chromatic
waves. Finally, Figure 3 presents the optimal control in-
put computed with our moment-based strategy for device
1 (dashed-dotted line) and device 3 (dotted line), which
can also be seen to respect the corresponding user-defined
constraint of 0.7 × 106[N ]. We note that Devices 2 and 4
present a similar behavior and they are omitted for economy
of space

As discussed in Section III-B, the necessity of considering
motion constraints stems from the fact that the unconstrained
energy-maximising optimal solution often requires unrealis-
tic values for the physical variables of the analysed WEC
system. Naturally, constraining the motion of the device leads

8We acknowledge that the mathematical concept of phase is no longer
defined for a signal with multiple frequency components. In here, we use
the term “in-phase” to indicate that the peaks (local maxima and minima)
of both signals are aligned in time.
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Fig. 3. Optimal control input computed with the proposed moment-
based strategy for device 1 (dashed-dotted) and device 3 (dotted line). The
horizontal line (violet) represents the force constraint limit.

to a decrease in the total absorbed power. This motivates
us to explicitly analyse how the constraints affect the total
power absorbed by the WEC farm of Figure 1 when using the
moment-based strategy proposed in the paper. To fulfill this
objective we consider regular (mono-chromatic) waves of a
fixed height of 3 [m] and with different wave periods T ∈
[5, 10]. For each of this selected periods, we compute both the
optimal unconstrained time-averaged power absorption J unc

T

and the maximum absolute value of the device amplitude
i.e., max |χunc

T |. We now propose the definition of a power
absorption ratio:

RP =
J con,RA

T

J unc
T

, (32)

where J con,RA

T is the total power absorption for a wave of pe-
riod T and amplitude constrained to Xmax = RA max |χunc

T |,
RA ∈ [0, 1].
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Fig. 4. Power absorption ratio RP for different values of constraint factor
RA and wave period T .

Figure 4 illustrates the results obtained for RP with
varying constraint factor RA and wave period T . It is
noteworthy that with an amplitude constraint of 40% of the
optimal unconstrained motion, the presented moment-based
strategy is capable of extracting more than ≈ 80% of the
unconstrained optimal result for the totality of the analysed
periods, being almost 90% in the case of T ≥ 8.

VI. CONCLUSIONS

This study introduces an extension of the moment-based
energy-maximising technique developed in [1] to MIMO

systems. We show that the desirable properties of the strategy
in the SISO case, such as the mapping of the original
objective function to a concave QP problem, are also present
in this MIMO extension. We have also detailed herein how
to handle both state and input constraints in moment-domain
for this WEC array case, further exploiting the advantages of
the moment-based strategy. Finally, this paper demonstrates
the usage of the proposed method by means of a full-scale
4-device WEC farm, showing the potential of this novel
mathematical framework to help in the roadmap towards the
commercialisation of WEC technologies.
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