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Remote Estimation With Noisy Measurements
Subject to Packet Loss and Quantization Noise
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Luca Schenato, Member, IEEE

Abstract—In this paper, we consider the problem of designing
coding and decoding schemes to estimate the state of a scalar stable
stochastic linear system subject to noisy measurements and in the
presence of a wireless communication channel between the sensor
and the estimator. In particular, we consider a communication
channel which is prone to packet loss and includes quantization
noise due to its limited capacity. We study two scenarios: the first
with channel feedback and the second with no channel feedback.
More specifically, in the first scenario the transmitter is aware of
the quantization noise and the packet loss history of the channel,
while in the second scenario the transmitter is aware of the
quantization noise only. We show that in the first scenario, the
optimal strategy among all possible linear encoders corresponds to
the transmission of the Kalman filter innovation, similar to the dif-
ferential pulse-code modulation (DPCM) technique used in digital
communications. In the second scenario, we show that there is a
critical packet loss probability above which it is better to transmit
the state rather than the innovation. We also propose a heuristic
strategy based on the transmission of a convex combination of the
state and the Kalman filter innovation which is shown to provide
a performance close to the one obtained with channel feedback.

Index Terms—Channel feedback, differential encoding, Kalman
filtering, packet loss, quantization noise.

I. INTRODUCTION

W IRELESS communication has become ubiquitous and
wired communication systems are increasingly being

replaced with wireless systems thanks to their many advantages
such as smaller installation costs, easier maintenance and fewer
cumbersome cables. However, wireless communication comes
at the price of lower channel capacity which results in higher
quantization noise, packet losses and delay. This concern is
particularly apparent in industrial applications such as remote
sensing and real-time automation, since a very high level of re-
liability is needed in control systems and safety-critical scenar-
ios. As a consequence, it becomes of paramount importance to
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understand the impact of realistic channel models in the context
of estimation and control. So far most of the works available in
the literature have concentrated on stability and control subject
to only one specific limitation of wireless communication. For
example, in [1], [2] the authors addressed the problem of
stabilization of an unstable plant through a rate-limited era-
sure channel where no other performance index is considered
besides stability. Other researchers have tried to tackle the
channel limitations by using analog models in order to avoid
the difficulties associated with explicit design of digital channel
encoder/decoder and to optimize some performance metrics
among all possible stabilizing controllers subject to packet loss
[3], [4] or subject to a maximum signal-to-noise ratio (SNR)
[5], [6]. Finally, another well-explored approach is the analysis,
under an LQG framework, of control systems subject to random
packet loss, quantization [7]–[10] and possibly delays [11].
All these works have been concerned with stability in control
systems. However, there are many applications, such as remote
sensing and estimation, where the dynamical system to be
controlled is already stable, but the existing communication and
feedback performance can be substantially improved. In this
work we are interested in exploring the problem of remotely
estimating the state of a stable stochastic scalar linear system
over a wireless channel. In particular, we want to design coding
and decoding strategies that allow good estimation performance
in the presence of packet loss, quantization noise and measure-
ment noise. So far, mainly packet loss has been considered in
the context of remote estimation [12], [13], although there are
recent attempts to consider both limitations [14]–[17]. Note that
the focus in [16], [17] are on deriving minimum data rates for
stabilizability over lossy channels, whereas we focus on the
actual estimation error performance in the presence of quan-
tization (data rate constraints) and packet loss. In particular we
explore two scenarios. In the first scenario the transmitter has
perfect channel feedback, that is, it is aware of possible packet
losses and, therefore, it is able to replicate the receiver filter. As
a result, we show that the optimal transmission strategy is to
send the innovation between the best estimate of the state at the
filter and the predicted estimate of the state at the receiver. This
is reminiscent of differential pulse-code modulation (DPCM)
[18] in which a differential signal is sent over a channel with
no packet loss. Differently, in the second scenario, we consider
the case when the transmitter is not aware of the packet loss
history. We propose three strategies: the first named state for-
warding (SF) in which the estimated state is transmitted over
the channel, the second named innovation forwarding (IF), in
which the difference between the state and the estimate that a
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Fig. 1. Equivalent communication model for remote estimation.

receiver would have if no packet loss had occurred is sent; the
third one, named soft innovation forwarding (SIF), transmits
a convex combination of the signals mentioned above and thus
includes SF and IF as special cases. For these three strategies we
compute their performance and observe that in the low packet
loss regime it is better to use strategies that are similar to the
IF, while for high packet loss regime it better to use strategies
that are similar to the SF. Some preliminary results, which
considered the simplified scenario with no measurement noise,
can be found in [19].

II. CHANNEL MODELING AND PROBLEM FORMULATION

We consider the problem of remotely estimating the state of
a scalar linear stochastic dynamical system

xt+1 = axt + wt (1)

yt = cxt + vt (2)

where wt ∼ N (0, σ2
w), vt ∼ N (0, σ2

v) are white, uncorrelated
and uncorrelated with the initial condition x0 ∼ N (x̄0, σ

2
0).

More specifically, as graphically depicted in Fig. 1, the ana-
logue measurement yt at the sensor can be pre-processed by
the filter g(·) into the analog signal st before transmission. The
signal is then quantized into a word sqt from a finite alpha-
bet, which is then coded and transmitted over a digital noisy
channel. At the receiver, the channel decoder either perfectly
decodes the word sqt or detect an erasure which is modeled
by the binary variable γt ∈ {0, 1} ≡ {erased, decoded}. If
correctly decoded, the word sqt is converted into the analog
signal zt, which is then processed by the receiver via the
filter h(·) to provide the state estimate x̂t. The transmission
protocol might be provided with an ACK-based system that
notifies the transmitter whether the packet has been successfully
decoded at the receiver. We refer to this scenario as perfect
channel feedback; if the ACK signal is not available we shall
say that there is no channel feedback. We now proceed to
mathematically model such a system.

In the following we will consider the simplified assumption

c = 1, |a| < 1 (3)

where the first assumption can be used w.l.o.g. since the case
c �= 1 can be easily obtained via a rescaling of the process
noise variance σ2

w, while the second assumption is necessary
to guarantee that the stochastic signal yt is asymptotically
stationary with bounded variance. The transmitter can send
a signal through a digital noisy erasure channel modeled as
follows

zt = γts
q
t = γt(st + nt)

where γt ∈ {0, 1} represents the erasure event, sqt ∈ IR is the
quantized transmitted signal, st ∈ IR is the signal before quan-
tization, and nt is the uncorrelated additive noise which models
the quantization error under a fine quantization assumption.

Remark 1: The validity of the additive quantization noise
model for high rate uniform scalar quantization has been rig-
orously shown in [20] for continuous input densities, and see
also [21] for similar studies. It has been, however, shown in
these papers as well as many other recent literature such as
in [22] that although in principle only high rate quantization
theory justifies such an additive white quantization noise model,
in practice this model holds as a very good approximation for
moderate rate quantization. If fact, as shown later via numerical
simulations in Section VI, a uniform scalar quantizer with only
3–4 bits of quantization per sample used to quantize the signal
st provides results that are sufficiently close to the theoretical
values based on the additive noise model proposed in this work.
Note that in a wireless local area network (WLAN) with orders
of megabits per second data rates (even when shared amongst
multiple links), it is not unreasonable to expect 3–4 bits per
sample with a sampling rate of say 0.1 MHz which is likely to
be sufficient for most physical dynamical systems. Thus, this
additive white quantization noise model is also suitable for use
in practical implementation of estimation over lossy wireless
links.

The variables satisfy the following assumptions:

IP[γt = 0] = ε, nt ∼ N
(
0,

1

Λ
IE

[
s2t

])
where Λ is the signal-to-quantization noise ratio (SQNR) of
the quantizer; {γt} and {nt} are assumed to be independent.
This model for the SQNR noise assumes that the quantizer is
matched to the stationary distribution of the incoming signal st
so as to maintain a constant SQNR value Λ. The transmitter
sends a signal according to its available information set, that is,
st = gt(Tt), where gt is a measurable function of the informa-
tion set Tt which can take the following two forms:

T CF
t ={yt, . . . , y0, st−1, . . . , s0, nt−1, . . . , n0, γt−1, . . . , γ0}

={yt, . . . , y0, st−1, . . . , s0, zt−1, . . . , z0, γt−1, . . . , γ0}

T NCF
t ={yt, . . . , y0, st−1, . . . , s0, nt−1, . . . , n0}.

The first set T CF corresponds to a scenario with perfect
channel feedback where the transmitter knows the sequence
{γt−1, . . . , γ0}, that is, whether a packet has been received
successfully or not, while the second set T NCF has no such
information. The first scenario is realistic in wireless commu-
nication systems where the receiver (e.g., a base station) can
transmit back a signal with higher power and, therefore, ith a
very small packet loss probability. Moreover, the information to
be sent back reliably is just an ACK packet. For convenience of
notation and future use we define the symbol IEγ which denotes
expectation taken conditionally on the entire loss sequence γ.
Moreover, we define

Zt := {zt, . . . , z0} Rt := {zt, . . . , z0, γt, . . . γ0}
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which correspond to the past history of the received signals.
Then the state estimator at the receiver side based on the
information Rs is given by

x̂rx
t|s := IE[xt|Rs] = IEγ [xt|Zs]. (4)

Under our Gaussian assumption on the initial condition and
noises, hγ(Zt) := x̂rx

t|t is a linear function of Zt which depends
on the loss sequence γt, . . . , γ0. We are interested in analyzing
the performance of the overall system based on the estimation
prediction error variance at the receiver, i.e.,

prxt+1|t = IE

[(
xt+1 − x̂rx

t+1|t

)2
]

where the expectation has to be taken also with respect to the
packet drop process γt besides the noises wt, nt. As a result,
we will assume that the delay necessary to deliver a message
from the transmitter to the receiver is smaller than or equal to
the sampling period, that is, one time-step.

For future use let us also define the measurement history
Yt := {yt, . . . , y0}, the state estimator at the transmitter side

x̂tx
t|t := IE[xt|Yt] = ax̂tx

t−1|t−1 + k̂t

(
yt − ax̂tx

t−1|t−1

)
(5)

where k̂t is the optimal filter gain, and the estimator error

x̃tx
t|t := xt − x̂tx

t|t. (6)

Since the system is asymptotically stable1 the variance
ptxt|t = IE[(x̃tx

t|t)
2
] has the property that limt→∞ ptxt|t = ptx∞ ,

limt→∞ k̂t = k̂ where ptx∞ is the unique non-negative solution
of the following filter Riccati equation and k̂ its corresponding
steady-state gain:

ptx∞ = a2ptx∞+σ2
w−

(
a2ptx∞+σ2

w

)2
a2ptx∞+σ2

w+σ2
v

=σ2
v

a2ptx∞+σ2
w

a2ptx∞+σ2
w+σ2

v

(7)

k̂ =
a2ptx∞ + σ2

w

a2ptx∞ + σ2
w + σ2

v

(8)

which shows that for σ2
v = 0, then also ptx∞ = 0. In fact, in this

scenario, x̂t|t = xt.

III. OPTIMAL ESTIMATION WITH

PERFECT CHANNEL FEEDBACK

We now consider the state estimation problem with perfect
channel feedback, that is, the scenario where the transmitter
is also aware of the packet loss sequence incurred across the
digital channel. We show that if we restrict our attention to
functions g(T CF

t ) and h(Rt) which are linear in the infor-
mation sets T CF

t and Rt, then the optimal strategy is to send
the state estimate innovation, that is, the difference between the
current best state estimate at the transmitter and the current best
prediction of the state at the receiver.

1Note that this is not necessary and milder stabilizability and detectability
conditions are sufficient for the state estimation error variance to be the unique
positive semidefinite and bounded solution of the algebraic Riccati (7).

A. Optimal Strategy Derivation

Our purpose is to find the “optimal” message st to be sent
through a lossy and SQNR limited channel in order to minimize
the state estimation error variance at the receiver, under the
assumption that perfect channel feedback is available. We shall
look for conditionally linear encoders2

st := Lγ(Yt,Zt−1) (9)

where Lγ(Yt,Zt−1) is, conditionally on the packet loss
sequence γt−1, . . . , γ0, a linear operator of its arguments
yt, yt−1, . . . , y0 (the samples to be encoded) and zt−1, . . . , z0
(the past received signals). The result of this section is sum-
marized in the next theorem. The remaining part of the section
proves the result.

Theorem 1: Under the assumption that perfect channel feed-
back is available (i.e., that γt−1, . . . , γ0 are known also at the
transmitter side), the optimal linear encoder (9) for the linear
system (1) and (2) is given by

st := x̂tx
t|t − x̂rx

t|t−1 = IE[xt|Yt]− IEγ [xt|Zt−1]. (10)

Proof: The encoder has to find a linear function of all
available measurements which retains as much information as
possible regarding the state to be estimated. We can define

es := ys − IEγ [ys|Zt−1] (11)

which represents the innovation (i.e., the “new” informa-
tion) in ys which is not already contained in Rt−1 =
{γt−1, . . . , γ0,Zt−1}. Then, we define Et := {et, . . . , e0}.

Note that, however, only part of this information is necessary
to estimate xt. As a matter of fact Et can be reduced so as to
retain all and only the relevant information on xt; this reduction
has sometimes been called sufficient dimensionality reduction
(SDR) [23]. Since xt is scalar, the (linear) sufficient statistic
in Et for xt has dimension 1 (which is equal to the dimension
of the projection of xt onto the space spanned by the elements
of Et).

Hence, we seek for a signal st =
∑t

i=0 αiet−i, αi ∈ IR, so
that the optimal estimation

x̂rx
t|t := IEγ [xt|Zt]

has as small a (conditional) variance as possible.
Note that the “noise” nt is known at the transmitter side since

the transmitter generates sqt starting from st. Note that st =∑t
i=0 αiet−i, and both the noise nt and es are uncorrelated with

zs, s < t [see also (11)]. Also zt is uncorrelated with zs, s < t.
Therefore, the estimator x̂rx

t|t := IEγ [xt|Zt], satisfies

x̂rx
t|t =IEγ [xt|Zt−1] + IEγ [xt|zt] = x̂rx

t|t−1 + IEγ [xt|zt]

= x̂rx
t|t−1 +

IEγ [xtst]

IEγ [s2t ]
(
1 + 1

Λ

)zt = x̂rx
t|t−1 +

1

1 + 1
Λ

zt. (12)

2We restrict to linear functionals because the stochastic system is condition-
ally Gaussian given the loss sequence {γt} and, therefore, the optimal estimator
conditionally on {γt} is a linear functional of the observed data.
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Note now that, defining x̃rx
t|t := xt − x̂rx

t|t , we have

V arγ

{
x̃rx
t|t

}
= V arγ

{
x̃rx
t|t−1

}
− V arγ {IE[xt|zt]}

where the symbol V arγ denotes the variance conditionally
on the sequence {γt}. Since the choice of st does not affect
the first term on the right-hand side, minimizing V ar{x̃rx

t|t} is
equivalent to maximizing

V arγ {IEγ [xt|zt]} = γt
(IEγ [xtst])

2

IEγ [s2t ]
(
1 + 1

Λ

) = γt
(IEγ [xts̄t])

2(
1 + 1

Λ

)
where s̄t := st/

√
IEγ [s2t ]. Hence, we are left with maximizing

IEγ [xts̄t], which is achieved by choosing αi, i = 0, . . . , t so
that st =

∑t
i=0 αiet−i has maximal correlation with xt. This

is achieved when3 st := IEγ [xt|Et] = IEγ [xt|Et,Zt−1]−
IEγ [xt|Zt−1]=IEγ [xt|Yt,Zt−1]− IEγ [xt|Zt−1]= x̂tx

t|t−x̂rx
t|t−1.

Hence, the optimal signal to be sent through the SQNR-
limited channel is

st := x̂tx
t|t − x̂rx

t|t−1 = IE[xt|Yt]− IEγ [xt|Zt−1]

which concludes the proof. �
The Kalman filter estimation error x̃tx

t|t in (6) has some
interesting uncorrelation properties, which will be useful in
the forthcoming analysis, that are summarized in the following
Lemma.

Lemma 1: In the perfect channel feedback scenario, the
Kalman filter estimation error x̃tx

t|t is conditionally uncorrelated
with respect to the transmitter and the receiver estimation
error, i.e.,

IEγ

[
x̃tx
t|tx̂

tx
t|t

]
= 0, IEγ

[
x̃tx
t|tx̂

rx
t|t

]
= 0.

Proof: A well-known property of the optimal estimation
error x̃tx

t|t is that it is uncorrelated to any linear function
of the same data based on which it is constructed, that is
IE[x̃tx

t|tL({yh}
t
h=0)] = 0, from which it directly follows that

IE[x̃tx
t|tx̂

tx
t|t] = 0. Conditioned an a specific realization of the

packet loss sequence {γt}, the estimator at the receiver is a lin-
ear function of the received data, that is, x̂rx

t|t = Lγ({zh}th=0).
Since zt = γt(x̂

tx
t|t − x̂rx

t|t−1 + nt), by linearity we can certainly
write the estimator at the receiver as

x̂rx
t|t = L′

γ

(
{yh}th=0

)
+ L′′

γ

(
{nh}th=0

)
where L′

γ and L′′
γ are linear functions conditionally on the loss

sequence. Since x̃tx
t|t is uncorrelated with the noise sequence

{nt}, the statement of the first part of the Lemma easily
follows. �

3The chain of equalities can be obtained recalling that, conditioned on
the loss sequence {γt}, all random variables are jointly Gaussian and, as
such, conditional expectations are linear projections. In addition, recall that
conditionally on γ, Et is uncorrelated with Zt given γ and the linear span of
Et,Zt−1 equals that of Yt,Zt−1.

Fig. 2. Remote estimation scheme with perfect channel feedback.

B. Performance Analysis

Based on the analysis in the previous subsection, the optimal
linear strategy for remote estimation in the presence of channel
feedback, which is graphically represented as in Fig. 2, is the
following: at the transmitter, the measurements are first prepro-
cessed by a standard Kalman filter to obtain the best estimate of
the state at the transmitter x̂tx

t|t [see (5)] as well as to reconstruct
the best prediction at the receiver side x̂rx

t|t−1, see (4).
Once again, based on the previous section, the optimal

strategy at the transmitter is to send the innovation st = x̂tx
t|t −

x̂rx
t|t−1 from which it follows that the signal received at the

remote estimator is

zt=γt

(
x̂tx
t|t − x̂rx

t|t−1 + nt

)
=γt

(
xt − x̃tx

t|t − x̂rx
t|t−1 + nt

)
.

According to the standard MMSE theory for linear systems, the
optimal filter equation must be of the form

x̂rx
t|t−1 = ax̂rx

t−1|t−1 (13)
x̂rx
t|t = x̂rx

t|t−1 + kt(zt − ẑt|t−1) (14)

where we used the result from (12). The expression of the
optimal Kalman gain kt is given by4

kt=covγ{xt, zt−ẑt|t−1}V ar−1
γ {zt−ẑt|t−1}=

Λ

Λ+1
(15)

which is independent of time and of the packet loss sequence.
If we define the estimation error as x̃rx

t|h = xt − x̂rx
t|h and its

corresponding variance as prxt|h = IE[(x̃rx
t|h)

2] we get

x̃rx
t+1|t = a(1− γtkt)x̃

rx
t|t−1 + wt + γtakt

(
x̃tx
t|t − nt

)
.

Note now that, using also Lemma 1, IE[n2
t ]=(1/Λ)IE[(x̃rx

t|t−1−
x̃tx
t|t)

2] = (1/Λ)IE[(x̃rx
t|t−1)

2 − 2x̃tx
t|tx̃

rx
t|t−1 + (x̃tx

t|t)
2
)2] = (1/Λ)

(prxt|t−1−2ptxt|t−ptxt|t)=(1/Λ)(prxt|t−1−ptxt|t) and IE[x̃rx
t|t−1x̃

tx
t|t] =

IE[(x̃tx
t|t)

2] = ptxt|t. Using also that kt = Λ/(Λ + 1), then the
receiver error (unconditional) variance is given by

prxt+1|t = a2prxt|t−1 + σ2
w − (1− ε)

a2Λ

1 + Λ

(
prxt|t−1 − ptxt|t

)
.

Since |a| < 1, the previous linear equation has a steady-state
solution given by

pCF (ε) = lim
t→∞

prxt+1|t =
σ2
w + (1− ε) a2Λ

Λ+1p
tx
∞

1− a2 1+εΛ
1+Λ

(16)

which represents the steady-state predictor error variance.

4The subscript γ is a reminder that covariances are taken conditionally
on {γt}.
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Fig. 3. Remote estimation scheme with no channel feedback.

IV. STATE FORWARDING VERSUS INNOVATION

FORWARDING WITH NO CHANNEL FEEDBACK

In this section, we consider the challenging scenario where
no channel feedback is present. In this case, the information
set at the transmitter T NCF

t does not include the information
set at the receiver Rt, that is Rt �⊂ T NCF

t . As consequence,
the transmitter cannot produce a copy of the receiver estimate
x̂rx
t|t−1. The optimal strategy in this case is not obvious and

it is likely to be a non-linear function of the information
sets T NCF

t ,Rt. This situation is reminiscent of the loss of
separation principle in control systems where the estimator is
not aware if the control input has been successfully received by
the actuator or not [9].

As a consequence, we explore suboptimal linear strategies
for which it is possible to analyze the performance. In par-
ticular, there are two suboptimal naive strategies that can be
proposed. The first strategy, that we refer to as state forwarding
(SF), is to simply transmit the current transmitter best estimate
of the state xt, that is, st = x̂tx

t|t.
To introduce the second strategy, let us now define the state

predictor at the transmitter side using the quantized signals as
information set, i.e.,

x̄tx
t|t−1 := IE

[
xt|sqt−1, s

q
t−2, . . . , s

q
0

]
. (17)

Inspired by the optimal filtering scheme with channel feed-
back, which requires sending the difference between the state
estimator at the transmitter side and the state prediction at
the receiver side, we now define the innovation forwarding
(IF) strategy in which the transmitted signal st is given by
the difference between the state estimator at the transmitter
side and the state predictor computed at the transmitter side
assuming (incorrectly) that all the past quantized transmitted
signals sqt = st + nt have reached the receiver, that is, as-
suming γt = 1, ∀t. More specifically, st = x̂tx

t|t − xtx
t|t−1. The

rationale behind this strategy is that in a lossless channel, that
is, if ε = 0, it provides the optimal strategy as discussed in
Section III. For both transmitter strategies, the receiver will
compute the MMSE estimator, that is, x̂rx

t|t = IE[xt|Rt]. As just
mentioned, in general, x̂rx

t|t �= x̂tx
t|t and x̂rx

t|t �= xtx
t|t These two

strategies can be graphically represented in Fig. 3, where the
SF strategy corresponds to ν = 1 and the IF strategy to ν = 0.

We now state an instrumental lemma which will be useful
later on.

Lemma 2: In the scenario with no channel feedback, the
transmitter state estimation errors x̃tx

t|t is conditionally uncor-
related with x̂tx

t|t, x
tx
t|t−1, and x̂rx

t|t−1, i.e.,

IEγ

[
x̃tx
t|tx̂

tx
t|t

]
=0, IEγ

[
x̃tx
t|tx

tx
t|t−1

]
=0, IEγ

[
x̃tx
t|tx̂

rx
t|t

]
=0, ∀ν

and x̃
tx

t|t−1 := xt − xtx
t|t−1 is conditionally uncorrelated with,

xtx
t|t−1 and x̂rx

t|t−1, i.e.,

IEγ

[
x̃
tx

t|t−1x
tx
t|t−1

]
= 0, IEγ

[
x̃
tx

t|t−1x̂
rx
t|t

]
= 0, ∀ν.

Proof: Since the estimator x̃tx
t|t is not influenced by chan-

nel feedback, the first statement has been proven in Lemma 1.
The other two statements follow easily using the same argu-

ments as in Lemma 1 since xtx
t|t−1 and x̂rx

t|t−1 are linear functions
of {yk, k < t} and of {nk, k < t}, which are all uncorrelated

with x̃tx
t|t and x̃

tx

t|t−1. �

A. State Forwarding Strategy (ν = 1)

In this section, as seen before, we assume that the transmitted
message is a noisy version of the estimated state, that is, has the
form sqt = x̂tx

t|t + nt = xt − x̃tx
t|t + nt, where

IEγ

[
n2
t

]
=

1

Λ
IEγ

[(
x̂tx
t|t

)2
]
=

1

Λ

(
IE

[
x2
t

]
− IEγ

[(
x̃tx
t|t

)2
])

=
1

Λ

(
σ2
w

1− a2
− IEγ

[(
x̃tx
t|t

)2
]))

and we assume that xt has reached its steady-state distribution.
In fact, limt→∞ IE[x2

t ]=σ2
w/(1−a2)=:pOL holds for |a|<1;

this in particular shows that the state forwarding strategy can-
not be used for |a| ≥ 1 since the signal variance and, hence,
the quantization noise variance would diverge. The message
received at the remote estimator is then

zt = γt

(
x̂tx
t|t + nt

)
= γt

(
xt − x̃tx

t|t + nt

)
which can be interpreted as a noisy measurement of the filtered
state, where nt is the measurement noise, subject to intermittent
observation. This problem has already been solved in [12] and
the solution is given by the following time-varying Kalman
filter:

x̂rx
t|t−1 = ax̂rx

t−1|t−1 (18)

x̂rx
t|t = x̂rx

t|t−1 + γtkt

(
zt − x̂rx

t|t−1

)
. (19)

The state estimation error then satisfies the equation

x̃rx
t+1|t = a(1− γtkt)x̃

rx
t|t−1 + wt + γtakt

(
x̃tx
t|t − nt

)
from which the conditional error covariance

p̂ rx
t+1|t = a2(1− γtkt)

2p̂ rx
t|t−1

+ γ2
t a

2k2t

(
IE

[(
x̃tx
t|t

)2

+ IEγ

[
n2
t

])
+ 2a2γtkt(1− γtkt)IEγ

[
x̃tx
t|tx̃

rx
t|t−1

]
+ σ2

w

where p̂ rx
t+1|t = IEγ [(x̃

rx
t+1|t)

2].
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Since by Lemma 2 IEγ [x̃
tx
t|tx̃

rx
t|t−1] = ptxt|t and IEγ [n

2
t ] =

(1/Λ)IE[(x̂tx
t|t)

2] = (1/Λ)(IE[x2
t ]− IEγ [(x̃

tx
t|t)

2]), then the op-
timal gain obtained by minimizing the right-hand side is
given by

kt =
p̂ rx
t|t−1 − ptxt|t

p̂ rx
t|t−1 −

Λ+1
Λ ptxt|t +

σ2
w

Λ(1−a2)

.

From which it follows:

p̂ rx
t+1|t = a2p̂ rx

t|t−1 + σ2
w − γt

(
p̂ rx
t|t−1 − ptxt|t

)2

p̂ rx
t|t−1 −

Λ+1
Λ ptxt|t +

1
Λp

OL
.

The optimal estimator could be computationally expensive
since it needs to keep track of the conditional estimation error
covariance p̂ rx

t|t−1 which is a function of the packet loss history

{γh}t−1
h=0. As done in [24], the previous filter can be replaced

with the following constant gain filter:

xrx
t|t−1 = axrx

t−1|t−1 (20)

xrx
t|t =xrx

t|t−1 + γtk
(
zt − xrx

t|t−1

)
(21)

k =
pSF (ε)− ptx∞

(pSF (ε)− ptx∞) + 1
Λ (pOL − ptx∞)

(22)

pSF (ε) = a2pSF (ε) + σ2
w

− (1− ε)
a2

(
pSF (ε)− ptx∞

)2
(pSF (ε)− ptx∞) + 1

Λ (pOL − ptx∞)
(23)

which has the property that asymptotically its error covariance
is also an upper bound for the steady-state error covariance
prxt|t−1 := IE[p̂ rx

t|t−1] of the optimal estimator x̂rx
t|t−1, i.e.,

lim sup
t→∞

prxt|t−1 ≤ lim
t→∞

IE

[(
xt − xrx

t|t−1

)2
]
= pSF (ε).

It has been shown in [24] that the previous inequality is quite
tight, that is, the performance degradation incurred using a
constant gain rather then the optimal time-varying gain, is
small.

B. Innovation Forwarding Strategy (ν = 0)

In this section, we consider the innovation forwarding
scheme

st = x̂tx
t|t − xtx

t|t−1

where xtx
t|t−1 = IE[xt|sqt−1, . . . , s

q
0] and sqt = st + nt. The

MMSE estimator at the receiver x̂rx
t+1|t = IEγ [xt+1|Zt] is, con-

ditionally on {γt} a linear and finite memory functional of the
past received data and must have the following form:

x̂rx
t+1|t = ax̂rx

t|t−1 + akt(zt − ẑt) = ax̂rx
t|t−1 + aktzt

zt = γt(st + nt) = γt

(
x̂tx
t|t − xtx

t|t−1 + nt

)
(24)

where ẑt := IEγ [zt|Zt−1] = 0 since x̂tx
t|t − xtx

t|t−1 and nt are
uncorrelated and white. The optimal gain kt is to be selected, at
each step, to minimize the conditional receiver state prediction
error covariance p̂ rx

t+1|t := IEγ [(xt+1 − x̂rx
t+1|t)

2].
This is easily achieved by writing the equation for the pre-

diction error and differentiating w.r.t kt. Let us first derive the
dynamical equation for x̃rx

t|t−1 = xt − x̂rx
t|t−1, which is obtained

by subtracting the state prediction update (24) from the state
(1), obtaining

x̃rx
t+1|t = a(1− γtkt)x̃

rx
t|t−1 − γtakt

(
Δx̂t − x̃tx

t|t + nt

)
+ wt

where Δx̂t := x̂rx
t|t−1 − xtx

t|t−1 = x̃
tx

t|t−1 − x̃rx
t|t−1 and x̃

tx

t|t−1 :=

xt − xtx
t|t−1. This implies that x̃rx

t|t−1 = x̃
tx

t|t−1 −Δx̂t. Using
Lemma 2, we obtain

IEγ

[
x̃rx
t|t−1x̃

tx

t|t−1

]
=IEγ

(
x̃
tx

t|t−1 −Δx̂t

)
x̃
tx

t|t−1

]
=IEγ

[
x̃
tx

t|t−1x̃
tx

t|t−1

]
=: p̂0

t

IEγ

[
x̃rx
t|t−1Δx̂t

]
=IEγ

[
x̃rx
t|t−1

(
x̃
tx

t|t−1 − x̃rx
t|t−1

)]
= −

(
p̂ rx
t|t−1 − p̂0

t

)
IEγ [Δx̂tΔx̂t] = IEγ

[(
x̃
tx

t|t−1 − x̃rx
t|t−1

)
Δx̂t

]
= −IEγ

[
x̃rx
t|t−1Δx̂t

]
= p̂ rx

t|t−1 − p̂0
t

where p̂0
t = IEγ [(xt − xtx

t|t−1)
2
] = IE[(x̃

tx

t|t−1)
2
]. Recalling that

IEγ [n
2
t ] = (1/Λ)IEγ [(x̂

tx
t|t − xtx

t|t−1)
2
] = (1/Λ)(ptxt|t − p̂0

t ), and
IEγ [x̃

tx
t|tx̃

rx
t|t−1] = ptxt|t, then it follows that the receiver condi-

tional variance is given by

p̂ rx
t+1|t =(a− γtakt)

2p̂ rx
t|t−1 + σ2

w

+ a2γ2
t k

2
t

(
p̂ rx
t|t−1 −

(
p̂0
t − ptxt|t

)
+

p̂0
t − ptxt|t
Λ

)
+ 2a2γtkt(1− γtkt)

(
p̂ rx
t|t−1 −

(
p̂0
t − ptxt|t

))
. (25)

The optimal gain kt, which minimizes the right-hand side, is
found by taking the derivative w.r.t. kt

∂p̂ rx
t+1|t
∂kt

= − 2γta
2(1− γtkt)p̂

rx
t|t−1

+ 2a2γ2
t kt

⎛⎝p̂ rx
t|t−1−

(
p̂0
t −ptxt|t

)
+

(
p̂0
t −ptxt|t

)
Λ

⎞⎠
+ 2a2γt(1− 2kt)

(
p̂ rx
t|t−1 −

(
p̂0
t − ptxt|t

))
which, equated to zero, has the unique solution

kt =
Λ

Λ+ 1
. (26)

Inserting kt back into (25), we obtain

p̂ rx
t+1|t = a2p̂ rx

t|t−1 + σ2
w − γta

2
(
p̂0
t − ptxt|t

) Λ

1 + Λ
.
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Taking expectation w.r.t the loss sequence γt it follows that the
expected error covariance prxt+1|t = IE(x̃rx

t+1|t)
2 is given by

prxt+1|t = a2prxt|t−1 + σ2
w − (1− ε)a2

(
p0t − ptxt|t

) Λ

1 + Λ
(27)

where p0t := IE[p̂0
t ].

It is interesting to observe that the gain kt in (26) is time
invariant and does not depend on the packet loss probability.
In fact, kt is also the Kalman optimal gain for ε = 0. Finally,
recall that p0t is the prediction error covariance with no packet
loss, which is given by (16) by setting ε = 0; then

lim
t→∞

p0t =: p0∞ =
σ2
w + a2 Λ

1+Λp
tx
∞

1− a2

1+Λ

= pCF (0).

Note also that the limiting value ptx∞ of ptxt|t is given in (7). Thus,
it follows that the steady-state prediction error covariance is
given by

pIF (ε) = lim
t→∞

prxt+1|t

=
σ2
w

1− a2
− a2(1− ε)

1− a2 + Λ

(
σ2
w

1− a2
− ptx∞

)
=(1− ε)pCF (0) + εpOL (28)

which, remarkably, is a simple linear function of the packet loss
probability ε.

C. Performance Comparison

We now want to compare the performance of the two strate-
gies in terms of the steady-state prediction error covariance,
which are given by (23) for the state forwarding and by (28)
for the innovation forwarding, as a function of the systems
parameters a,Λ, ε, σ2

w, σ
2
v . In particular, we are interested in

finding the set Φ := {(a,Λ, ε)|pSF (ε) ≤ pIF }, that is, the set
of parameters where the SF strategy has better performance
than the IF strategy.

Theorem 2: Consider the set Φ := {(a,Λ, ε)|pSF (ε) ≤
pIF (ε)}. Then, for Λ > 0, 0 < |a| < 1, and ε < 1 we have

Φ := {(a,Λ, ε)|ε > εc(a,Λ)}

where 0 ≤ εc < 1 which is the smallest solution of a quadratic
equation of the form

ε2 + β1(σv,Λ, a)ε+ β2(σv,Λ, a) = 0

and is monotonically decreasing in Λ and |a|, and

lim
Λ→+∞

εc(Λ, a) = lim
|a|→1−

εc(Λ, a) = 0.

The critical probability εc takes the form

εc(Λ, a)=
(1−a2)(Λ+2)

2a2Λ

(√
1+

4a2Λ

(Λ+2)2(1−a2)
−1

)
. (29)

Proof: See Appendix A. �

Fig. 4. Critical probability εc as a function of |a| for different values of the
SQNR Λ.

The previous theorem implies that the IF strategy performs
better then the SF strategy only for small packet loss prob-
abilities, and more specifically for ε < εc. Remarkably, the
critical probability is independent of the noise process and mea-
surement variances σ2

w, σ
2
v . Moreover, the critical probability

decreases to zero as the system dynamics becomes less stable,
that is, |a| increases, and as the quantization becomes finer, that
is, Λ increases. In particular, the previous theorem shows that
it is always better to use the SF strategy, independently of the
systems parameters, if the packet loss probability is greater than
one half, that is, under a high packet loss probability regime.

Fig. 4 pictures the critical probability εc as a function of |a|
for different values of the SQNR Λ, which shows that such
probability is almost equal to Λ/(Λ + 1) up to |a| ≈ 0.8 and
then rapidly decays to zero.

V. SOFT INNOVATION FORWARDING

WITH NO CHANNEL FEEDBACK

In this section, we propose an alternative strategy under the
no channel feedback scenario, that includes the IF strategy and
the SF strategy as special cases. More precisely, we propose a
hybrid strategy, where the transmitter sends a convex combi-
nation of its best estimate of the state x̂tx

t|t = IE[xt|T NCF
t ] and

the innovation between its best estimate and the best estimate
of the state given the past quantized transmitted signals, that
is, Δx̂t = x̂tx

t|t − xtx
t|t−1 where xtx

t|t−1 = IE[xt|sqt−1, . . . , s
q
0]. We

call this scheme the soft innovation forwarding (SIF) scheme.
In this case, the transmitted signal is thus given by

st = νx̂tx
t|t + (1− ν)Δx̂t = x̂tx

t|t − (1− ν)xtx
t|t−1 (30)

where 0 ≤ ν ≤ 1 is fixed at the transmitter. This scheme is
graphically illustrated in Fig. 3.

A. Transmitter Filter Design: g(T NCF
t )

In this section, we explicitly compute the transmitter filter
function g(T NCF

t ) based on the SIF strategy. Basically, it
reduces to the problem of computing the equation for the
internal estimator xtx

t|t−1. Since the dynamical system is linear
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with additive Gaussian noise, then the optimal MMSE estimator
is linear in the quantized transmitted signals sqt and it is given by
the Kalman Filter. However, the equations are somewhat non-
standard since the variance of the quantization noise nt is not
constant but depends on the variance of the transmitted signal.
We start by defining the internal estimator error covariance

as pt|h = IE[(x̃
tx

t|h)
2
], where x̃

tx

t|h = xt − xtx
t|h. Based on this

definition, we can compute the power of the transmitted signal
st as follows:

IE
[
s2t

]
=IE

[(
νx̂tx

t|t + (1− ν)Δx̂t

)2
]

=

(
ν2IE

[(
x̂tx
t|t

)2
]
+ (1− ν)2IE

[
Δx̂2

t

]
+ 2ν(1− ν)IE

[
x̂tx
t|tΔx̂t

])
= ν2

(
pOL − ptxt|t

)
+ (1− ν)2

(
p̄t|t−1 − ptxt|t

)
+ 2ν(1− ν)IE

[(
xtx
t|t−1 +Δx̂t

)
Δx̂t

]
= ν2

(
pOL − ptxt|t

)
+ (1− ν)2

(
pt|t−1 − ptxt|t

)
+ 2ν(1− ν)

(
pt|t−1 − ptxt|t

)
= ν2(pOL − pt|t−1) +

(
pt|t−1 − ptxt|t

)
.

Here, we used the fact that xt − xtx
t|t−1 = (xt − x̂tx

t|t) + Δx̂t

where (xt − x̂tx
t|t) and Δx̂t are uncorrelated and that xt is

assumed to be in its steady-state distribution. The equations of
the filter are given by

xtx
t+1|t = axtx

t|t−1 + ktxt

(
sqt − ŝ q

t|t−1

)
ŝ q
t|t−1 =IE

[
sqt |sqt−1, . . . , s

q
0

]
= νxtx

t|t−1

ktxt = cov
(
xt, s

q
t − ŝ q

t|t−1

)
V ar−1

{
sqt − ŝ q

t|t−1

}

=
a
(
pt|t−1 − ptxt|t

)
pt|t−1 − ptxt|t + IE [n2

t ]

where IE[n2t ]=(1/Λ)IE[s2t ]=(1/Λ)[ν2(pOL−pt|t−1)+ (pt|t−1−
ptxt|t)]. For large t, such filters will reach a steady state and,
therefore, it is possible to consider its steady-state implemen-
tation which will reach the same steady-state performance. The
steady-state filter is given by

xtx
t+1|t =(a− νk)xtx

t|t−1 + ksqt

k =
a (p− ptx∞)(

1 + 1
Λ

)
(p− ptx∞) + ν2

Λ (pOL − p)
, p > 0 (31)

p = a2p+ σ2
w − a2 (p− ptx∞)

2(
1 + 1

Λ

)
(p−ptx∞) + ν2

Λ (pOL−p)
(32)

where the last equation is a Riccati-like equation which has a
unique stabilizing positive solution p.

B. Receiver Filter Design: h(Rt)

In this section, we explicitly compute the optimal state esti-
mator at the receiver, that is, x̂rx

t+1|t = IE[xt+1|Rt]. We assume
that the transmitter filter architecture and, in particular, the
value of ν, is known at the receiver; therefore, it is possi-
ble to write the received message zt := γts

q
t = γt(x̂

tx
t|t − (1−

ν)xtx
t|t−1 + nt) as the output of the following dynamical system:⎡⎣ xt+1

x̂tx
t+1|t+1

xtx
t+1|t

⎤⎦
︸ ︷︷ ︸

ξt+1

=

⎡⎣ a 0 0
ak̂ a(1− k̂) 0
0 k a− k̄

⎤⎦
︸ ︷︷ ︸

A

⎡⎣ xt

x̂tx
t|t

xtx
t|t−1

⎤⎦
︸ ︷︷ ︸

ξt

+

⎡⎣ wt

k̂(wt + vt+1)
knt

⎤⎦
︸ ︷︷ ︸

ηt

(33)

zt = γt [ 0 1 −(1− ν) ]︸ ︷︷ ︸
C

⎡⎣ xt

x̂tx
t|t

xtx
t|t−1

⎤⎦+ γtnt (34)

where k̂ is the steady-state Kalman filtering gain for the trans-
mitter state estimator x̂tx

t|t defined in (8).
As a consequence, the estimator x̂rx

t+1|t = IE[xt+1|Rt] corre-

sponds of the first component of the optimal estimator ξ̂t+1|t =
IE[ξt+1|Rt] which turns out to be the optimal Kalman filter
with intermittent observations studied in [12]. Such a filter is
time-varying since the Kalman gain depends on the packet loss
sequence; however, as discussed in Section IV-A, it can be
replaced with a constant gain filter with limited performance
degradation [24]. The (suboptimal) receiver filter design is then
given by

ξt+1|t =(A− γtKC)ξt|t−1 + γtKzt (35)

xrx
t|t−1 =h(Rt−1) = [ 1 0 0 ]︸ ︷︷ ︸

H

ξt|t−1 (36)

K =(APCT + S)(CPCT +R)−1 (37)

P =APAT +Q−(1−ε)K(CPCT +R)KT =Ψ(P ) (38)

R = lim
t→∞

IE
[
n2
t

]
=

1

Λ

[
ν2(pOL − p) +

(
p− ptx∞

)]
Q = lim

t→∞
IE

[
ηtη

T
t

]
=

⎡⎣ σ2
w k̂σ2

w 0

k̂σ2
w k̂2

(
σ2
w + σ2

v

)
0

0 0 k
2
R

⎤⎦
S = lim

t→∞
IE[ηtnt] =

⎡⎣ 0
0
kR

⎤⎦ .

The steady-state Kalman gain K can therefore be obtained
by finding the unique positive definite solution P > 0 that
solves the modified algebraic Riccati (38) and the steady-state
prediction error has the following upper bound:

lim sup
t→∞

IE
[
(xt − x̂rx

t|t−1)
2
]
≤ pSIF = HPHT . (39)
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C. Optimal Soft Innovation Forward Strategy

The transmitter and receiver filter design proposed in the
previous two sections still leave a certain degree of freedom
for optimizing the performance pSIF = p11(ε) = pSIF (ν, ε),
where p11(ε) is the (1, 1)th element of the receiver estimation
error covariance matrix P , and where we explicitly indicate
its dependence on the parameters ν, ε. If the packet loss
probability ε is known, then one might optimize for the mixing
coefficient ν.

More specifically, we define

ν∗(ε) := arg min
ν∈[0,1]

pSIF (ν, ε) (40)

pOSIF (ε) := pSIF (ν∗, ε) (41)

where pOSIF (ε) is the optimal soft innovation forward (OSIF)
strategy for a given packet loss probability ε. It is seen via
numerical computations that pSIF (ν, ε) has a unique minimum
in the interval ν ∈ (0, 1), It is also seen that this optimal value
of ν, ν∗(ε) computed by an exhaustive search, appears to be a
monotonically increasing function of ε, which implies that as
the packet loss probability increases, it is better to place more
weight on the state and less on the innovation. Moreover, it is
seen that the SF strategy is the optimal strategy when the packet
loss probability is very close to 1. Analytically proving these
results appears to be difficult in the general noisy measurement
case. However, we are able to prove some meaningful results in
the noise-free case when σ2

v = 0, that is the sensor has access
to full-state observation. In this case, the system description
presented in (34) reduces to a second-order system (since in
this case x̂tx

t|t = xt). The corresponding descriptions for all the
relevant parameters can be found in [19], or also by substituting
σ2
v = 0, ptx∞ = 0 in the appropriate equations. With a slight

abuse of notation, we use the same notations for this special
case to maintain readability. In this special case, we can prove
the following two theorems in this noise-free situation at the
sensor. The first of these theorems states that for a fixed ε there
is a ν ∈ (0, 1) that performs better than the SF strategy (ν = 1)
and the IF strategy (ν = 0).

Theorem 3: Under the assumption σ2
v = 0, for any arbitrary

ε ∈ (0, 1), then pSIF (ν, ε) is a decreasing function of ν at ν =
0 and an increasing function of ν at ν = 1. This implies that
pSIF (ν, ε) has at least one minimum at some 0 < ν∗ < 1.

Proof: See Appendix B. �
Remark 2: It is possible to check numerically via suitable

examples that pSIF (ν, ε) may not be a convex function of ν for
a fixed ε. Therefore we do not, at this stage, attempt to prove that
pSIF (ν, ε) has a unique minimum with respect to ν ∈ (0, 1).
Instead, the above theorem simply states that there is at least
one minimum for pSIF (ν, ε) at some 0 < ν∗ < 1. This is not
to say that the minimum is not unique (in fact the extensive
numerical results indeed suggest uniqueness), but a proof of
uniqueness has proved to be elusive so far.

The second theorem states that as the packet loss probability
approaches one, then the optimal ν∗ approaches one as well,
that is, the SF strategy becomes optimal for large packet loss
probabilities, as stated in the following theorem.

Fig. 5. Sample estimation error variance with uniform quantizer versus theo-
retical error variance with AWGN model (3 bits/sample).

Theorem 4: Under the assumption σ2
v = 0, the optimal mix-

ing parameter ν∗(ε) has the following properties:

ν∗(0) = 0, lim
ε→1−

ν∗(ε) = 1.

Proof: See Appendix C. �

VI. NUMERICAL RESULTS

We first illustrate the accuracy of our additive white noise
model for the quantization noise. We use a uniform quan-
tizer to quantize st given by (30) with a suitable number of
quantization levels and saturation thresholds so as to guar-
antee a SNR equal to Λ. The quantization step ΔQ is cho-
sen so that the equivalent additive noise variance is σ2

n =
Δ2

Q/12, where σ2
n = V ar{st}/Λ. These latter two expressions

combined yield ΔQ =
√

12V ar{st}/Λ. By setting the satu-
ration thresholds ±TQ according to TQ = 4

√
V ar{st}, the

number of quantization levels is given by N = �2TQ/ΔQ� =
�8

√
V ar{st}/

√
12V ar{st}/Λ� =�4

√
Λ/3�, which corre-

sponds to Nb = �log2(�4
√

Λ/3�)� bits/sample. We consider
now Nb = 3 which corresponds to Λ = 12. We use a = 0.95
and the set the packet loss probability equal to ε = 0.3. The
sample estimation error variance (at the receiver using the
soft innovation strategy) and the theoretical variance using
the additive white Gaussian noise (AWGN) model are depicted
in Fig. 5. It can be seen easily that the AWGN model provides
a highly accurate approximation, in fact a very good one for
Nb ≥ 2.

For the rest of the numerical results, we use the parameter
values a = 0.95, Λ = 3 (2 bits/sample), σ2

w = 0.1, σ2
v = 0.05.

Fig. 6 depicts the estimation error performance (normalized
by the maximum value pOL at ε = 1) of the filters derived
so far and the critical probability εc defined in (29). As ex-
pected, the performance degrades as the packet loss probability
increases for all estimators, but the estimator with channel
feedback outperforms all estimators with no channel feedback.
The figure also shows that by optimizing ν, the OSIF performs
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Fig. 6. Prediction error covariance of proposed strategies against packet loss
probability ε for a = 0.95, Λ = 3, σ2

w = 0.1, σ2
v = 0.05.

Fig. 7. Optimal mixing coefficient ν∗ as a function of the packet loss proba-
bility ε for the OSIF strategy for a = 0.95, Λ = 3, σ2

w = 0.1, σ2
v = 0.05.

considerably better than the SF and IF strategies, which are just
two special cases in the class of the SIF strategies.

In Fig. 7, we plot the optimal mixing coefficient ν = ν∗

which has been obtained numerically via an exhaustive search.
The curve appears to be monotonically increasing from zero
to unity, thus confirming that as the packet loss increases, the
optimal soft innovation forwarding strategy transits from the IF
to the SF strategy.

VII. DISCUSSIONS AND FUTURE WORK

In this section, we briefly indicate the limitations of the
current work and how these results can be generalized in
various directions.

Unstable Systems: Suppose one considers an unstable sys-
tem. Then it is not possible to consider an uncontrolled unstable
system at the transmitter since regardless of the coder/decoder

scheme employed, the power of the signal to be transmitted will
grow unbounded. If we were to consider a controlled unstable
system, where the control action is determined by the receiver,
then the very same model of the system will be different from
the one used in this manuscript and it is not obvious how the
results obtained here can be extended. Recently, some of the
authors of this paper have looked at the case of controlled
unstable systems when no pre-processing is done at the sensor
[10], [11]. These two works are complementary and future work
will focus on combining these ideas with the current work.

Higher-Order and MIMO Systems: As for the case of multi-
variable systems, the problem is even harder. Suppose in fact
that in the scenario with channel feedback we still want to use
the same idea of sending the innovation. Even if the dynamical
system has a vector state but a scalar output, as soon as two
consecutive packets are lost followed by a successful trans-
mission, the innovation that the transmitter has to send is 2-D,
that is, two real valued numbers are required to be transmitted
across the same scalar channel for the receiver to recover the
current estimate when the packet is received. This gives rise
to the problem of properly modeling the quantization error
when the same number of bits per second are to be sent across
the channel, yet two real numbers are to be encoded. Another
alternative is to use lattice vector quantization with the same
additive white noise quantization model, as used in [22]. This
will require the use of a vector channel, and perhaps the use
of a vector parameter ν for the soft innovation forwarding with
no channel feedback case. Needless to say, the corresponding
analysis for the no-feedback case will be considerably more
difficult if not intractable.

Imperfect Feedback Channels: In this paper, we study the
cases of perfect packet acknowledgement feedback or no feed-
back. A more practical scenario in between these two extreme
cases is where the transmitter receives packet acknowledgement
but over an imperfect channel, such that the ACK/NACK
packets can be also lost with a certain probability. Note that
this particular issue has been investigated in a slightly different
problem setting in [25]. In this paper, the problem of whether
to send a state estimate or the innovation is formulated as a
Markov decision problem (MDP) where a long term average
estimation error (at the receiver) is minimized. In the case
of imperfect ACK/NACK, the problem becomes a partially
observed Markov decision problem (POMDP) problem which
can be solved using information state techniques that con-
vert the problem to a fully observed MDP problem. This is
computationally expensive but suboptimal solutions based on
an estimate of the receiver estimation error covariance at the
transmitter can be designed in the case of imperfect channel
feedback.

Delays: In this work we considered a scenario with a chan-
nel delay smaller or equal to the time step. If the delay is
larger than unity, the strategies suggested in this work with
no channel feedback are still valid since the only difference
is that the estimator has to provide the open loop d-time
step ahead prediction to reconstruct x̂rx

t|t−d := IE[xt|Rs] =

IEγ [xt|Zt−d] = adx̂rx
t−d|t−d. However, the results presented in

the channel feedback scenario cannot be directly extended since
the transmitter requires to know the packet loss sequence with a
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delay smaller or equal to unity in order to make a perfect copy
of the receiver estimator. Therefore alternative strategies are not
obvious for d > 1.

VIII. CONCLUSIONS

In this work we studied the problem of remotely estimating
the state of a dynamical stable system based on noisy measure-
ments over a communication channel subject to packet loss and
quantization. We showed that with perfect channel feedback it
is possible to derive the optimal linear transmitter and receiver
filters to minimize the estimation error variance using a strategy
that it is reminiscent of DPCM. We also studied the scenario
with no channel feedback and we proposed a few heuristic
strategies for which we were able to characterize performance
and trade-offs.

APPENDIX

A. Proof of Theorem 2

Without loss of generality we can set σ2
w = 1, since it simply

scales the error covariance and,therefore,it does not affect the
set Φ. Let us define Δp(a,Λ, ε) = pSF (ε)− pIF (ε), where
we also make explicit the dependence of the performance
in terms of the parameters. It is straightforward to observe
that Δp(a,Λ, 1) = 0 and Δp(a,Λ, 0) > 0. Therefore, if we
can show that there exists a unique εc ∈ (0, 1) such that
Δp(a,Λ, εc) = 0, then this implies that pSF (ε) ≤ pIF (ε) for
ε ≥ εc. We now show that this is the case. If Δp(a,Λ, εc) = 0,
then pSF (ε)(εc) = pIF (εc) = p∗. The points p that satisfy this
equality must also satisfy (23) and (28), therefore, if we take
the difference and recalling that a �= 0 and ε �= 1 we have

(p∗ − ptx∞)
2

(p∗ − ptx∞) + 1
Λ (pOL − ptx∞)

=
Λ(1− a2)

1− a2 + Λ

(
pOL − ptx∞

)
.

From (28), it follows that:

p∗ − ptx∞ =

(
1− a2Λ(1− ε)

1− a2 + Λ

)(
pOL − ptx∞

)
.

If we substitute this equation into the previous expression and
after some manipulations, which are valid for a �= 0 and Λ �= 0,
we obtain

a2Λε2 + (1− a2)(Λ + 2)ε− (1− a2) = 0

from which it follows that the only positive feasible solution for
εc is given by (29).

We can now study the dependence of εc in terms of the
parameters Λ and a. By rearranging the different terms, we have
(a2ε+ 1− a2)ε+ (1/Λ)(1− a2)(2ε− 1) = 0 from which it
follows via root-locus analysis that for fixed a, εc(Λ, a) is a
monotonically decreasing function of Λ where

lim
Λ→0+

εc(Λ, a) =
1

2
, lim

Λ→+∞
εc(Λ, a) = 0.

Similarly, by defining η = (a2/(1− a2)) which is a strictly
monotonically increasing function of a2 where η ∈ (0,+∞),

and by rearranging terms we obtain Λε2 + (1/η)((Λ + 2)ε−
1) = 0, from which it follows via root-locus analysis that, for
fixed Λ, εc(Λ, a) is a monotonically decreasing function of a2

where

lim
|a|→0+

εc(Λ, a) =
1

2 + Λ
, lim

|a|→1−
εc(Λ, a) = 0.

From this analysis, it follows that εc(Λ, a) < (1/2), ∀|a| ∈
(0, 1),Λ ∈ (0,+∞) which concludes the proof.

B. Proof of Theorem 3

In the noise-free case, where the state is fully observed at
the sensor, we have a 2-D state vector as discussed before.
In this case, the expression for the covariance matrix P can
be computed from three paired nonlinear equations as shown

below (42). Let us denote P =

[
p11(ε) p12(ε)
p12(ε) p22(ε)

]
, where we

have explicitly indicated that P is symmetric and its elements
depend on ε. Although we will be primarily interested in the
behavior of p11(ε) = pSIF with respect to ν, the properties of
p12(ε), p22(ε) will also be useful. In the case when ε = 0 (i.e.,
there is no packet loss), it is easy to check that p11(0) satis-
fies the same equation as the steady-state transmitter Kalman
predictor error covariance given by p, and is clearly minimum
when ν = 0. Also, p12(0) = p22(0) = 0.

It can be shown after some algebraic manipulation that the
elements of P satisfy the following equations:

p11(ε) =
σ2
w

1− a2
− a2

1− a2
(1− ε)

M∞(ν)
(p11(ε)−(1− ν)p12(ε))

2

p12(ε) =
ak

1− a2 + ak
p11(ε)

− a(1− ε)

1− a2 + ak
(p11(ε)− (1− ν)p12(ε))

L∞(ν)

M∞(ν)

p22(ε) =
k
2

1− (a− k)2
p11(ε) +

2k(a− k)

1− (a− k)2
p12(ε)

+
k
2

1− (a− k)2
R− (1− ε)

1− (a− k)2
L2
∞(ν)

M∞(ν)
(42)

where

M∞(ν) = p11(ε)− 2p12(ε)(1− ν) + p22(ε)(1− ν)2 +R,

L∞(ν) = kp11(ε) +
(
a− k(2− ν)

)
p12(ε)

− (a− k)(1− ν)p22(ε) + kR.

Recall that p11(ε) = pSIF (ν, ε). Hence, we will use p11(ε) to
indicate pSIF (ν, ε) in the following proof. The proof is di-
vided into two parts: 1) showing that (∂p11(ε)/∂ν)|ν=1

> 0 and
2) (∂p11(ε)/∂ν)|ν=0

< 0.
1) For simplicity, we will drop the dependence on the argu-

ment ε in this part, and make the observation that all values
of p11, p12, etc. are evaluated at ν = 1 in the expression of
the partial derivative (∂p11(ε)/∂ν)|ν=1

. Recall also that pOL =
(σ2

w/(1− a2)).
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Using the equation for p11 from (42), and taking partial
derivatives, we have (after some algebra)

∂p11(ε)

∂ν |ν=1

⎡⎣1+ a2(1−ε)p11

(1−a2)
(
p11+

pOL

Λ

)
⎛⎝2− p11(

p11+
pOL

Λ

)
⎞⎠⎤⎦

=
2a2

1−a2
(1−ε)

p11p
OL

Λ
(
p11+

pOL

Λ

)2

[
p11

(
1− p

pOL

)
−p12

]
.

It is easy to check that the expression in the square brackets
on the left-hand side of the previous equation is positive. All
that remains to show therefore is that p12 < p11(1− (p/pOL)).
To this end, note that from the equation for p12 from (42), it
follows that (recall that all values are evaluated at ν = 1), p12 <
(ak/(1− a2 + ak))p11. It can be shown that for all 0 ≤ ν < 1
(see Proof of Theorem 4 below)

ak

1− a(a− k)
=

a2P̄∞
P̄∞ + J(ν)(1− a2)

= (1− P̄∞)

where P̄∞ = p/pOL. Hence, it follows that p12<p11(1−P̄∞)=
p11(1− (p/pOL)). This implies that (∂p11(ε)/∂ν)|ν=1

> 0.
2) The proof of this part relies on using a state transformation

technique. Denote a new state vector
[xa

t+1

xb
t+1

]
= T

[ xt+1

x̂tx
t+1|t

]
, where

T =

[
1 0
1 −(1− ν)

]
. It can be easily checked that xa

t = xt

and xb
t = st. Using this transformation, we can write a new

state space system as[
xt+1

st+1

]
= Ā1

[
xt

st

]
+ T

[
wt

knt

]
, zt = γtC̄1

[
xt

st

]
+ γtnt (43)

where Ā1 = TAT−1 =

[
a 0
νk (a− k)

]
, C̄1 = C̄T−1 = [0 1].

It is straightforward to show that for this transformed state
space system, one can derive a similar suboptimal constant gain
Kalman filter which has a steady-state stabilizing solution P̃ (ε)
whose elements pij(ε), i = 1, 2, j = 1, 2, satisfy the following
equations:

p̃11(ε)=
σ2
w

1− a2
− a2(1− ε)

1− a2
p̃212(ε)

p̃22(ε) +R

p̃12(ε)=
1

1−a(a−k)

[
aνkp̃11(ε)+σ2

w−
(1−ε)ap̃12(ε)

p̃22(ε)+R
V̄ (ν)

]

p̃22(ε)=
1

1−(a−k)2

[
ν2k

2
p̃11(ε)+2νk(a−k)p̃12(ε)+σ2

w

+(1− ν)2k
2
R− (1− ε)

F 2
∞(ν)

p̃22(ε) +R

]
(44)

where V̄ (ν) := νkp̃12(ε) + (a− k)p̃22(ε)− (1− ν)kR for
notational simplicity.

First, it is useful to observe a few facts regarding the
steady-state stabilizing solution P̃ and its relationship with P .
One can easily verify that p̃11(ε) = p11(ε), p̃12(ε) = p11(ε)−
(1− ν)p12(ε) and p̃22(ε) = p11(ε)− 2(1− ν)p12(ε) + (1−

ν)2p22(ε). Also, when ν = 0, the state space description (43)
implies that the receiver only receives the transmitter innovation
sequence in the presence of white Gaussian noise nt when a
packet is received. However, since the transmitter innovation
sequence is also a zero mean i.i.d. Gaussian sequence, whether
a packet is received or not, the minimum mean square estimate
of the state st is simply its mean, which is zero. Therefore,
the corresponding estimation error p̃22(ε)|ν=0 = p∞(0), where
p∞(0) is the variance of the transmitter innovation sequence
when ν = 0, which can be obtained from (32) by substituting
ν = 0, as σ2

w/(1− (a2/(Λ + 1))). Indeed, this can be also
verified by solving the corresponding quadratic equation for
p̃22(ε) after substituting ν = 0. Similarly, it can be checked that
p̃12(ε)|ν=0 = p∞(0) as well.

In what follows, we will be dropping the dependence on ε
of the relevant quantities to keep notations simple. Also, all
values of the relevant quantities are computed at ν = 0 unless
otherwise specifically indicated. Using the equations in (44),
one can show the following facts:

∂p̃11
∂ν

∣∣∣∣
ν=0

= −a2(1− ε)

1− a2
1

(1 + 1
Λ )

2

(
2

(
1 +

1

Λ

)
∂p̃12
∂ν

− ∂p̃22
∂ν

)∣∣∣∣
ν=0

.

One can also easily show the following rather simple but
useful result which states that (∂p̃22/∂ν)|ν=0

= 0 regard-
less of the value of ε. Therefore, we only need to show
that (∂p̃12/∂ν)|ν=0

> 0 ∀ε > 0. Note that at ε = 0, we have
p̃11(0) = p11(0) = p∞(0) and, therefore, (∂p11/∂ν)|ν=0

= 0
and, hence, (∂p̃12/∂ν)|ν=0

= 0 also at ε = 0. Using the above
facts, from (44), one can evaluate (after some algebra) that for
ε > 0⎡⎣1 + a2(1− ε)Λ(

1− a2

Λ+1

)
(Λ + 1)2

⎤⎦ ∂p̃12
∂ν |ν=0

=
a2εp∞(0)

1 + 1
Λ

(45)

which is clearly positive for ε > 0. Hence, we have
(∂p̃11/∂ν)|ν=0

< 0 for ε > 0. Therefore, p̃11(ε) = p11(ε) =
pSIF (ν, ε) is a decreasing function of ν at ν = 0 for ε > 0.

C. Proof of Theorem 4

The proof of the first part of the theorem that ν∗(0) = 0
is obvious. In order to prove the second part, we first obtain
an O(δ) approximation of p11(1− δ), where δ = 1− ε ≈ 0
and then show that this approximation is minimized at ν∗ =
1. Using the expression for p11(ε) from (42), one can (after
some elementary analysis) show that an O(δ) approximation
for p11(1− δ) can be obtained as

p11(1− δ) ≈ σ2
w

1− a2
− δ

a2

1− a2
(p11(1)− (1− ν)p12(1))

2

× 1

p11(1)− 2p12(1)(1− ν) + p22(1)(1− ν)2 +R
. (46)
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One can easily obtain the values of p11(ε), p12(ε), and p22(ε)
at ε = 1 or δ = 0 as p11(1) = σ2

w/(1− a2) = pOL, p12(1) =
pOL(ak/(1− a2 + ak)) and

p22(1) = pOL

[
k
2

1− (a− k)2
(1 + J(ν))

+
2k

2
a(a− k)(

1− (a− k)2)(1− a2 + ak
)]

where J(ν) = R/pOL = (1/Λ)(ν2 + (1− ν2)(p/pOL)).
Substituting these expressions into (46), one can then show

that the task of minimizing the O(δ) approximation of p11(ε) is
equivalent to maximizing a function Ū(ν) of ν given by

Ū(ν) =
F 2(ν)

G(ν)
,where F (ν)=1− (1− ν)ak

(1− a2+ak)
and

G(ν) =1− 2ak

(1− a2 + ak)
(1− ν)+

(1− ν)2k
2

1− (a− k)2
(1+J(ν))

+
(1− ν)22k

2
a(a− k)(

1− (a− k)2
) (

1− a2 + ak
) + J(ν).

Numerical examples seem to indicate that Ū(ν) is an increasing
function of ν for 0 ≤ ν < 1. However, it seems to be rather
tedious to prove this. We use a different technique by bounding
Ū(ν) from above and showing that this upper bound is an
increasing function for 0 ≤ ν < 1, and finally show that the
upper bound is tight at ν = 1. Note the expressions for F (ν)
and G(ν) and that Ū(ν) = F 2(ν)/G(ν). By completing a
square in G(ν), it can be easily shown that Ū(ν) ≤ 1/(1 +
(R̄(ν)/F 2(ν))), where

R̄(ν) =
(1− a2)(1− ν)2k

2(
1− (a− k)2

) (
1− a(a− k)

)
+

(
1 +

(1− ν)2k
2

1− (a− k)2

)
J(ν).

Denoting P̄∞ = p/pOL and noting that p < pOL = σ2
w/(1−

a2) for 0 ≤ ν < 1 for all 0 ≤ ε < 1, we have P̄∞ < 1. Af-
ter a little algebra, it can be also shown that P̄∞ satisfies
P̄∞ + J(ν)(1− a2) = a2P̄∞/(1− P̄∞). Finally, using k =
aP̄∞/(P̄∞ + J(ν)), one can derive that

ak

1− a(a− k)
=

a2P̄∞
P̄∞ + J(ν)(1− a2)

= (1− P̄∞).

Substituting the above equality in the expression for R̄(ν), one
can immediately derive that R(ν)/F 2(ν) ≥ J(ν)/F 2(ν) and
Ū(ν) ≤ 1/(1 + (J(ν)/F 2(ν))). We will now show that this
upper bound is an increasing function of ν by showing that
J(ν)/F 2(ν) is a decreasing function of ν. Here, we will omit
the details, but will provide the key ingredients. We will need to
use the fact that (dP̄∞/dν)[2P̄∞(1 + ((1− ν2)/Λ)(1− a2)) +
(1− a2)((2ν2/Λ)−(1+(1/Λ))] = (2ν/Λ)(1−a2)(1− P̄∞)2.
Using this, one can show that J(ν)/F 2(ν) is a decreasing
function of ν by dividing the range of P̄∞ into two intervals:

0 < P̄∞ < (ν/(1 + ν)) and ν/(1 + ν) ≤ P̄∞ < 1 and proving
the derivative of J(ν)/F 2(ν) with respect to ν is negative
separately for both intervals.

The next step is to verify that S(1)=1/(1+(J(1)/F 2(1)))=
(1/(1 + (1/Λ))), that is the bound is tight for ν = 1. Therefore,
we have Ū(ν) ≤ 1/(1 + (J(ν)/F 2(ν))) ≤ 1/(1 + (1/Λ)) =
Ū(1) for 0 ≤ ν ≤ 1. This implies that an O(1− ε) approxima-
tion of p11(ε) = pSIF (ν, ε) is minimized at ν∗ = 1 when ε → 1
from below. Since pSIF (ν, ε) is a continuous function of ε, we
can say that for ε sufficiently close to but less than 1, pSIF (ν, ε)
is minimized at ν∗ = 1. Hence, the proof of Theorem 4 follows.
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