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Abstract—Cummins’ equation is commonly used to describe
the motion of Wave Energy Converters (WECs), where the
radiation force is characterised by a convolution operation. The
computational effort associated with the solution of the convo-
lution term, often represents a drawback for e.g. optimisation
or exhaustive-search studies. To overcome this disadvantage, and
given that the convolution operator intrinsically defines a dy-
namical system, the convolution term is commonly approximated
using suitable finite-order parametric models. To this end, the
Centre for Ocean Energy Research has recently presented a
moment-matching based identification method for the radiation
force subsystem and the complete force-to-motion WEC dynamics
(i.e. wave excitation force to device velocity). Motivated by
the theory and the obtained results, already reported by the
authors, the FOAMM MATLAB application has been developed,
which systematically implements the moment-matching based
identification strategy from raw frequency-domain data, provided
by hydrodynamic solvers, in a user-friendly fashion. The aim
of this paper is to describe the theoretical background behind
the identification strategy, and the structure, organisation and
characteristics of the developed application. Additionally, the
relevant modes of operation, along with the different options of
the toolbox are explained, and, at the end, a step-by-step example
of how to use the FOAMM application is provided, along with
recommendations from the authors.

Index Terms—Wave Energy, Radiation forces, Parametric
form, Moment-matching, Frequency-domain identification

I. INTRODUCTION

THE motion of a Wave Energy Converter (WEC) can be
(linearly) expressed, in the time-domain, using the well-

known Cummins’ equation [1], which is a Volterra integro-
differential equation of the convolution class. It includes a
convolution term, accounting for the radiation forces, which
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represents the memory effect of the fluid. From a control/es-
timation (C/E) theory point of view, the convolution mapping
complicates the application of well-established C/E strategies
in the field, since modern C/E techniques are based on the
availability of a state-space representation of the system [2].
Furthermore, from a simulation point of view, the convolution
operator represents a drawback due to the associated compu-
tational effort, required for its solution.

Motivated by these drawbacks, the convolution term is com-
monly approximated using a parametric model, based on the
frequency-domain hydrodynamic coefficients obtained from
Boundary Element Method (BEM) codes, such as NEMOH
[3] or WAMIT [4]. Several strategies can be found in the
literature, reviewed in, for example, [5]–[7], attempting to
approximate the radiation convolution term in terms of a linear
time-invariant state-space representation.

Recently, the Centre for Ocean Energy Research (COER)
presented an identification strategy, able to compute a para-
metric model of both, the radiation convolution term, and
the complete force-to-motion WEC dynamics (wave excita-
tion force to device velocity) [8]. The identification strategy
is based on recent advances in model order reduction by
moment-matching, which has been developed over several
studies (see, for example, [9]–[12]). The approach presented
in [8] identifies a parametric model (in state-space) for the
WEC dynamics, which exactly matches the frequency response
of the target system, at a set of user-selected frequencies. In
fact, as shown in [8], this moment-based strategy inherently
preserves the relevant physical properties in the identified
model, such as internal stability.

Motivated by moment-matching theory and the results
reported in the COER studies [8], [13], [14], a MATLAB
toolbox has been developed, to disseminate this moment-based
identification strategy for wave energy applications. The aim
of the present paper is to introduce Finite-Order hydrodynamic
Approximation by Moment-Matching (FOAMM) toolbox, de-
veloped at COER.

This study briefly describes the theoretical background
behind the moment-based strategy, and details the structure,
organisation and characteristics of the toolbox. In addition,
the different operation modes and options, offered by the
FOAMM application, are introduced, emphasising their impact
on the obtained parametric model. Moreover, the required
input variables are described, which are directly obtained from
BEM solvers. Finally, a full step-by-step example is provided,
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along with authors’ recommendations, to illustrate how to fully
exploit its potential.

The remainder of this paper is organised as follows. In
Section II, the equation of motion of a floating body is
described in time- and frequency-domain. A brief summary
of the theory behind FOAMM is given in Section III. The
different modes and options, the required input variables, the
obtained output variables, and how to install the toolbox is
presented in Section IV. The step-by-step application example
is given in Section V, and the authors’ recommendations for
the correct use of the software are given in Section VI. Finally,
in Section VII, some conclusions are encompassed and future
work is discussed.

II. WEC EQUATIONS OF MOTION

Given that FOAMM processes single-input single-output
models, a WEC with a single Degree of Freedom (DoF) is
considered in this study. Note that, for systems with multi-
ple DoF, each relevant frequency-response coupling mapping
needs to be identified separately, as shown in [15] and [16],
[17].

A. Time-domain formulation

The motion of a 1-DoF WEC can be expressed, in the
time-domain, according to Newton’s second law, obtaining the
following linear formulation:

mẍ(t) = Fr(t) + Fh(t) + Fe(t) + uPTO(t), (1)

where m is the mass of the buoy, ẍ(t) the acceleration
of the body, Fe(t) the wave excitation force, Fr(t) the
radiation force, Fh(t) the hydrostatic restoring force, and
uPTO(t) represents a control input, supplied by the means of
a Power Take-Off (PTO) system. The linearised hydrostatic
force is given by Fh(t) = −shx(t), where sh denotes the
hydrostatic stiffness. In this study, similarly to the analysis
developed in [18], it is assumed that the PTO input is given
by uPTO(t) = −muẍ(t) − buẋ(t) − sux(t), where mu, bu
and su denote the mass, damping and stiffness of the PTO
system, respectively. From linear potential theory, Fr(t) can
be modelled using Cummins’ equation [1] as,

Fr(t) = −µ∞ẍ(t)−
∫ +∞

0

k(τ)ẋ(t− τ)dτ, (2)

where µ∞ = limω→+∞A(ω) > 0 is the radiation added-mass
A(ω) at infinite frequency, and k(t) is the radiation impulse
response. Therefore, Eq. (1) can be rewritten as:

(m+µ∞)ẍ(t)+k(t)∗ ẋ(t)+shx(t) = Fe(t)+uPTO(t), (3)

where the symbol ∗ denotes the convolution integral of (2).
Note that the internal stability of (3), for the WEC case, has
been analysed and guaranteed for any physically meaningful
values of the parameters and the convolution kernel k(t) [19].

B. Frequency-domain formulation

Standard BEM solvers provide the frequency-domain re-
sponse characteristic of the analysed device. Therefore, by
applying the Fourier transform to (3), and considering velocity
as the measured output1, the following representation holds:

ˆ̇x(jω) = Fe(jω)H(jω), (4)

where H(jω) represents the force-to-velocity frequency re-
sponse, and is a function of a specific set of frequency-
dependent parameters, namely

H(jω) =
1

bu +B(ω) + jω [A(ω) +m+mu] +
sh + su
jω

,

(5)
where the coefficients B(ω) and A(ω) represent the radiation
damping and added mass of the device, respectively, and can
be efficiently obtained using BEM solvers [19].

It should be noted that BEM solvers compute the parameters
B(ω) and A(ω) for a finite subset of user-defined frequency
samples. However, if needed, the obtained data can be im-
proved by using different reconstruction procedures, as shown
in [20].

C. Ogilvie’s relations: mapping between time and frequency

A direct relationship between the time-domain (3) and
frequency-domain (4) is established by Francis Ogilvie in
[21], as a function of the hydrodynamic coefficients B(ω) and
A(ω), and the radiation kernel k(t) as:

B(ω) =

∫ +∞

0

k(t) cos(ωt)dt,

A(ω) = µ∞ −
1

ω

∫ +∞

0

k(t) sin(ωt)dt.

(6)

The impulse response k(t) can then be written as a mapping
involving the radiation damping coefficient as

k(t) =
2

π

∫ +∞

0

B(ω) cos(ωt)dω. (7)

Thus, the frequency-domain version of k(t) is given by

k̂(jω) = B(ω) + jω [A(ω)− µ∞] ≡ K(jω). (8)

Such a radiation kernel frequency response, K(jω), has a set
of particular properties which, as shown in [5] and [16], can
be used to enforce a specific structure of the parametric model,
used to identify the frequency-domain data, in an attempt to
improve the quality of the computed representation.

III. MOMENT-BASED WEC FORMULATION

This section provides a brief summary of the theory behind
FOAMM. For an extensive discussion on the specific underly-
ing mathematical principles, the interested reader is referred to
[8]. The development of model order reduction by moment-
matching theory, is based on a state-space representation of
the target system. Therefore, (3) needs to be re-written in a

1The force-to-position frequency response can be computed from (5) as
P (jω) = (jω)−1H(jω).
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more suitable structure, for which the following state-space
representation is proposed:

ϕ̇(t) = Aϕϕ(t) +Bϕu(t),

yϕ(t) = Cϕϕ(t),
(9)

where ϕ(t) = [x(t), ẋ(t)]ᵀ ∈ R
2 is the state-vector of the

continuous-time model and yϕ(t) = ẋ(t) is the output of the
system (assuming velocity as the measurable output of the
device). Finally, the function u(t) ∈ R (which is assumed
to be the input of system (9)) is defined as u(t) = Fe(t) −
k(t)∗ ẋ(t).

Therefore, under this assumption, the matrices in (9) are
given by

Aϕ =

 0 1

− sh + su
m+ µ∞ +mu

− bu
m+ µ∞ +mu

 ,
Bϕ =

 0

1

m+ µ∞ +mu

 , Cϕ =
[
0 1

]
.

(10)

Then, the input Fe(t) is expressed as a signal generator (i.e.
an exogenous dynamical system), written in implicit form as

ξ̇e(t) = Sξe(t),

Fe(t) = Leξe(t),
(11)

where ξe(t) ∈ R
ν , S ∈ R

ν×ν , Le ∈ R
1×ν and the

triple (Le, S, ξe(0)) is assumed to be minimal2. Since the
eigenvalues of S are simple and pure imaginary complex, S
can be written in a real block-diagonal form as

S =

β⊕
p=1

Sp, Sp =

[
0 ωp
−ωp 0

]
, (12)

where the symbol
⊕

denotes the direct sum of β matrices,
i.e.

⊕
Sp = diag{S1, . . . , Sβ}, and ν = 2β, with β > 0

(integer) the number of interpolation frequencies. Note that
each ωp > 0 (integer) represents a desired interpolation point
for the moment-matching-based model reduction process, i.e. a
frequency where the transfer function of the parametric model
matches the transfer function of the target system.

Following the theory developed in [8], a family of para-
metric models for the force-to-velocity response of the target
WEC, achieving moment-matching at the set of frequencies
F = {ω1, . . . , ωβ} can be described as

H̃F :

{
Θ̇ϕ(t) = (S −GϕLe) Θϕ(t) +GϕFe(t),
θϕ(t) = V̄ Θϕ(t),

(13)

where V̄ represents the so-called moment-domain equivalent
of the velocity of the device ẋ (see [8]), and can be readily
computed using the frequency-domain data provided by BEM
solvers as

V̄ = LeΦ
R
ϕ ,

ΦR
ϕ =

[
(Iν + ΦϕRᵀ)

−1
Φϕ

]ᵀ
,

Φϕ = (Iν ⊗ Cϕ)
(
S ⊕̂Aϕ

)−1
(Iν ⊗−Bϕ),

(14)

2The minimality of the triple (Le, S, ξe(0)) implies the observability of
(Le, S) and the excitability of (S, ξe(0)).

where the symbol ⊕̂ denotes the Kronecker sum (see [8]) and
R ∈ Rν×ν is a block-diagonal matrix defined by

R =

β⊕
p=1

[
rωp −mωp

mωp
rωp

]
, (15)

where its entries depend on A(ω) and B(ω) of the device at
each specific frequency induced by the eigenvalues of S, as

rωp = B(ωp), and mωp = −ωp [A(ωp)− µ∞] . (16)

It should be noted that the model of (13) has dimension ν =
2β, as the final finite order parametric model.

The additional degree of freedom provided by Gϕ can be
exploited to arbitrarily assign the eigenvalues of the reduced
order model of (13). In this particular case, the set of desired
eigenvalues is chosen within an optimisation formulation,
which minimises the euclidean distance between the device
frequency response H(jω), shown in (5), constructed with
data obtained with BEM solvers, and the frequency response of
the parametric family (13) H̃(jω), obtained from the transfer
function

H̃F (s) = V̄ [sIν − (S −GϕLe)]−1
Gϕ. (17)

Note that the frequency-dependent device parameters A(ω)
and B(ω) are calculated using BEM solvers, at a finite
number of user-defined frequencies, with ωi ∈ [ωl, ωu], and
a frequency step of ∆ω, where ωl and ωu represent the
lower and upper bound of the range, respectively. As further
discussed in Section V, the definition of such a frequency
range depends explicitly on the application under analysis.
Defining the complex-valued vectors Hω and H̃ω as,

Hω =


H(jωl)

H(j(ωl + ∆ω))
...

H(j(ωu))

 , H̃ω =


H̃F (jωl)

H̃F (j(ωl + ∆ω))
...

H̃F (j(ωu))

 ,
(18)

the proposed optimisation procedure, to assign the eigenvalues
of the parametric model (13) Σopt

ϕ , can be formulated as,

Σopt
ϕ = arg min

Σϕ

‖Hω − H̃ω‖22, (19)

where the elements of the set Σopt
ϕ are chosen to have a

negative real part, so that the system (13) is internally stable.
The method detailed above is described to obtain a para-

metric model of the force-to-velocity dynamics of the WEC.
However, since the radiation convolution term in (2) defines
a linear time-invariant system itself, an analogous process can
be defined to obtain a parametric model for such a subsystem,
as demonstrated in [8].

IV. TOOLBOX DESCRIPTION

As mentioned in Section I, FOAMM is a MATLAB applica-
tion that implements the moment-matching based frequency-
domain identification algorithm described in Section III. The
identification of both, the radiation force impulse response,
and the force-to-motion dynamics of a WEC, can be performed
using this tool. All the modes of operation and options that the
software comprises are detailed in the following subsections.
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D. Platform requirements

Since the application is created using a MATLAB compiler,
FOAMM runs on a plain MATLAB distribution, i.e. no other
toolboxes/applications are required. At the time of writing,
two versions of FOAMM are available, one for the Windows
operating system (OS), and another one for Linux OSs.

The compatibility with the Windows version has been tested
for Windows 7, 8 and 10, using different MATLAB versions
(years 2012, 2015, 2017 and 2018). Regarding the Linux
version, the compatibility has been tested for Ubuntu 18 and
CentOS (6.10 and 7.4).

E. Installation

The files can be downloaded from http://www.eeng.nuim.
ie/coer/downloads/. Since FOAMM is an executable, having
the correct Matlab runtime version, installed on the computer,
is required3, which is provided in the folder “Matlab Run-
time”. After installing the MATLAB runtime4, the application
effectively runs in a stand-alone fashion on a plain MATLAB.

It should be noted that the first run of the application
is considerably slower than the subsequent ones, which is
indeed a known issue, when using the MATLAB compiler.
Additionally, for the Linux version, administrative access is
required for both the installation of the MATLAB Runtime,
and the use of the application.

F. Files

In this subsection, the files compressed in “FOAMM.rar”
are listed and explained:
MatlabRuntime This file, located inside the “Matlab Run-

time” folder, is the executable, required to install the
correct version of the MATLAB runtime, as explained in
Section IV-E.

Main.m This is the main file and the user interface to the
application. The file loads the frequency-domain data
contained in “Data.mat”, used to perform the identifica-
tion, and allows to change between the different modes
and options of the application. “Main.m” set-ups the
required variables, and explicitly calls the executable file
“FOAMM”. It should be noted that this file provides the
only way to select between the different modes of the
application.

FOAMM This is the executable file of the application, and is
explicitly called by “Main.m”. For the Windows version,
the extension of the file is “.exe”.

Data.mat This file contains the frequency-domain data to be
identified (computed with any BEM code) and it should
be provided by the user, following the specific input
format detailed in Section IV-I. In “FOAMM.rar” an
example “Data.mat” file is provided, with the hydrody-
namic coefficients of a cylinder with 5m radius and 10m
draft.

3Note that installing the MATLAB runtime will not change any other
functionality of the computer.

4Internet connection is needed to install the provided Matlab Runtime.

G. Identification methods
In order to select the matching frequencies, FOAMM offers

the following 3 identification methods:
Manual method The user selects the desired set of frequen-

cies to achieve moment-matching. The order will be twice
the number of frequencies selected.

Automatic method The user selects a final number of inter-
polation points (β) and, additionally, a subset of frequen-
cies to interpolate (with size denoted by α). This method
optimises the value of the β−α interpolation frequencies.
It should be noted that, if the user does not pre-select a
set of frequencies i.e. α = 0, all the β interpolation points
are selected automatically.

Optimised-automatic method This method is essentially the
automatic method for the selection of the matching fre-
quencies, but it also selects the number of interpolation
points β automatically. Starting from α, this method
keeps adding (and optimising) interpolation frequencies,
until the approximated model satisfies both an absolute
and a relative thresholds specified by the user in the
“Options” structure (see Section IV-H).

H. Application options
Every option of the application can (only) be changed using

the structure “Options” from the “Main.m” file. The different
variables stored in the structure can be accessed (and tuned)
as follows:
Options.Mode (integer)
default 0 Compute an approximated model of the radiation

impulse response of the device.
1 Compute an approximated model of the force-to-
velocity dynamics of the device.

Options.Method (integer) - see Section IV-G for a description
of each method.

default 0 Manual method.
1 Automatic method.
2 Optimised-automatic method.

Options.FreqRangeChoice (string or float)
default ’G’ Select the frequency range from a plot.

’C’ When asked, enter a vector with the lower and
upper bounds of the frequency range in the command
window, as [ωl, ωu].
VEC Directly enter a vector with the lower and upper
bounds of the frequency range as VEC=[ωl, ωu].

Options.FreqChoice (string or float)
default ’G’ Select the set of desired interpolation frequencies

from a plot.
’C’ When asked, enter the desired set of interpolation
frequencies in the command window as a vector,
[ω1, ... , ωβ ].
VEC Directly enter a vector with the set of interpo-
lation frequencies as VEC=[ω1, ... , ωβ ].

Options.FreqNumChoice (string or integer) (if
Options.Method = 1)

default ’C’ When asked, enter the number of frequencies to
interpolate β > 0 in the command window.
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INT Directly enter the desired number of interpola-
tion frequencies β > 0.

Options.Optim (optimisation-related options)
integer Options.Optim.InitCond Number of initial condi-

tions considered on the optimisation. Default = 50.
float Options.Optim.Tol Tolerance on the final value of

the optimisation. Default = 1e−5.
integer Options.Optim.maxEval Maximum number of eval-

uations considered for the optimisation. Default = 1e3.
integer Options.Optim.maxIter Maximum number of iter-

ations considered for the optimisation. Default = 200.
float Options.Optim.StepTol Step tolerance value for the

optimisation. Default = 1e−6.
float Options.Optim.ThresRel (if Options.Method = 2)

Relative error threshold. Default = 0.03.
float Options.Optim.ThresAbs (if Options.Method = 2)

Absolute error threshold. Default = 0.1.
If any of the labels inside the structure “Options” is changed,
the application will not recognize the variables, and the default
values will be used. Additionally, if the selected value is
wrong, the application will ask the user to correct it.

I. Input variables

The frequency-domain data, used to perform the moment-
matching based identification, is loaded from the user supplied
file “Data.mat”. This file with “.mat” extension must con-
tain all the information regarding the frequency-domain data,
considered for the identification process. In the following, a
detailed description of the required format is provide, so that
the application can load the data correctly.
†A (vector, float, nω × 1) Radiation added mass (A(ω)).
†B (vector, float, nω × 1) Radiation damping (B(ω)).
†w (vector, float, nω × 1) Frequency vector (ω).
Mu (scalar, float, if Options.Mode = 0) Radiation infinite

added mass (µ∞). If this value is not supplied, the
application will automatically calculate its value using
Ogilvie’s relations. However, the authors recommend
users to provide it, in order to reduce inaccuracies.

Mass (scalar, float, if Options.Mode = 1) Mass of the struc-
ture under analysis (m+mu).

K (scalar, float, if Options.Mode = 1) Sum of stiffness terms
(usually the sum of sh and su).

D (scalar, float, if Options.Mode = 1) Sum of (additional)
damping terms (such as, for example, bu).

If any of the variables denoted with † is named differently, the
application will halt.

J. Output variables

This subsection gives a list with the variables obtained by
running FOAMM. Explicitly:

A ss (matrix, float, ν×ν) Dynamic matrix of the final model.
B ss (matrix, float, ν × 1) Input matrix of the final model.
C ss (matrix, float, 1× ν) Output matrix of the final model.

MAPE (scalar, float) Mean Absolute Percentage Error
(MAPE) of the approximation, which is defined as

MAPE =
1

n

n∑
i=1

∣∣∣∣ f(i)− f̃(i)
f(i)

∣∣∣∣, (20)

where n is the number of frequencies contained in
the considered frequency-range, and f and f̃ are the
frequency responses of the target and the final model,
respectively.

Frequencies (vector, float, 1 × β) Value of the chosen fre-
quencies.

FreqRange (vector, float, 1 × 2) Value of the minimum and
maximum frequencies of the chosen frequency range.

Mu (scalar, float, if Options.Mode = 0 and Mu not provided)
Automatically calculated radiation infinite added mass.

V. APPLICATION EXAMPLE

In this section a step-by-step example is shown, of how to
use FOAMM to identify a finite order parametric model of
the radiation impulse response and complete force-to-motion
dynamics. The hydrodynamic parameters used, correspond to
a heaving cylinder with a 5m radius, representing the example
case, provided in the “data.mat” file. In the following sub-
sections, the three identification methods are explained, and
the options are varied, between the subsections, in order to
exemplify all the different operating modes and options.

K. Manual method
In the following, an example of the “Main.m” is shown,

for the operation of the toolbox in the manual mode. For the
sake of clarity, the majority of the comments and spaces of
the original “Main.m” file are omitted:

1 %% Load hydrodynamic p a r a m e t e r s −−−−−−−−−
2 c l e a r a l l ; c l c
3 l o a d ( ’ d a t a . mat ’ )
4 K = Sh ;
5

6 %% O p t i o n s s t r u c t u r e −−−−−−−−−−−−−−−−−−−−
7 O p t i o n s . Mode = 0 ;
8 O p t i o n s . Method = 0 ;
9 O p t i o n s . FreqRangeChoice = ’G’ ;

10 O p t i o n s . F reqCho ice = ’G’ ;
11 O p t i o n s . FreqNumChoice = [ ] ;
12 O p t i o n s . Optim . I n i t C o n d = 5 0 ;
13 O p t i o n s . Optim . Tol = 1E−6;
14 O p t i o n s . Optim . maxEval = 1 00 ;
15 O p t i o n s . Optim . S t e p T o l = 1E−6;
16 O p t i o n s . Optim . T h r e s R e l = 0 . 1 ;
17 O p t i o n s . Optim . ThresAbs = 0 . 0 3 ;
18

19 %% Run a p p l i c a t i o n −−−−−−−−−−−−−−−−−−−−−−
20 s ave ( ’ t e m p f i l e . mat ’ )
21

22 sys tem ( ’FOAMM’ ) ;
23

24 l o a d ( ’ t e m p f i l e . mat ’ )
25 d e l e t e ( ’ t e m p f i l e . mat ’ )
26 %% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Fig. 1. Graphical interface to select the frequency range for the approximation.

As shown in the code, the file “Main.m” comprises three
different parts. The commands in the first lines (from line 1 to
5) clear the variables of the MATLAB workspace, and load the
hydrodynamic parameters saved in “data.mat”. Since no PTO
is considered, the only stiffness term in this example is the
hydrostatic stiffness and, therefore, the variable K is defined by
sh (K=Sh). For the same reason, no damping term (D) needs
to be defined. In the middle section (from line 6 to 18) of the
code in “Main.m”, the different working options are defined.
Finally, at the end (from line 19 to 26), all the variables are
saved in a temporary file (“temp file.mat”), to be loaded by
FOAMM and subsequently compute the identification. After
the identification process is finished, the updated temporary
file, which contains all the results obtained by the application,
is loaded and deleted.

For this example, the parametric model of the radia-
tion impulse response is identified (Options.Mode=0), us-
ing the manual method (Options.Method=0). Both, the fre-
quency range and the frequencies are chosen, using the
graphical interface (Options.FreqRangeChoice=’G’ and Op-
tions.FreqChoice=’G’, respectively). Therefore, first, a graph,
as the one shown in Fig. 1, will appear, asking the user to
specify the frequency range.

As explained in [8], the frequency range will depend on the
frequency distribution of the input signal. By way of example,
lets assume that the model will be used in waves, characterised
by the same JONSWAP spectrum [22] considered in [8]
(peak period of 10s, significant wave height of 2m and peak
enhancement factor of 3.3). For this case, choosing a frequency
range from around 0.1 to 2.75 rad/s will cover the whole input
frequency spectrum. Therefore, for any possible operational
point, the identified model will behave as the original system.

Once the frequency range is correctly introduced, another
graphical interface appears, asking for the interpolation fre-
quencies, showing the radiation impulse response just for the
previously chosen frequency range (see Fig. 2).

Fig. 2. Graphical interface to select the desired set of interpolation frequencies
for the approximation.

While FOAMM is optimising the value of the eigenval-
ues (as explained in Section III), a wait bar, as shown in
Fig. 3, is displayed. The wait bar shows the progress of the
optimisation, along with a cancel button, which allows the
user to stop the optimisation process. In case of stopping the
optimisation, FOAMM will return the best model obtained
before stopping the process. In the particular case of using the
optimised-automatic method and cancelling the optimisation,
the predefined thresholds would not be taken into account, and
the order (ν), giving the best fitting accuracy, will be returned
as the resulting model.

Fig. 3. Waiting bar showing the progress of the optimisation.

After the optimisation is finished, the resulting model, along
with the target system, and the interpolation frequencies are
displayed, as shown in Fig. 4. For this case, since a unique
frequency was chosen, the error of the obtained model is
MAPE≈0.22.

L. Automatic method

In this subsection, apart from showing how to use
the automatic mode, which is selected by defining Op-
tions.Method=1, the whole force-to-motion WEC dynamics
are identified, instead of the radiation impulse response iden-
tified in Section V-K. Thus, in order to approximate the force-
to-motion frequency response, the option Options.Mode needs
to be set to 1. Additionally, the following changes are made
with respect to the piece of code shown in Section V-K:
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Fig. 4. Frequency response of the obtained parametric model of the radia-
tion impulse response (solid-red), along with the target frequency response
(dashed-blue) and the interpolation frequency (green-dot) using the manual
method. Obtained error MAPE≈0.22.

1 %% O p t i o n s s t r u c t u r e −−−−−−−−−−−−−−−−−−−−
2 O p t i o n s . FreqRangeChoice = ’C ’ ;
3 O p t i o n s . F reqCho ice = [ ] ;
4 O p t i o n s . FreqNumChoice = 1 ;

In this case, the following message will appear in the
command window of MATLAB, asking for the frequency
range: “Introduce a vector containing the lower and upper
bounds of the desired frequency range (min=0.03, max=3):”5.
Then, the frequency range must be defined as a size 2 vector,
with its values being inside the frequencies defined by the
vector w from the file “data.mat”. If, as for this case example,
enter is pressed without specifying anything (or writing an
empty vector as [ ]), the whole vector of frequencies will be
taken into account for the identification. Additionally, since
no frequencies have been defined in Options.FreqChoice,
the value of all the frequencies will be optimised. Since
Options.FreqNumChoice=1 (β = 1), a parametric model
with a single frequency is returned as result, depicted in Fig. 5,
and with a fitting error of MAPE≈0.02.

M. Optimised-automatic method

In order to run the optimised-automatic method, Op-
tions.Method=2 needs to be selected. Additionally, the fol-
lowing changes are made with respect to the piece of code
shown in Section V-K:

1 %% O p t i o n s s t r u c t u r e −−−−−−−−−−−−−−−−−−−−
2 O p t i o n s . FreqRangeChoice = [ 0 . 1 2 . 7 5 ] ;
3 O p t i o n s . F reqCho ice = 0 . 7 8 ;

Since the frequency range and the interpolation frequen-
cies are already defined for this case, FOAMM will directly
proceed to the optimisation. During the optimisation, for this
method, apart from the waiting bar, a graph will be displayed

5Where the shown minimum and maximum values correspond to the
minimum and maximum values of the input frequency vector w.

Fig. 5. Frequency response of the obtained parametric model of the WEC
force-to-motion dynamics (solid-red), along with the target frequency response
(dashed-blue) and the interpolation frequencies (green-dots) using the auto-
matic method. Obtained error MAPE≈0.02.

showing the MAPE obtained for the different model orders
that were tested, as the one shown in Fig. 6.

P

Fig. 6. Graph displayed while the optimised-automatic method is running.

This method will keep adding interpolation frequencies until
the predefined absolute and relative thresholds are satisfied,
or the optimisation is stopped using the cancel button of the
waiting bar. It should be noted that the number of frequencies
considered by the optimisation will begin from the frequencies
specified in Options.FreqChoice. Since a unique frequency is
predefined for this example, it starts from 16.

The dash-dotted red line of Fig. 6 represents the defined
absolute threshold, which is set to 0.1 (as the default value).
For this application example, the optimisation considers up to
three interpolation frequencies (β = 3) but, since the MAPE
improvement with respect to β = 2 is less than the defined
relative threshold (which is 0.03, as the default value), the
optimisation stops and chooses β = 2 as the optimal order.
Finally, as for the other two methods, the resulting frequency
response of the parametric model is displayed, shown in Fig. 7,
which obtains MAPE≈0.04.

6This would also be the case if no frequency is predefined, with the only
difference that the value of such interpolation frequency will also be subject
to the optimisation.
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Fig. 7. Frequency response of the obtained parametric model of the
radiation impulse response (solid-red), along with the target frequency re-
sponse (dashed-blue) and the interpolation frequencies (green-dots) using the
optimised-automatic method. Obtained error MAPE≈0.04.

VI. AUTHORS’ RECOMMENDATIONS

This section provides some recommendations for the use of
FOAMM, with which, in authors’ opinion, the software runs
optimally.
Use the manual method. Even though the application comes

with different automated method, the authors’ highly rec-
ommend a sensible (manual) choice of the interpolation
frequencies, based on the system dynamics to be identify.
In fact, this option, to perform a suitable selection of
points to interpolate in the frequency-domain, is one of
the most attractive characteristics of moment-matching.
For example, the user might want to select, as one
sensible choice, the resonant frequency of the structure
to be identified, as shown in Fig. 2.

Specify the important frequencies. When not using the
manual method, it is convenient to specify the most
important frequencies to help the optimisation process,
and improve the accuracy of the obtained model. Thus,
instead of giving the algorithm the freedom to look for
the best frequency, a sensible choice would be to pre-
select the resonant frequency and, if β = 1 is not enough
to accurately represent the system (and there is no other
important frequency), let the algorithm check for the
best value of the subsequent frequencies. Contrary, if the
resonant frequency is not specified, and the optimisation
variables are not correctly selected, FOAMM might not
find the combination in which the resonant frequency
is contained, obtaining a suboptimal parametric model.
As an example, Fig. 8 shows a parametric model of the
radiation impulse response of order 2 (as shown before in
Fig. 4), where the resonant frequency is not pre-selected
and the optimisation variables are not correctly selected,
i.e. a single initial condition is chosen for the optimisa-
tion7. In this case, the obtained interpolation frequency
is ω = 1.5rad/s, which lead to an approximation error of

7Even though is not realistic to optimise using a unique initial condition,
this option is chosen to magnify the effect of this possible error.

Fig. 8. Example of a suboptimal parametric model when using the auto-
matic method (Options.Method=1) without specifying the most important
frequency, and considering few initial conditions (for this example, Op-
tions.Optim.InitCond=1). Obtained error MAPE≈0.38.

MAPE≈0.38. However, if the resonant frequency is pre-
selected, even though the optimisation variables are still
not correctly selected, the obtained error is MAPE≈0.24.

Increase the number of initial conditions. Since the initial
conditions for the optimisation are chosen randomly using
a normal distribution over a pre-selected set, it is more
likely to find an accurate model if a high number of
initial conditions is considered. Therefore, when trying
to identify large order models, or when optimising the
value of the interpolation frequencies, using more initial
conditions increases the chances of FOAMM to find the
optimal model. For example, when using the optimised-
automatic method, it may happen that, for some β, the
obtained error is higher than for a given smaller β value.
This can be fixed by increasing the number of initial
conditions in Options.Optim.InitCond. As an example
for this case, Fig. 9 shows the results obtained by the
optimised-automatic method for the same case shown in
Fig. 6, but considering only a unique initial condition
(Options.Optim.InitCond=1). It is shown how, apart
from the obtained MAPE which is higher than in Fig. 6,
when considering 3 frequencies the obtained MAPE is
higher than the one obtained for β = 2, which is due to
the low number of initial conditions considered (a single
one) in the example.

Use force-to-motion models. As can be appreciated from
Fig. 5, force-to-motion frequency responses can be of-
ten approximated with a low order system, given the
lower complexity behind its dynamical response when
compared to the radiation force subsystem. Additionally,
as detailed in [8], two (2) more states need to be added
to the radiation impulse response approximated model,
to obtain the complete WEC state-space representation
(i.e. the user needs to embed the parametric model of
the radiation force in Cummins’ equation). Therefore,
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P

Fig. 9. Example of a possible error when using the optimised-automatic
method (Options.Method=2) with few initial conditions (for this example,
Options.Optim.InitCond=1).

to characterise the input-output response of the WEC,
authors’ recommend to directly parameterised the force-
to-motion response of the target device.

VII. CONCLUSIONS AND FUTURE WORK

This study describes how to use the FOAMM toolbox to
identify a parametric model of the radiation impulse response
subsystem, and the complete force-to-motion WEC dynamics.
FOAMM is a MATLAB application based on a recently devel-
oped moment-matching-based strategy, reported in [8]. The pa-
per explicitly shows the downloading procedure of FOAMM,
and provides a thorough description on how to install the
application, and the different options that it comprises, along
with a step-by-step example with a cylindrical heaving point
absorber WEC.

FOAMM runs in a plain MATLAB distribution, and can be
installed in either Windows or Linux-based operating systems.
The key advantage of this identification toolbox is that it
allows the user to select a set of interpolation frequencies,
where the approximated model exactly matches the behaviour
of the target system, subsequently increasing the accuracy
of the parametric model in dynamically relevant frequencies
(such as, the resonant frequency of the device or the frequency
associated with the peak period of the wave excitation force).

As future work, authors aim to include the already devel-
oped moment-matching-based passivity-enforcement method
which, as shown in [13], allows for the preservation of the
passivity property of radiation forces. Additionally, authors
plan to include an extension of the software to compute
parametric models for multiple DoF devices and WEC arrays,
following the theory developed in [14].
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