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Quantized Filtering Schemes for Multi-Sensor Linear
State Estimation: Stability and Performance Under

High Rate Quantization
Alex S. Leong, Subhrakanti Dey, and Girish N. Nair

Abstract—In this paper we consider state estimation of a discrete
time linear system using multiple sensors, where the sensors quan-
tize their individual innovations, which are then combined at the
fusion center to form a global state estimate. We prove the stability
of the estimation scheme under sufficiently high bit rates. We ob-
tain asymptotic approximations for the error covariance matrix
that relates the system parameters and quantization levels used by
the different sensors. Numerical results show close agreement with
the true error covariance for quantization at high rates. An op-
timal rate allocation problem amongst the different sensors is also
considered.

Index Terms— Kalman filtering, quantization, sensor networks,
stability, state estimation.

I. INTRODUCTION

L INEAR state estimation using multiple sensors is a com-
monly performed task in areas such as radar tracking and

industrial monitoring. Nowadays, much of the communication
systems used in practice are digital in nature. Therefore, analog
measurements made by sensors will need to be quantized before
transmission to a central processor or fusion center over a band-
width limited wireless channel. Proposing a quantized estima-
tion scheme that is stable, and characterizing the performance
loss due to quantization, for a multi-sensor linear state estima-
tion problem, is the primary focus of this paper.
We consider a discrete time linear system. A number of sen-

sors take measurements, perform some local processing before
transmitting a processed signal to a fusion center, which then
combines these signals to form a global state estimate. At the
sensor level, each sensor will quantize their innovations.1 This
is motivated by the fact that for unstable systems, while the
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1In this paper, we refer to innovations as , where is a measure-
ment and is a state estimate obtained using a (possibly) quantized filter. This
differs from the definition of innovations used in Kalman filtering (which we
will refer to as the true innovations), which is where is the
state estimate obtained using the (unquantized) Kalman filter.

state will become unbounded, the (true) innovations process re-
mains of bounded variance [1]. Thus, quantizing the innovations
rather than the state estimates avoids possible saturation of the
quantizer. These quantized innovations are then sent to a fusion
center to form a global state estimate, using a modification of the
decentralized scheme for unquantized Kalman filtering in [2].
RelatedWork: The works of [3], [4] gave structural results on

optimal coding for state estimation with measurements obtained
over a finite rate digital link, though the focus is on determining
minimum bit rates required for stability rather than performance
analysis. For control problems with quantized state feedback,
the performance with high rate quantization has been studied
in e.g. [5] and [6]. The idea of quantizing innovations for es-
timation has been considered in [7]–[9] with different filtering
equations from ours. However [8] and [9] only consider the case
of a single sensor, while the multi-sensor setup in [7] does not
involve a fusion center but instead requires sensors to broadcast
their quantized innovations to all other sensors. Furthermore, as
pointed out in [10], the schemes of [7], [8] are not guaranteed to
be stable for unstable systems, while [9] proves stability of their
scheme only for systems with bounded noise support. In [11]
quantization of measurements is carried out after performing
an optimization of the quantization levels, but their scheme re-
quires feedback of the state estimates from the fusion center
back to the sensors. In [10], a filter which involves quantizing
the true innovations at the sensor is given, but it is shown that
for unstable systems the mean squared error always becomes
unbounded with this scheme. Particle filtering schemes are also
considered in [10], though the performance of such schemes are
difficult to analyze theoretically.
Another related area is the CEO problem [12], [13], where a

number of agents observe a memoryless source and then com-
municate these observations over rate limited channels (of rate
) to a central CEO, which then reconstructs the source with

a certain distortion . Here however we consider sources
which are not memoryless but governed by a linear state space
dynamical system. Optimization of distributed quantization
schemes are studied in [14], [15].
Summary of Contributions: In this paper we consider and

analyze a multi-sensor quantized filtering scheme. In particular,
the main contributions of this paper are:
• We prove that even for unstable systems, this quantized
filtering scheme is stable for sufficiently high bit rates.

• We derive asymptotic approximations relating the estima-
tion error performance to the system parameters and the
number of quantization levels used by the different sen-
sors. This can be seen as a first step towards achieving
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a quantization rate versus state estimation error trade-off
for multi-terminal estimation of linear dynamical systems,
which is largely unavailable in the current literature.

• For systems with scalar measurements/quantizers, the per-
formance is analyzed for the uniform quantizer, while for
systems with vector measurements, the asymptotic perfor-
mance is derived for lattice vector quantizers.

• We will consider a rate allocation problem, for allocating
a total rate amongst the sensors in order to optimize the
asymptotic error performance.

The paper is organized as follows. Scalar quantizers are
studied in Section II. We first review the unquantized decen-
tralized Kalman filter equations in Section II-A, in order to
motivate our choice of quantized filtering equations which
are presented in Section II-B. We then prove stability of our
filtering scheme in Section II-C. In Section II-D we obtain an
asymptotic approximation for the error covariance in terms
of the number of quantization levels used by the different
sensors, as well as the system parameters. In Section II-E we
study a rate allocation problem for minimizing the trace of the
error covariance matrix at the fusion center when the total rate
across the sensors is constrained. In Section III extensions of
the results to lattice vector quantizers is considered. Numerical
comparisons are made between the asymptotic expression and
Monte Carlo simulations of the true error covariance matrix
in Section IV. While our asymptotic expressions are derived
assuming high rate quantization, numerical results suggest that
they are quite accurate even for rates as low as 3–4 bits per
sample (per sensor/dimension).
Notations: In this paper, will denote the expected value,
the trace, is the Gamma function, and a random vector

is if it is Gaussian with mean and covariance matrix
. A matrix if it is positive semi-definite and if
it is positive definite. We use the big- notation (see e.g. [16]),
where for functions and , we say that
as , if there exists a constant such that

for all within some neighbourhood of . We also
say that as , if .

II. SYSTEMS WITH SCALAR MEASUREMENTS

Throughout this paper, we will use to denote the discrete
time index, and the sensor index. We consider a discrete time
vector linear system

(1)

where and is i.i.d. zero mean Gaussian with co-
variance matrix . There are different sensors each
making scalar measurements:

(2)

where , and is i.i.d. zero mean Gaussian with vari-
ance .We assume that and aremutually
independent, and that the pair is stabilizable. The pair

is detectable, where , however the
individual sensor pairs are not necessarily detectable
for all . The case where the individual pairs are all de-
tectable has been previously studied in [17].

Fig. 1. System model.

It is assumed that the individual sensors can perform some
local processing, with a fusion center then using an appropriate
fusion rule to compute a global estimate of the state . See
Fig. 1 for a diagram of the system model.
In this paper, we will use similar analytical methods to [4],

[18] to prove the stability of our quantized filtering scheme,
which will require the assumption that and for

have uniformly bounded -th absolute moments
for some . Since we are dealing with Gaussian noise here,
which have moments of all orders, such an assumption is auto-
matically satisfied.

A. Decentralized Kalman filter

In [2], it is shown that in the case where there is no quantiza-
tion, each sensor can run its own individual Kalman filter to ob-
tain local estimates of the full state , which can then be com-
bined at the fusion center to obtain a global state estimate, that
is the same as if the fusion center had access to the individual
measurements. However, if for some sensor the pair is
not detectable and is an unstable matrix, then the local error
covariance of this sensor becomes unbounded over time. Con-
sequently the local true innovations (given by ,
where is sensor ’s estimate of ) will also have un-
bounded variance, making quantization of the local innovations
in Section II-B infeasible.
The approach taken in this paper is for sensors to only es-

timate their observable parts of the state. Due to the overall
system being detectable, the fusion center can use these
local estimates (or true innovations) to form estimates of the full
state . Such an approach has also been used in e.g. [19] in the
context of state estimation with data-driven communications. In
this subsection we present the decentralized Kalman filter equa-
tions (without quantization). In Section II-B these equations will
be modified in our quantized filtering scheme.
It is well-known (see e.g. [20]) that one can always find non-

singular matrices for , such that

with the pair being observable. Note that the ’s
are not unique and many different choices are possible. Partition

as
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and call

where and are respectively the observable and unob-
servable components of the state at sensor . Then the sub-
system

(3)

is observable. Note that if the pair is observable, then
one can obviously choose , and then ,
, , . In the case where the pair

is detectable but not observable, one can still set ,
, in the equations below.

Define the local estimates and error covariances:2

The local true innovations process at sensor is defined as3

It is well-known (see e.g. [1]) that is Gaussian with zero

mean and variance . The local estimates
can be computed at the sensors using local Kalman filters as
follows:4

(4)

The fusion center can then use these local estimates and error
covariances to form a global estimate of the full state using
various different fusion rules. In [19], the fusion center fuses the
local estimates together using a BLUE (best linear unbiased es-
timate) criterion. However this approach requires cross covari-
ances between different sensors to be computed, and further-
more doesn’t appear to be equivalent to the Kalman filter esti-
mate where the fusion center has access to all the sensor mea-

2Similar to [10], we use the superscript “ ” to denote the true Kalman fil-
tering quantities.
3Note that this differs from the definition mentioned in

the beginning of this subsection, in that is now an estimate of only the
observable components of .
4Note that the term is scalar by our

assumption of scalar measurements in this section.

surements. Instead, here we will give the decentralized Kalman
filter equations with which the fused global state estimate is the
same as if the fusion center had access to the individual mea-
surements. The equations can be derived using similar tech-
niques to [2], [21] (which only considered the case where sen-
sors had local estimates of the full state ) and thus the deriva-
tions are omitted for brevity.
Define the global quantities:

where . The fusion center makes use of

the local estimates and , local error covariances

and , and knowledge of , to compute global
estimates as follows:5

(5)

where and is a diagonal matrix given

by . Note that instead of the sensors
sending their local estimates and error covariances, the local true
innovations can be sent to the fusion

center instead, since the fusion center can reconstruct ,

, and from , provided it has knowl-
edge of all the sensor parameters and , ,
and the sensor observability decompositions. Such knowledge
can for instance be provided by the sensors to the fusion center
offline before the estimation begins. In order to perform the re-
construction, the fusion center will also need to run copies of the
local Kalman filter (4) of each sensor. Note however that it does
not require feedback from the fusion center back to the sensors.
As , the local error covariance matrices con-

verge to steady state values satisfying the algebraic Riccati
equations (which exist since the pairs are observ-
able):

(6)

5The equations (5) require and to be invertible. A suffi-
cient condition for this is that , and is invertible [22].
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and the global error covariance matrix has steady state
value that satisfies the algebraic Riccati equation

(7)
Remark 2.1: In [2], [21] the information form of the Kalman

filter is used, so that the equation for the updating of in (5)
can be given equivalently as

If the sensors transmit their local state estimates and error co-
variances and , then knowledge of the sensor parameters
at the fusion center is not required when using the information
form. However, since the focus of this paper is on quantization,
where we want to quantize the innovations instead of the mea-
surements/states, we try to minimize the amount of information
that needs to be transmitted by assuming more knowledge at the
fusion center, as will be also done in the next subsection.

B. Quantized Filtering Scheme

We will consider a suboptimal quantized filtering scheme
which are a modified version of the unquantized decentral-
ized Kalman filtering equations given in (4), (5). In this
scheme, the individual sensors run the following equations, for

:

(8)

while the fusion center runs the following equations:

(9)

In (8), (9), is the quantization of
that is sent by sensor to the remote

fusion center, , are the local state estimates
and are approximations to the local error
covariances. Similarly , are the cor-
responding global quantities. We will often use the shorthand

and . Note that due to quanti-
zation , , and are not the true
conditional mean, error covariance matrix and innovations
respectively, but for high rate quantization the approximations
will be quite accurate, see e.g. [9]. As stated in the introduction,

the motivation for quantizing the innovations is due to the
fact that for unstable systems, while the state will become
unbounded, the (true) innovations process remains of bounded
variance, since the pair is observable.
In (9), is a diagonal matrix

with terms to account for the quantization noise variances
of each sensor, similar to [23]. See Section II-B-1 on how the
quantizers are chosen and the corresponding expressions
for . The terms are the scaling factors of each sensor
, which allows one to adaptively change the quantizer range to
account for possible quantizer overload, similar to e.g. [24], and
is needed in order to prove the stability of the quantized filtering
scheme for noises with infinite support [4]. See Section II-B-2
for details on how are chosen.
As in the previous subsection, the fusion center can

reconstruct , and from

, plus knowledge of the sensor

parameters, observability decompositions, quantizers ,
and how the scaling factors are updated.
1) Choice of Quantizer: In this paper the quantizers will be

assumed to be fixed rate quantizers, but with time-varying quan-
tizer ranges. In particular, the performance of our quantized fil-
tering scheme using (scalar) uniform quantizers will be ana-
lyzed. The scalar Lloyd-Max “optimal” quantizer can be ana-
lyzed using similar techniques but the results will only be men-
tioned briefly to avoid repetition.6 The non-uniform quantizer of
[4] can also be used to give a stable quantized filtering scheme,
however its performance seems to be more difficult to analyze.
Let denote the number of quantization levels for the quan-

tizer used by sensor . The rate of the quantizer used by sensor
is denoted by

see also Section II-E. Thus the case of high rate quantization
will refer to either large or large interchangeably.
Under high rate quantization, we assume that the quantity

is approximately ,
since the quantization noise is dominated by the Gaussian
process and measurement noise. Some studies on the accuracy
of the Gaussian approximation of the quantization error, for the
case of logarithmic quantizers, can be found in [9].
Suppose now that is a quantizer of levels designed

for quantization of random variables. Then in (8) we
can rewrite

where .
For uniform quantization of Gaussian random variables, the

asymptotically optimal step sizes of the quantizer for large
has been derived in [26]. Under high rate quantization, the step
size is asymptotically

6The uniform quantizer can be generalized to the case of lattice vector quan-
tizers, see Section III, whereas optimal vector quantizers are not easy to find in
general [25].

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 08,2021 at 16:15:05 UTC from IEEE Xplore.  Restrictions apply. 



3856 IEEE TRANSACTIONS ON SIGNAL PROCESSING

where is the variance of the Gaussian random
variable that is to be quantized. Using similar nota-
tion to [4], the uniform quantizer of [26], for variance

, can then be expressed as follows: Partition
the real line into intervals ,

.

Label these intervals respectively. The
quantized value of is then

where represents the index of the quantizer region that lies
in. The resulting squared error distortion is asymptotically

The term in (8) is then defined as

where . For the case of Lloyd-Max quantization,

one can similarly derive that .
The recursion for in (8) can thus be written as

Such recursions have been previously studied in the literature
in the context of the modified algebraic Riccati equation, see
[27] and the references therein. In particular, since is a row
vector which has rank 1, it is shown in [28] that converges
to a steady state value satisfying the modified algebraic
Riccati equation

if and only if

(10)

where are the unstable eigenvalues of . Thus (10)
is a necessary condition on for stability of the quantized fil-
tering scheme. Since as , the condition (10)
will be met for sufficiently large. Note that and
will then also tend towards steady state values as , facts
which will be used in the sequel, see e.g. (13), (14).

2) Choice of Scaling Factors: We now describe how the
scaling factors are chosen. Following a similar approach to
[18], the scaling factors are updated recursively as follows:

(11)

where are arbitrary constants, and
is a matrix norm that approximates the spectral radius (norms
which can approximate the spectral radius arbitrarily closely are
known to exist, see [29]). is defined as:

(12)

where and are functions of that need to be chosen
appropriately in order to prove stability in Section II-C, see e.g.
Lemma 2.2. We will choose here

which corresponds to the half length of a quantizer interval, sim-
ilar to [4]. The function will be chosen to be

The choice of values of and in (11) will affect the per-
formance of the filtering scheme. The intuitive reason is that
the locations of the quantizer points for are designed as-
suming , so the quantizer is expected to perform well
when most of the time. Under high rate quantization,
this can be achieved as follows. For a given , let sat-
isfy the equation

(13)

with chosen such that

(14)

where and are the steady state values of and re-
spectively. The equations (13), (14) are a set of linear equations
in , with having the solution (15) shown at the
bottom of the next page. This choice of and will then
be used in (11).
We have the following result:
Lemma 2.1: Let and satisfy (15), and

suppose that . If is large enough
such that

(16)

then .
Proof: See Appendix A.
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Thus in the case of high rate quantization, where quantizer
saturation is rare so that for much of the
time, one can keep close to 1 with this choice of and

.

C. Stability of Quantized Filtering Scheme

Define the estimation error at the fusion center

The objective in this subsection is to prove Theorem 2.4, which
says that is always bounded when using our choice
of in (11) and sufficiently high bit rates for all sensors (or
sufficiently large ). In order to do this, we will first need
to prove some preliminary results. Define the estimation error
at the local sensors as

In Theorem 2.3 we will show that is bounded for
sensor when is sufficiently large. Similar to [4], [18], the
approach used to prove this is as follows: instead of showing di-
rectly that is bounded, we show instead that an upper
bound to , given by , is bounded, where

is defined as

for some random vector and random variable , and
some . The fact that is an upper bound to
is proved in [4], and further pseudo-norm properties of ,
namely

(17)

are proved in [18]. We first have the following result.
Lemma 2.2: Let be random variables with

for some . Suppose in
(12). Then for and the uniform quantizer of [26],

Proof: See Appendix B.
In the case where all moments of exist (e.g. if is a

Gaussian random variable), Lemma 2.2 will hold for any .

In particular, for a given , one can choose such that
, so one then has for suitably chosen

that .
We next have the stability result at the local sensors.
Theorem 2.3: Suppose that for the uniform quantizer is

sufficiently large that (10) and

(18)

are satisfied, where is the steady state value of
(which exists if (10) is satisfied), and . Then

is bounded .
Proof: See Appendix C.

Comparing (18) and (16) we see that (18) is a more stringent
condition that needs to meet in order to guarantee stability
at an individual sensor.
Finally, for the estimation error at the fusion center, we have

the following stability result.
Theorem 2.4: Let , be such that for each

sensor , is bounded . Then is bounded
.
Proof: See Appendix D.

D. Asymptotic Analysis

The quantity in (9) can be regarded as an approximation
to the true error covariance. In this subsection we will determine
the asymptotic behaviour of for large ,
(corresponding to the situation of high rate quantization at all
sensors), where is the limit of as , that satisfies
the equation

(19)

In (19), where
and is the steady state value of

that satisfies

(20)

1) Scalar Systems: We first give the result for scalar systems
(where the system state and all sensor measurements are scalar),
which can be derived in a more direct manner than for vector
systems. We will call , , , ,

(15)
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here. For scalar systems, the (19) can be solved
for , to obtain

(21)

The asymptotic behaviour of (21) is given by the following:
Lemma 2.5: For scalar systems, we have

(22)

where ,

, and

is the steady state error covariance when there is no quantization
(which can be obtained by solving (7)).

Proof: The proof is omitted, but can be derived in a similar
manner to [30].
2) Vector Systems: In the scalar case the analytical expres-

sion (21) for can be derived and analyzed to find asymp-
totic approximations. However, in the vector case we do not
have a closed form expression for either or . Instead
we will use a different technique, based on the method used to
find asymptotic solutions to algebraic equations in perturbation
theory (see e.g. [31]), but extended to matrices. With this tech-
nique, we can in fact derive an asymptotic expression for the
whole matrix , and not just its trace.
Notation: We will call a matrix if all its entries are
, and call a matrix if all its entries are .

Motivated by the asymptotic result (22) for scalar systems,
we assume that takes the form

(23)

where , are matrices not dependent on
. Substituting (23) into (19) we obtain

(24)

We will need to further simplify (24) in order to solve for
and , . First, we have the following lemma,
which is a generalization of a result from p.26 of [31]:
Lemma 2.6: Suppose that the matrix is invertible and

. Then as , ,

Proof: See Appendix E.
Next, from the asymptotic analysis of the single sensor case,

which may be found in [17], we have ,
and hence

where is a diagonal matrix with -th diagonal entry equal to
. Then

where the last line follows from Lemma 2.6. Note that since
as , the norm condition in Lemma 2.6 is

satisfied for sufficiently large.
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We can thus rewrite (24) as

(25)

Similar to the asymptotic technique in [31], we can then de-
rive an asymptotic expression for by successively solving
for , etc. Equating the terms in (25), we obtain

This is the same equation as (7) satisfied by , and thus
.
Equating the terms in (25), we have for each :

(26)

Hence, asymptotically behaves like
, where is the un-

quantized steady state error covariance that can be found
numerically by solving the algebraic Riccati equation (7), and

, can be found numerically by solving the
Lyapunov (26).

E. A Rate Allocation Problem

Suppose we are given a total rate , where is large.
We wish to determine how this total rate is to be allocated
amongst the sensors, where the rate of each sensor is defined
as . One way to allocate the rates is to minimize
the trace of the asymptotic expression
derived in the previous subsection, subject to a total rate

constraint. We then have for uniform quantization the discrete
optimization problem:

(27)

where and . For the case
of increasing , such problems are in general NP-hard. On the
other hand, consider the case where the number of sensors
is fixed but is large. As an upper bound on the complexity,
suppose we solve problem (27) by exhaustive search. Then the
number of -tuples that need to be tested is
given by the number of compositions of into parts (see
e.g. [32]), which is equal to

Thus in the case where the number of sensors is fixed but
is large, the complexity of problem (27) is polynomial in
.

One can also attempt to relax problem (27) as follows. Let
where , and is not constrained to

be integer valued. We then have the relaxed problem:

(28)
However, this problem is still a non-convex optimization
problem. Nevertheless, some numerical results for problems
(27) and (28) will be presented in Section IV.

III. SYSTEMS WITH VECTOR MEASUREMENTS

In this section we briefly describe how our results can be ex-
tended to systems with vector measurements. We will consider
lattice quantizers, which can be regarded as the generalization
of the uniform scalar quantizer to vector quantizers. To keep
the notation simple, we will only treat the single sensor case
here, with the extension to multiple sensors along similar lines
to Section II.

A. System Model

The system is still the discrete time vector linear system
, with , but now the sensor makes a

vector measurement , where , and
is i.i.d. zero mean Gaussian with covariance matrix .

B. Quantized Filtering Scheme

The equations for the quantized filtering scheme are:

(29)
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where , with
the scaling factors still taken to be scalar. We will use the
shorthand . Since is now a vector,
we will use vector quantizers with quantization values.
In general, optimal vector quantization (optimal in terms of
minimizing the distortion) is a difficult problem where many
open questions remain. The LBG algorithm [33] can be used
to find locally optimal vector quantizers but requires numerical
methods to compute, and the resulting quantizers often lack
structure. We thus consider here the case of lattice vector
quantizers [34], whose regular structure makes for efficient
encoding and implementation. For scalar measurements, lattice
quantization reduces to the case of the uniform scalar quantizer.
Under high rate quantization, wewill assume that the quantity

is approximately . We will
first diagonalize as

where is a unitary (in fact orthogonal) matrix of eigenvectors
and is a diagonal matrix of eigenvalues (we recall that every
real symmetric matrix is diagonalizable, and the eigenvalues
of a positive definite matrix are positive). This diagonalization
incurs a computational cost of at every time step, where
is the dimension of . Then

For zero mean multivariate Gaussian distributions with i.i.d.
components, asymptotically optimal lattice quantizers have
been considered in [35], with analytical expressions derived for
the distortion and sizes of the cells in the lattice quantizer. Thus
one way to vector quantize is to first multiply

it by to transform into (approximately)
random vectors, quantizing this using the asymptotically op-
timal lattice quantizers from [35], and then multiplying the
quantized vector by , i.e.

where , and is the lattice quantizer of [35].
Note that multiplication by is a linear transformation
which preserves the number of values in the codebook. For
asymptotically optimal lattice quantization of a Gaussian
random vector with i.i.d. components, each having variance ,
the distortion per dimension
is given by (see [35]):

where represents the dimension of the vector to be quantized,
the number of quantization values,

a Voronoi cell of the lattice, the volume of , and

is the normalized moment of inertia of . The asymptotically
optimal scaling of the Voronoi cells is given by:

Since the components are i.i.d., if we assume that the quan-
tization errors are spread evenly amongst all components, then

, and the term in (29) is
then defined as

(30)
Thus the recursion for can also be written as

where now . In this case, converges
to a steady state value satisfying the modified algebraic Ric-
cati equation

(31)

where are the unstable eigenvalues of , with the condi-
tion (31) being tight if has rank one.
Define also

(32)

where the “boundary points” are the quantizer points
lying on the boundary. is now defined as

, where is the maximum
distance from any point in a Voronoi cell to its centroid (before
applying the scaling ), and .
The scaling factors are updated as follows:

(33)

where

Remark 3.1: The expressions for the asymptotic distortion
and asymptotically optimal scaling clearly depends on the
choice of lattice, or equivalently the shape of the Voronoi
cell . However, the optimal shapes for are generally not
known. Even for lattice quantization of uniformly distributed
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random vectors, the optimal cell shapes are only known for
dimensions , 2, 3, see [34].

C. Stability of Quantized Filtering Scheme

In this subsection we prove the stability of the quantized fil-
tering scheme. Define the estimation error .
We have the following preliminary result:
Lemma 3.1: Let be a random vector and a random

variable with for some . Let
in (32). Then for the lattice vector quantizers of [35],

where is a constant that depends on and .
Proof: See Appendix F.

We have the following stability result.
Theorem 3.2: Suppose that for the lattice vector quantizer of

[35] is sufficiently large that condition (31) and

are satisfied, where is the steady state value of , and

. Then is
bounded .

Proof: The proof is similar to the proof of Theorem 2.3, but
making use of Lemma 3.1 instead of Lemma 2.2. The details are
omitted for brevity.

D. Asymptotic Analysis

The technique used for asymptotic analysis of will be the
same as in Section II-D, and we thus only state the final result.
Asymptotically we have , where
decays to zero at the rate for the lattice quantizer of

[35]. can be found by solving numerically the algebraic
Riccati equation

and can be found by solving numerically the Lyapunov equa-
tion (with ).

Remark 3.2: For vector measurements (dimensions )
we have only considered lattice quantization. We can compare
these results with the results from asymptotically optimal vector
quantization [36], [37], where the distortion from quantizing an
i.i.d. Gaussian random vector is asymptotically ,
with being a constant that depends on the dimension
and the variance of the individual components. Thus, while for
asymptotically optimal lattice quantization decays at the rate

, for asymptotically optimal vector quantization de-
cays at the rate . However, the exact values of the constants

are not known for dimensions . Furthermore, com-
puting optimal quantizers numerically for is a non-trivial
task, see [25].

Fig. 2. Error covariance and asymptotic expression: Sensor pairs not
detectable.

IV. NUMERICAL STUDIES

A. Scalar Measurements

We first consider a two sensor situation, with parameters

, , . One can easily verify
that the sensor pairs , , 2 are not detectable. In the
observability decompositions, we choose

In Fig. 2 we plot the results from Monte Carlo simulations of
the trace of the true error covariance

, together with and the asymptotic expression
for , for different values of . We see that
the asymptotic approximations to become more accurate as
increases.
We next consider the rate allocation problem (27) of

Section II-E, with . We consider a two sensor situa-

tion, with parameters , , ,

, , . In this case the sensor
pairs , , 2 are detectable. In Table I we tabulate
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TABLE I
ERROR COVARIANCE AND ASYMPTOTIC EXPRESSION: TWO SENSORS, SCALAR

MEASUREMENTS

Fig. 3. Error covariance and asymptotic expression: Hexagonal lattice quan-
tizer.

the results for some integer combinations of
and , with . We see that ,

gives the best performance in terms of both the
theoretical approximation and performance from Monte
Carlo simulations. Solving the relaxed non-convex problem
(28) using the NMinimize routine in Mathematica gives the
solution , , corresponding to rates

, .

B. Vector Measurements

We next consider the case of a single sensor with vector (2-di-
mensional) measurements, with parameters

We give results for the hexagonal lattice quantizer, which is
known to be a good quantizer in two dimension (in fact optimal
for quantizing uniformly distributed random vectors [34]). If
successive lattice points in the hexagonal lattice have distance 1,
then the Voronoi region is a regular hexagon of length ,
and thus . The normalized moment of inertia can
also been computed (see [34]) as . In Fig. 3 we
give plots of the error covariances for various values of .

V. CONCLUSION

In this paper we have considered some quantized filtering
schemes for multi-sensor linear state estimation. We have
shown their stability under sufficiently high bit rates, and
derived asymptotic approximations to the error covariance
for linear state estimation of discrete time linear systems with
quantized innovations, valid when the sensors use high rate
quantization. Areas of future research include the study of
the effects of random packet losses [38] in addition to high
rate quantization, and analyzing the performance of quantized
filtering schemes at rates close to the minimum data rates of [4].

APPENDIX

A. Proof of Lemma 2.1

Since , we have
. Hence (11) becomes

Now if

then converges to the solution of the equation

or . Then

by using the definition of . Hence

B. Proof of Lemma 2.2

Let and be the index of the quantizer point
. If , then the interval which contains

has length . Thus
and ,
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If , then

where the inequality comes from using similar arguments as in
the proof of Lemma 5.2 in [4]. Averaging over and , we
obtain

Next, we have

where the last line uses a Chebyshev inequality type of argu-
ment. Averaging over , we obtain

Finally, using , we have

where in the second inequality we used the fact that

C. Proof of Theorem 2.3

First rewrite (8) as

(34)
From (34) and (3) we can then derive that

As stated previously, rather than showing directly that
is bounded , we show instead that the upper

bound is bounded .
From the definition of and , and using some of the
pseudo-norm properties (17), we obtain

where we have made use of Lemma 2.2 in the first inequality.
Note that the terms and can be
upper bounded by constants when and have uniformly
bounded -th absolute moments, see also [18]. Then

is bounded if

Since , converges to a steady
state value , as , and can be freely
chosen, stability is ensured if is large enough that

D. Proof of Theorem 2.4

From (8), (9) we have

By similar derivations to [2], [21] we can obtain
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Using this, and the definitions ,

, and , we have

where . Since
, and is bounded for each by

assumption, the result follows.

E. Proof of Lemma 2.6

We have

where the second equality holds if .

F. Proof of Lemma 3.1

We give a sketch of the proof. The inequality

can be shown similar to the proof of Lemma 2.2.

Next, from the scaling , the individual cell sizes will in-
crease at the rate , while the number of cells in each

dimension is of order . Thus, for some constants
and , we have

The rest of the proof then proceeds in a similar manner to the
proof of Lemma 2.2.
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