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Abstract--We have developed an approximate technique, based on the principles of multi-mode Gaussian 
optics, for studying the behaviour of shaped off-axis mirrors. We describe a mirror as an inclined 
phase-transforming plane, where the phase transformation across the plane is determined by the depth 
of the mirror as a function of position. The scattering matrix is calculated in the usual way by evaluating 
the overlap integrals over some surface for which the amplitudes and phases of the incoming and outgoing 
fields are known; because, however, the modes are not orthogonal over the surface of interest, a system 
of linear equations has to be solved. We demonstrate the "thin-mirror" technique by studying the 
behaviour of paraboloidal and ellipsoidal mirrors, and we show how the performance of measured and 
approximate surfaces can be assessed. 

I. I N T R O D U C T I O N  

Systems of shaped mirrors are used extensively at submillimetre wavelengths for controlling the 
characteristics of free-space beams. To analyse such systems, one can either throw away detailed 
information regarding the image-forming properties of the beam and propagate the scale size in 
the form of a weakly-diffracting Gaussian mode, ~t:J or one can use classical reflector-antenna theory 
to calculate the detailed forms of the reflected fields in terms of the geometrical projections of the 
i nc iden t  fields. ~3"41 The first method is an approximate way of analysing the behaviour of systems 
of mirrors; whereas, the second method is a precise way of calculating the performance of individual 
mirrors. The second method can, of course, be applied to systems, but the emphasis on numerical 
rigour tends to obscure the basic physical processes involved. In this paper, we presented an 
approximate technique, based on the principles of multimode Gaussian optics, for studying the 
behaviour of shaped off-axis mirrors. The complexity of the technique is intermediate between the 
above two extremes, and therefore, the scheme provides a useful insight into the way systems of 
mirrors work. 

By analogy with a thin lens, we represent an offset reflector as an inclined phase-transforming 
plane. The phase transformation across the plane, which is determined by the depth of the mirror 
as a function of position, can be any arbitrary function allowing paraboloidal, ellipsoidal, or other 
forms to be analysed. The mirror is characterized by the way in which it scatters power between 
high-order Gaussian modes. 

Because the surface of the mirror is described in a simple way, the technique can be put to a 
variety of uses. For example, when ellipsoidal mirrors are used at frequencies away from the 
nominal design frequency, phase errors occur which can limit the efficiency of a system; ~5'6~ our 
technique can be used to model this effect. In addition, the technique can be used to assess the 
efficiency of measured or approximate surfaces. In array receivers most of the beams pass through 
the optics off axis, and one has to worry about the distortions of individual beams in addition to 
the large-scale aberrations of the image. At the present time, we are particularly interested in 
applying phase-retrieval methods to submillimetre-wave optics, ~7~ and in this case one has to be 
certain that the mirror used to defocus the beam does not scatter power between Gaussian modes. 
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Fig. 1. The reflection of a Gaussian beam by an offset reflector. The beam is shown as though in 
transmission. 

I I .  T H I N  M I R R O R S  

The co-ordinate system to be used in the analysis is shown in Fig. 1, and a detailed view of the 
mirror is shown in Fig. 2. The mirror is shown as though in transmission, and the plane tangent 
to the surface at the position of the optical axis is used to separate the incoming and outgoing 
Gaussian beams. If a generic point in the (x, y, z) frame is denoted by s, and a point in the, inclined, 
( x ' , y ' ,  z ' )  frame is denoted by s', then the two frames are connected on the input surface by 

x =x ' cos6  + Az's in  6 =xo+Ax  

Y=Y'=Yo  

z = x' sin 6 - Az' cos 6 = Zo - A z  (1) 

and on the output surface by 

J¢ 

X t 

xoLf 

Fig. 2. A mirror is shown as an inclined phase-transforming plane, where the phase transformation across 
the plane is determined by the depth of the mirror ~z'  as a function of position (x', y'). 
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x =x’cos6 -Az’sin6 =x,-Ax 

Y=Y’=Yo 

z=x’sin6 +Az’cosS =z,+Az, (2) 

where the form of the mirror is described by the height of the surface above the tangent plane: 
AZ’ =f(x’, v’). Extracting the plane-wave dependence, the fields incident on and reflected from 
point s’ can be written as 

E,(s’)exp[ -$(zO - AZ’ cos S)] and E,(s’)exp[ -$(zO + AZ’ cos S)], 

respectively. Because these points represent the same physical position, we have 

(3) 

&(s’) = E,(s’)expuk2Az’ cos 61 = Ei(s’)expbAb(x’, y’)]. (4) 

The mirror is thus being described as an inclined phase-transforming surface, and the obliquity 
factor enters naturally as expected. 

Because our technique is not intended as a way of calculating precisely the losses that occur in 

multiple-mirror systems, we ignore cross-polar scattering and represent the fields as scalar 
functions. For long-focal-length optics, the input and output beams can be decomposed into sums 
of propagating free-space modes: 

W’) = ~4&mw> and &(s’) = 1 B,$;S(s’). (5) 
m.n TS 

To determine the mode coefficients, we evaluate the overlap integrals over the surface of the mirror 
M in the inclined output co-ordinate frame. Unlike usual analyses, however, the modes are not 
orthonormal over the surface of interest; nevertheless 

where T is the orthogonal projection of M onto the tangent plane. For thin mirrors, the corrections 
to the elemental areas are small, 

(7) 

and the integral is easy to evaluate numerically. For convenience, we project the integral onto the 
z = 0 plane, by making the substitution x’ = x,/cos 6 and y’ = yO, to give the S, frame (x,, y,, z,). 
For most mirrors this new surface is circular, but for our purposes the integral will be taken to 
infinity. Finally, the overlap integral becomes 

(8) 

where the Jacobian J is defined in the usual way, and because the mirror slopes in the x direction, 
J = set 6 = Jm: as shown on Fig. 1, 6 is the angle of incidence. 

We can substitute the modal expansion into the overlap integrals to get 

(9) 
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where 

rio,, = O°~(so)g/~'(so) dxo dyo. (10) 

Through equation (4), we can express the reflected field in terms of the incident field and write 

f Eo ( s ' )~ ' ( s ' )dM . . . . .  E~(so)exp[/ck(Xo/COSS, yo)]O~.'(So)J dxodyo. 

M 

( l l )  

Again, substituting the modal expansion leads to 

where 

f f  Eo( o. , s )¢ 0 ( s )  = ~ A~.~0.,. sec 6, 
m.n 

M 

o* ~ .  = ~ ~ g/~(So)exp[/Aqb(xo/cos 5, Yo)]g/o (So) dxo dyo. 

Finally, combining these two results we find, for all/j ,  

(12) 

(13) 

B,~r,~,~ = ~ A,,,~,~,,,. (14) 
¢,$ m , n  

Clearly, this set of equations can be expressed in matrix form: ,,A = fiB, where A and B are vectors 
of mode coefficients, a is a matrix describing the scattering of power between modes, and p is a 
matrix describing the non-orthogonality of the modes across surface of the mirror. By solving this 
system of linear equations, we can calculate a scattering matrix S, which relates the mode 
coefficients of the input beam to the mode coefficients of the output beam: 

B = ~ -~ :¢A = S A .  (15) 

Let us choose propagating Hermite polynomials as the basis set. A suitable expansion function 

~ q = ~ h ' ( - ~ ' ~ h f ~ e x p ~ - j ~ ( x : + Y : ) J e x p [ j ( i + j + i ) t a n - ~ l e x p [ - j k z ] ' t z ,  \ t z ) /  \ t ) /  L . (16) 

where 

[u21 Hm (u)exp - ~ -  

hm(u) = (17) 
(x/~2mm!) l/: 

This set is normalized in the sense that the total power is unity. The symbols have their usual 
meaning: (" w(z) is the Gaussian radius at z, R(z) is the mode phase-front radius of curvature 
at z, and z~ is the confocal distance. As shown in Fig. 1, the input beam is described in terms 
of coordinate z~, and the output beam is described in terms of coordinate z2. Moreover, the 
input modes have their waists at zj = 0, and the output modes have their waists at z2 = 0; 
consequently, the relationship between the two coordinate frames is z~ = z2 + Zoa + Zo,. Clearly, the 
tangent plane is described in the input frame by zj = xo tan 6 + zo~ and in the output frame by 
z2 = xo tan 6 - Zo:. 
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The parameters of the output beam are chosen so that the waists at the centre of the mirror are 

equal: 

)t’, (zo,) = W?(Z,?), (18) 

and after taking into account the focusing effect of the mirror, the radii of curvature match: 

1 1 I 

W,J+R,(z,?)=~ (19) 

where f is the focal length. In some cases, it may be difficult to decide exactly what the value of 
fshould be. For example, an off-axis spherical mirror is astigmatic, and the sagittal and tangential 
focal lengths are different. 

The position and size of the output waist can be found by satisfying the above two 

requirements,“’ and this leads to 

202 (&I I! - 1 

- = I + [(zo, /fi - 112 + (nw~,/i.;f)’ f 

and 

It’02 ( > 
2 1 

-= 
W 01 [(z_, /fi - II2 + (IIW~, /if)2 ’ 

(20) 

(21) 

where w,, and wo2 are the waists of the input and output modes, respectively. For later use. we will 

define z,, and z,~ to be the confocal distances of the input and output modes. 
Substituting the mode set into equation (10) gives an integral, which can be evaluated as it stands, 

or various levels of approximation can be introduced. For brevity, we will assume that all of the 
offsets, Ax and AZ, can be ignored when calculating the fi matrix. This is equivalent to following 
the tangent plane, rather than the surface of the mirror, when calculating the amplitude and the 
dispersion phase. Clearly, this approximation is reasonable if the mirror is shallow. Making this 
approximation, we find 

(22) 

where we have taken advantage of the fact that, because the mirror is inclined in the x direction, 
the modes in the y direction remain orthogonal. As a consequency, j? becomes a block diagonal 
matrix; a feature which can be exploited when the matrix is inverted -6, is the Dirac d-function. 

It becomes apparent, when performing analyses, that in many cases the modes are almost 

orthogonal even when 6 = 45”; when coupling does occur, power is coupled into modes having 
similar orders, and this implies that some form of perturbation analysis would be appropriate.‘*) 
It also means that by ignoring second-order terms, the /3 matrix can be inverted without recourse 
to full substitution methods. 

We can also substitute the mode set into equation (13) to give an equation, which cannot be 
simplified in the general case. It would be straightforward to evaluate numerically, but in this paper, 
we again follow the tangent plane when calculating the field amplitude and the dispersion phase: 
it is of course important to follow the surface of the mirror when evaluating the curvature term. 
This approximation leads to 

I 
+t 

2 %jmn = 
--x M’I (z, )w2 (Z?) 

h, (~)i(~)eXp[j(tFI + n + I)tan-’ $1 

x exp 
[ 

-i(i +i + l)tan-’ :]I” h(&bj(&) 
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x exp - j  ~.R~ (z~ - A-) ((Xo + Ax)'- +y') 

I "  ~ Az) ((x° ] x exp +j  ).R,.(z, + - Ax)-' + y2o) exp[jA~b (x ', y')] dye dxo. (23) 

To complete the analysis we need to modify the last equation. A problem occurs because the last 
three terms, which constitute the primary phase error across the surface of the mirror, are based 
on the paraxial approximation, and as a consequence, the long-wavelength behaviour is described 
correctly, but the short-wavelength behaviour is not. We can correct this deficiency, albeit in a 
heuristic manner, by replacing the parabolic phase front of the Gaussian mode with a spherical 
phase front--we do not use the more complicated wide-angle modes suggested by Touvinen. ~9) The 
approximate phase factor is given by 

E 1 
[ (2_~.) (x°-Ax)Z+YZ° i]" (24) 

exp +j R2(zz+Az)_x/Rg(z2+Az)+(xo_Ax),.+y 
Once • and/~ are known, the scattering matrix can be calculated through equations (15). 

III. PARABOLIC MIRRORS 

Parabolic mirrors are often used in quasioptical systems, although strictly speaking, they should 
only be used at very short wavelengths. That is to say, a parabolic mirror converts a beam having 
a given phase-front radius of curvature into a plane wave. If the focal length of the mirror is set 
equal to the actual radius of curvature of the incoming phase front, the output waist will occur 
at the mirror and the outgoing beam will diffract away from the mirror. If, however, the focal length 
is set equal to the distance from the input waist, the output waist will occur at a focal length beyond 
the mirror, and phase errors will occur as a consequence of the paraboloid having only one 
characteristic radius of curvature. We can investigate the associated reduction in efficiency by using 
the "thin-mirror" technique. 

To perform an analysis, we must find the height of the surface above the tangent plane. The 
geometry is shown in Fig. 3. If the focal length of the mirror isf then the focal length of the parent 
paraboloid is a = f  cos 2 6. We also require the coordinates of the centre of the mirror: Xo =f sin(26) 
and Zo =fcos(26).  By shifting and rotating the (At, Z) co-ordinate frame, it is possible to show 
that the thickness of the mirror is given by 

.,To 

X 

2 o 4  

Fig. 3. The geometry of  an offset paraboloidal reflector. 

Z I 

Z 
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Fig. 4. The coupling efficiency of the lowest-order Gaussian mode as a function of wavelength. The plots 
correspond to offset paraboloidal reflectors having focal lengths of (a) 50 mm, (b) 100 mm, (c) 150 mm 
and (d) 200 mm. The focal ratio of the illuminating beam is held constant at five, the input waist is at 

the focus, and angle of incidence is 45:. 

where 

A z ' =  - B + x / B 2  - 4 A C  
--~ . ( 2 5 )  

A = sin'- & 

B = 2x'  sin di cos 6 + 2 sin f iX°  + 4a cos & 

C = x '2 cos-' ~ + 2x'  cos f X o  - 4 a x "  sin & + y'-'. (26) 

We have used the above scheme to calculate the behaviour of a number of offset parabolic 
reflectors: in all cases, the angle of incidence was chosen to be 45:. In Fig. 4, we show the coupling 
efficiency of  the lowest-order Gaussian mode as a function of wavelength for mirrors having focal 
lengths of 50, 100, 150 and 200 mm. In each case, the input waist was placed at the focus of the 
mirror, and the focal ratio of the input beam was held constant a t fb  = 5. That is to say, we scaled 

the waist with frequency according to Wot = 22fb/n. This situation occurs, for example, when a horn 
is used to illuminate a reflecting antenna, in a frequency-independent way, through a Gaussian- 
beam telescope. 

As expected, the beams are well matched at short wavelengths, but at long wavelengths phase 
errors occur, which reduce the efficiency of the system. By calculating the loss with the principal 
phase-error term in equation (23) set to zero, the losses due to projection effects can, to some extent, 

be separated from those due to phase mismatch. In reality, the projection losses are less than those 
calculated in the above way, because we chose to follow the tangent plane rather than the surface 
of the mirror when evaluating the overlap integrals. If one follows, the surface of the mirror, then 
the projection losses do indeed decrease, by some small amount, as expected. 

When calculating the performance of mirrors as a function of  wavelength in the above way, one 

must be careful to ensure that the focal ratios of the input and output beams do not become too 
small. If the focal ratio of one of the beams does become small, the errors incurred by following 
the tangent plane rather than the surface of the mirror can become insignificant. In our work, we 
have not been concerned about over estimating the loss in these extreme cases, because we have 
taken the view that one would not be using such mirrors anyway. To recognize these situations, 
it should be appreciated that the input and output focal ratios are related by fb t fb  ., = n f / 4 2 .  

Problems are more likely to arise at long wavelengths when the product of the focal ratios is 
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Fig. 5. The coupling efficiency of the lowest-order Gaussian mode as a function of wavelength. The plots 
correspond to input-beam focal ratios of(a) 3, (b) 5, (c) I0 and (d) 15. A paraboloidal mirror having a 

focal length of 50 mm and an angle of incidence of 45 ° was used throughout. 

least; at short wavelengths, it is possible to pass an almost collimated beam through a mirror 
without projection loss. 

In Fig. 5, we show the coupling efficiency of the lowest-order mode as a function of wavelength 
for various input-beam focal ratios. A mirror having a focal length of 50 mm was used throughout. 
At short wavelengths, the mirror behaves in an almost ideal fashion, but at long wavelengths, the 
efficiency falls due to phase-error and projection errors. As the wavelength increases, the 
large-focal-ratio beams lose efficiency more quickly because they move into the near field of the 
illuminating beam more quickly; the projection losses also increase due to the focal ratio of the 
output beam becoming smaller--actually, the long-focal-length beams start to violate the condition 
described in the previous section. In addition, projection effects can be seen at short wavelengths, 
and it seems that they are worse for beams having large opening angles and large angles of 
incidence. It is interesting to note that if we take a cut through the curves at a given frequency--that 
is to say is we plot the coupling efficiency as a function of the focal ratio---the projection losses 
are least when the waist at the centre of the mirror is smallest, or equivalently when the focal ratios 
of the input and output beams are equal. 

In summary, parabolic mirrors can be used to make Gaussian beam telescopes as long as the 
mirrors are essentially, but not precisely, in the far-fields of the illuminating beams at the longest 
wavelength: f > z c  -- 42fb2/R. 

X 

go 

X I 

Az t 

Zo 

Fig. 6. The geometry of an offset ellipsoidal reflector. 

Z t 
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Fig. 7. The coupling efficiency of the lowest-order Gaussian mode as a function of wavelength. The plots 
correspond to offset ellipsoidal reflectors having focal lengths of (a) 50 mm, (b) 100 ram, (c) 150 mm and 
(d) 200 mm. The focal ratio of the illuminating beam is held constant at five, the input waist is at the focus, 

the angle of incidence is 45 °, and the design wavelength is 0.63 mm. 

IV. ELLIPSOIDAL MIRRORS 

When manufacturing Gaussian-beam telescopes for long wavelengths, it is desirable to use 
ellipsoidal mirrors because they have two characteristic radii of curvature. The usual approach is 
to set one characteristic radius R 1 equal to the radius of curvature of the input beam, and the other 
characteristic radius R2 equal to the radius of curvature of the output beam. This optimization 
can, however, only be done at one particular frequency. 

To analyse ellipsoidai mirrors we consider the geometry shown in Fig. 6. The major and minor 
axes of the parent ellipsoid are given by 

(R 1 + R2) 
a = 2 and b = x/R IR2 cos 6. (27) 

We now need to determine the angle of the normal to the tangent plane with respect to the axis 
of  rotation. Consideration of the geometry shows that 

sin(26) 
tan ~b l = [ ~ - ~ -  cos(26)] ' (28) 

and also q~ = r~ -qb l  - 6  and 0 = rr -4~I .  The vertex of the mirror is at 

Xo = R l sin O and Zo = R l cos O + ae, (29) 

where e is the eccentricity. Once again by shifting and rotating the (X, Z)  co-ordinate frame, it can 
be shown that the height of the surface above the tangent plane is given by equation (25) with 

sin" ~b cos" q5 
A =  + ~  b 2 a 2 

B =  
2XoCOS qb sin q~ ( 1 1 )  

cos ,~ ~ - ~-' 
2)(o sin ~b 2Zo cos ¢ 

+ b 2 + a---------T---- 

y2o /" Xo '~2/'cos2~b sin:Ok / Xo \/cos4)X'o sindPZo'~ (30) 
j .  
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Fig. 8. The coupling efficiency of  the lowest-order Gaussian mode as a function of  wavelength. The plots 
correspond to offset ellipsoidal reflectors having focal lengths of  (a) 50 mm, (b) 100 mm, (c) 150 mm and 
(d) 200 mm. The focal ratio of  the illuminating beam is held constant at five, the input waist is at the focus, 

the angle of  incidence is 45 °, and the design wavelength is 2.0 mm. 

For the purpose of finding the position of the output waist, we define the focal length of the mirror 
to be f = R 1R 2/(R 1 + R 2). 

In Fig. 7, we show the coupling efficiency of the lowest-order Gaussian mode as a function of 
wavelength for ellipsoidal mirrors having focal lengths of 50, 100, 150 and 200 mm. Again the focal 
ratio of the input beam is held constant at fb = 5. The situation is the same as that of the 
paraboloidal mirror, but now we introduce an optimum design wavelength of 0.63 mm. The results 
shown in Fig. 7 are similar to those of the paraboioidal mirror, Fig. 4, but now we find that modest 
improvements are made at long wavelengths at the expense of dramatic losses in efficiency at short 
wavelengths. 

In Fig. 8 we show a similar set of plots, but in this case the mirrors are designed for a centre 
wavelength of 2.0 mm. As expected, the short-wavelength fall off occurs at a lower frequency, and 
the long-wavelength efficiency of the short-focal-length mirror is improved. It is notable that the 
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Fig. 9. The coupling efficiency of  the lowest-order Gaussian mode as a function of  wavelength. The plots 
correspond to angles of  incidence of(a) 0 °, (b) 15 °, (c) 30 ° and (d) 45 °. An offset ellipsoidal reflector having 
a focal length of  50 mm was used. The design wavelength is 0.63 mm and the focal ratio of the illuminating 

beam is five. 
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efficiency only peaks at the design wavelength when the focal length of the mirror is reasonably 
large. This occurs because projection effects influence the overall behaviour. As with the parabolic 
mirrors, our assumptions tend to exaggerate projection losses. 

To complete the section, we show in Fig. 9 the effect of tilting a mirror. For this example, we 
have used an ellipsoidal mirror having a focal length of 50 mm and designed for a centre wavelength 
of 0.63 mm. Clearly, for any mirror there is a maximum efficiency, which is determined by the form 
of the beam and the angle of incidence. As the mirror is turned upright, the bandwidth of the system 
increases. Indeed, it is possible to show analytically that, at any wavelength, the losses should 
change as tan 2 6, and this is born out by our simulations. 

V. MEASURED SURFACES 

As the shape of a mirror is characterized by the height of its surface above a tangent plane, it 
is straightforward to make measurements on an actual surface and from these get an indication 
of performance. In Fig. 10, we show plots of the calculated performance of an off-axis ellipsoidal 
mirror of focal length 350 mm. The mirror surface was measured over a grid of points separated 
by 10 ram, and a bicubic-spline interpolation routine was used in the mirror software to generate 
an approximation to the true surface. We know that this mirror has large-scale surface errors of 
20 pm. The low-frequency fall off in efficiency is not due to the surface of the mirror but is due 
to truncation at the edges--our mirror was actually designed to accommodate an image rather than 
just the lowest-order Gaussian mode. This explanation is verified by comparing the efficiency of 
the measured surface with that expected from an ideal truncated surface. The important 
observation is that, at high frequencies, the performance of the real mirror deteriorates at a 
wavelength consistent with the known surface errors. 

VI. CONCLUDING REMARKS 

We have presented an approximate technique, based on the principles of Gaussian-beam optics, 
for calculating the performance of shaped off-axis mirrors. In principle, the technique is capable 
of accounting for three types of error: amplitude errors due to projection effects associated with 
the inclination of the surface; phase errors associated with the spherical phase fronts of the 

1 0 0 ~  a 

~ 8o 

~ 40 

0 .5 t 1.5 2 2.5 3 
Wa~velength (ram) 

Fig. I0. The coupling efficiency of the lowest-order Gaussian mode as a function of wavelength. Curve 
(a) shows the performance of an ideal ellipsoidal surface having a focal length of 350 mm; curve (b) shows 
the performance of an ideal but truncated surface of the same focal length; and curve (c) shows the 
performance of a measm~l surface, which should have behaved in the same way as curve (b). The 

reduction in efficiency at short wavelengths is due to large-scale surface errors of 20~um. 
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incoming and outgoing beams not being matched; and phase errors due to the mirror occupying 
a region in space in which the beams are diffracting. 

The approximations underlying the technique are not severe, and we believe that we have a good 
first-order description of the coupling process. It must be said, however, that at the present time 
we do not fully understand the capabilities and idiosyncracies of the method. For example, phase 
errors in general will lead to skewing and spreading of the reflected beam, and it is not clear how 
well these fields can be described by a small number of Gaussian modes. That is to say, it is not 
clear how well the sum of the modes reproduces the actual aberrated image. Our next task is to 
compare more thoroughly the predictions of our technique with those of classical theory. 
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