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Abstract—We address an optimal transmit power allocation
problem that minimizes the outage probability of a secondary
user (SU) who is allowed to coexist with a primary user (PU) in
a narrowband spectrum sharing cognitive radio network, under
a long term average transmit power constraint at the secondary
transmitter (SU-TX) and an average interference power con-
straint at the primary receiver (PU-RX), with quantized channel
state information (CSI) (including both the channels from SU-TX
to SU-RX, denoted as g1 and the channel from SU-TX to PU-RX,
denoted as g0) at the SU-TX. The optimal quantization regions in
the vector channel space is shown to have a “stepwise” structure.
With this structure, the above outage minimization problem can
be explicitly formulated and solved by employing the Karush-
Kuhn-Tucker (KKT) necessary optimality conditions to obtain
a locally optimal quantized power codebook. A low-complexity
near-optimal quantized power allocation algorithm is derived for
the case of large number of feedback bits. More interestingly, we
show that as the number of partition regions approaches infinity,
the length of interval between any two adjacent quantization
thresholds on the g0 axis is asymptotically equal when the average
interference power constraint is active. Similarly, we show that
when the average interference power constraint is inactive, the
ratio between any two adjacent quantization thresholds on the
g1 axis becomes asymptotically identical. Using these results, an
explicit expression for the asymptotic SU outage probability at
high rate quantization (as the number of feedback bits goes
to infinity) is also provided, and is shown to approximate the
optimal outage behavior extremely well for large number of
bits of feedback via numerical simulations. Analysis on the
extension to multiple secondary users case (cognitive multiple-
access network) is also discussed. Numerical results illustrate that
with only a few bits of feedback, the derived algorithms provide
secondary outage performance very close to that with full CSI
at the SU-TX.

Index Terms—Cognitive radio, spectrum sharing, outage prob-
ability, limited feedback.

I. INTRODUCTION

SCARCITY of available vacant spectrum is limiting the
growth of wireless products and services [1]. Traditional

spectrum licensing policy forbids unlicensed users to transmit
in order to avoid unfavorable interference at the cost of
spectral utilization efficiency. This led to the idea of cognitive
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radio (CR) technology, originally introduced by J. Mitola [2],
which holds tremendous promise to dramatically improve the
efficiency of spectral utilization.

The key idea behind CR is that an unlicensed/secondary
user (SU) is allowed to communicate over a frequency band
originally licensed to a primary user (PU), as long as the
transmission of SU does not generate unfavorable impact on
the operation of PU in that band. Effectively, three categories
of CR network paradigms have been proposed: interweave,
overlay, and underlay [3]. In the underlay systems, also known
as spectrum sharing model, which is the focus of this paper,
the SU can transmit even when the PU is present, but the trans-
mit power of SU should be controlled properly so as to ensure
that the resulting interference does not degrade the received
signal quality of PU to an undesirable level [4] by imposing
the so called interference temperature [5] constraints at PU
(average or peak interference power (AIP/PIP) constraint) and
as well as to enhance the performance of SU transmitter (SU-
TX) to SU receiver (SU-RX) link.

Various notions of capacity for wireless channels include
ergodic capacity (for delay-insensitive services), delay-limited
capacity and outage probability (for real-time applications).
These information theoretic capacity notions constitute impor-
tant performance measures in analyzing the performance limits
of CR systems. In [5], the authors investigated the ergodic
capacity of such a dynamic narrowband spectrum sharing
model under either AIP or PIP constraint at PU receiver
(PU-RX) in various fading environments. The authors of [6]
extended the work in [5] to asymmetric fading environments.
In [7], the authors studied optimum power allocation for
three different capacity notions under both AIP and PIP
constraints. In [4], the authors also considered the transmit
power constraint at the SU-TX and investigated the optimal
power allocation strategies to achieve the ergodic capac-
ity and outage capacity of SU under various combinations
of secondary transmit (peak/average) power constraints and
interference (peak/average) constraints. The optimal power
allocation schemes for achieving the ergodic sum capacity
of the fading cognitive multiple-access channel and cognitive
broadcast channel were first studied in [29]. [28] investi-
gated the outage minimization problem under interference
power constraint together with the individual transmit power
constraint of each SU for fading cognitive multiple-access
channels. In [30], power control algorithms were provided for
a cognitive radio network consisting of primary and secondary
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users as a multiple-access system. In [31], the authors jointly
designed power control, scheduling and routing for multi-hop
cognitive radio networks.

Achieving the optimal system performance for a SU re-
quires the SU-TX to acquire full channel state information
(CSI) including the channel information from SU-TX to PU-
RX and the channel information from SU-TX to SU-RX. Most
of the above results assume perfect knowledge or full CSI,
which is very difficult to implement in practice, especially
the channel information from SU-TX to PU-RX without
PU’s cooperation. A few recent papers have emerged that
address this concern by investigating performance analysis
with various forms of partial CSI at SU-TX, such as noisy
CSI and quantized CSI. With assumption of perfect knowledge
of the CSI from SU-TX to SU-RX channel, [8] studied the
effect of imperfect channel information of the SU-TX to PU-
RX channel under AIP or PIP constraint by considering the
channel information from SU-TX to the PU-RX as a noisy
estimate of the true CSI and employing the so-called ’tifr’
transmission policy. Another recent work [9] also considered
imperfect CSI of the SU-TX to PU-RX channel in the form of
noisy channel estimate (a range from near-perfect to seriously
flawed estimates) and studied the effect of using a midrise
uniformly quantized CSI of the SU-TX to PU-RX channel,
while also assumed the SU-TX had full knowledge of the CSI
from SU-TX to SU-RX channel. Recently, [10] has proposed
a practical design paradigm for cognitive beamforming based
on finite-rate cooperative feedback from the PU-RX to the
SU-TX and cooperative feedforward from the SU-TX to
the PU-RX. A robust cognitive beamforming scheme was
also analyzed in [11], where full channel information on
SU-TX to SU-RX channel was assumed, and the imperfect
channel information on the SU-TX to PU-RX channel was
modelled using an uncertainty set. Finally, [12] studied the
issue of channel quantization for resource allocation via the
framework of utility maximization in OFDMA based CR
networks, but did not investigate the joint channel partitioning
and rate/power codebook design problem. The absence of a
rigorous and systematic design methodology for quantized
resource allocation algorithms in the context of cognitive radio
networks motivated our earlier work [13], where we addressed
an SU ergodic capacity maximization problem in a wideband
spectrum sharing scenario with quantized information about
the vector channel space involving the SU-TX to SU-RX
channel and the SU-TX to PU-RX channel over all bands,
under an average transmit power constraint at the SU-TX and
an average interference constraint at the PU-RX. [14] studied
the spectral efficiency maximization problem based on the
quantized CSI sent from SU-RX and PU-RX separately to the
SU-TX. A slightly different approach was taken in [15], [16]
where the SU overheard the PU feedback link information and
used this to obtain information about whether or not the PU
is in outage and how the SU-TX should control its power to
minimize interference on the PU-RX.

In this paper, we address the problem of minimizing the
SU outage probability under an average transmit power (ATP)
constraint at the SU-TX and an average interference power
(AIP) constraint at the PU-RX. Similar to [13], we consider
an infrastructure-based narrowband spectrum sharing scenario

where an SU communicates to its receiver contained within the
SU base station (SU-BS) on a narrowband channel shared with
a PU communicating to its receiver, located within the primary
base station (PU-BS). The key problem involves a joint design
of the optimal partition regions of the vector channel space
(consisting of the SU-TX to SU-BS channel (denoted by
power gain g1) and the interfering channel between the SU-
TX and PU-BS (denoted by power gain g0)) and the design
of the corresponding optimal power codebook. This is solved
offline at a central controller called the CR network manager
as in [13], based on the channel statistics. We assume that the
CR network manager is able to obtain full CSI information
of the vector channel space (g1, g0) in real-time from the SU-
BS and PU-BS, respectively, via optical-fibre links (similar to
backhaul links in multi-cell MIMO cooperative networks [17]
or coordinated multipoint (COMP) networks [18], [19] con-
necting multiple base stations). Note also that as reported in
[18], an outdoor testbed in Berlin, Germany was successfully
implemented to make such network coordination feasible,
which consisted of four base station sites (seven sectors)
connected via 1 Gb/s optical-fibre and free space optical links.
This example suggests that a network configuration with a
CR network manager connected to SU-BS and PU-BS via
optical fibre links is actually feasible in a practical cognitive
radio network. Furthermore, it has been shown in various
other works that some level of primary cooperation can benefit
both the primary and secondary users [20], [21]. Finally, to
financially justify PU-BS cooperation, the primary network
service provider can also adopt a pricing system via which
it can charge the CR network manager for providing CSI
information. The CR network manager can recover this cost by
charging each SU a nominal service fee. Once equipped with
the real-time full CSI information, the CR network manager
assigns the real-time channel realization (g1, g0) to an optimal
channel partition and the corresponding partition index is then
sent to the SU-TX (and to the SU-RX for decoding purposes)
via a delay-free and error-free [32] finite-rate feedback link.
The SU-TX then uses the power codebook element associated
with this index for data transmission. It was shown in [13]
that without the presence of the CR network manager, and
thus without the ability to jointly quantize the combined
channel space, the SU capacity performance is significantly
degraded if one carries out separate quantization of g1 and
g0. Under such a network configuration, we derive various
optimal and suboptimal quantized power allocation algorithms
for secondary outage minimization. Motivated by limitations
of existing practical backhaul links, we also consider the case
where only quantized information of g0 is available at the
CR network manager. Finally, we also propose a sub-optimal
quantized power allocation algorithm for the achievable sum-
rate outage minimization for a cognitive multiple-access chan-
nel with multiple secondary users and a single primary user.

The key contributions of this paper are listed as follow:

1) The difficulty of the outage minimization problem is due
to the lack of an explicit expression for the outage prob-
ability with quantized power allocation (QPA). Thus one
cannot directly exploit the Generalized Lloyd Algorithm
(GLA) with a Lagrangian distortion, as we used in [13],
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to solve the outage minimization Problem with limited
feedback. As an alternative, a sigmoid function can be
used to approximate the indicator function [25], so as to
obtain an approximate closed-form expression of outage
probability. This approach then can be combined with
GLA to design a suboptimal QPA algorithm, termed
as the GLASFA method in this paper. We also inves-
tigate a general approach based on a simulation based
optimization method called the ’Simultaneous Perturba-
tion Stochastic Approximation algorithm (SPSA)’ [23].
However, its high computational complexity coupled
with a long convergence time limits its applicability. To
overcome these drawbacks, we propose a novel low-
complexity optimal QPA approach. To this end, we
first prove that the optimal channel partition regions
possess a “stepwise” structure, which helps us explicitly
formulate the outage minimization problem, and then
solve the corresponding optimization problem using
the associated Karush-Kuhn-Tucker (KKT) necessary
optimality conditions. The non-convexity of the problem
however ensures that the solutions obtained are only
locally optimum.

2) We also consider the situation when the CR network
manager is assumed to be located at the SU-BS, and can
obtain full information of g1 without any backhaul link.
In this case, the PU-BS simply has to cooperate with
the SU-BS (or the CR network manager) by sending
the information of g0. Instead of assuming an optical
fibre link to obtain full information of g0 from PU-
BS, we also consider the practical case of a finite rate
feedback link (e.g. due to a microwave backhaul link) to
obtain quantized information of g0 from PU-BS. In this
case, the CR network manager designs the optimal QPA
algorithm based on full information of g1 but quantized
information of g0 (we call it the QPA-Qg0 algorithm).

3) As the number of feedback bits goes to infinity, we
show that the power level for the last quantization
region approaches zero, allowing us to derive a useful
low-complexity suboptimal quantized power allocation
algorithm called ’ZPiORA’ for high rate quantization.
Simulation results illustrate that ’ZPiORA’ significantly
outperforms the GLASFA method.

4) We also derive a number of significant useful properties
related to the channel quantizer structure as the number
of feedback bits approaches infinity: (a) under an active
AIP constraint, the length of interval between any two
adjacent quantization thresholds on g0 axis is asymptoti-
cally the same, and (b) while when the AIP constraint is
inactive, the ratio between any two adjacent quantization
thresholds on g1 axis asymptotically becomes identical.
With these properties, we derive explicit expressions for
asymptotic (as the number of feedback bits approaches
infinity) behavior of the SU outage probability with
quantized power allocation for high resolution quanti-
zation.

5) We then extend our SU outage minimization problem to
the case of an achievable sum-rate outage minimization
problem for multiple secondary users (SUs) forming a
cognitive multiple-access channel (CMAC). It is seen

that the quantization region structure is too complex for
this case to be explicitly formulated. Hence we design a
suboptimal quantized power allocation algorithm using
the sigmoid function approximation to tackle the prob-
lem numerically.

6) Finally, we present a comprehensive set of numerical
results which illustrate that with only 6 bits of feedback,
the designed locally optimal QPA algorithms provide
secondary outage probability very close to that achieved
by full CSI. With 2-4 bits of feedback, ZPiORA provides
a comparable performance, thus making it an attractive
choice for large number of feedback bits case. Numer-
ical studies also depict that ZPiORA performs better
than two other suboptimal algorithms constructed using
existing approximations in the literature. It is also shown
that the derived asymptotic outage behavior approxi-
mates the true outage behaviour achieved by the locally
optimal QPA extremely well as the number of feedback
bits becomes large. Finally, numerical results regarding
the sum-rate outage performance for the CMAC case
with limited feedback are also provided.

This paper is organized as follows. Section II introduces
the system model and the problem formulation based on

the full CSI assumption. Section III presents the joint design
of the optimal channel partition regions and an optimal power
codebook algorithm. A low-complexity suboptimal quantized
power allocation strategy is also derived using novel interest-
ing properties of the quantizer structure and optimal quantized
power codebooks. In Section IV, the asymptotic behavior
of SU outage probability for high resolution quantization is
investigated. A discussion on how to design a suboptimal QPA
in the case of multiple SUs forming a CMAC is provided in
Section V. Simulation results are given in Section VI, followed
by concluding remarks in Section VII. Note that some of
these results in this paper have been partially presented at
a conferece [33]. This jounral version contains a rigorous and
more substantial treatment of the secondary outage minimiza-
tion problem in spectrum sharing and various other extensions
such as considering multiple secondary users and the case of
quantized g0 information.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an infrastructure-based spectrum sharing net-
work where a SU communication uplink to the SU-BS coexists
with a PU link (to the PU-BS) within a narrowband channel.
Regardless of the on/off status of PU, the SU is allowed to
access the band which is originally allocated to PU, so long
as the impact of the transmission of SU does not reduce the
received signal quality of PU below a prescribed level. All
channels here are assumed to be slow (appropriate for the
outage probability as a performance metric) Rayleigh block
fading channels. Let g1 = |h1|2 and g0 = |h0|2, denote the
nonnegative real-valued instantaneous channel power gains
for the links from SU-TX to SU-BS and SU-TX to PU-BS
respectively (where h1 and h0 are corresponding complex
zero-mean circularly symmetric channel amplitude gains).
The exponentially distributed channel power gain g1 and g0,
are statistically mutually independent and, without loss of
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generality (w.l.o.g), are assumed to have unity mean. It has
been common practice to ignore the primary interference at
the secondary receiver in many papers such as [5], [6], [13],
whereas papers such as [14] consider primary interference
explicitly assuming the primary transmitter (PU-TX) always
transmits with a constant power, which along with the PU-
TX to SU-RX channel gain is known at the SU-BS. To avoid
complications due to the added level of knowledge needed at
the SU-BS in this framework, similar to [29], we consider
any other interference from outside of the secondary network
at the SU-BS, including the interference from the PU-TX,
as additive Gaussian noise. This is based on the assumption
that the primary uses a Gaussian codebook for transmission.
The additive noises at SU-BS and PU-BS are assumed to
be independent circular symmetric complex Gaussian (CSCG)
random variables with, w.l.o.g, zero mean and unit variance.

Given a channel realization (g0, g1), let the instantaneous
transmit power (with full CSI) at the SU-TX be represented
by p(g0, g1), then the maximum mutual information of the
SU for this narrowband spectrum sharing system can be
expressed as R(g1, p(g0, g1)) =

1
2 log(1+ g1p(g0, g1)), where

log represents the natural logarithm. The outage probability of
SU-TX with a pre-specified transmission rate r0, is given as,
Pout = Pr{R(g1, p(g0, g1)) < r0}, where Pr{A} indicates
the probability of event A occurring. Using the interference
temperature concept in [5], a common way to protect PU’s
received signal quality is by imposing either an average or a
peak interference power (AIP/PIP) constraint at the PU-RX.
In [22], it was demonstrated that the AIP constraint is more
flexible and favorable than the PIP constraint in the context
of transmission over fading channels. Let Qav denotes the
average interference power limit tolerated by PU-RX, then
the AIP constraint can be written as, E[g0p(g0, g1)] ≤ Qav .

The following optimal power allocation problem that mini-
mizes the outage probability of SU in a narrowband spectrum
sharing with one PU, under both a long term average transmit
power (ATP) constraint at SU-TX and an AIP constraint at
the PU-RX, was considered in [4]

minimize
p(g0,g1)≥0

Pr

{
1

2
log(1 + g1p(g0, g1)) < r0

}
subject to E[p(g0, g1)] ≤ Pav,

E[g0p(g0, g1)] ≤ Qav (1)

where Pav is the maximum average transmit power at SU-TX.
With the assumption that perfect CSI of both g0 and

g1 is available at the SU-TX, the optimal power alloca-
tion scheme for Problem (1) is given by [4]: p∗(g0, g1) ={

c
g1
, if λ∗

f + μ∗
fg0 < g1

c

0, otherwise
, where c = e2r0−1, and λ∗

f , μ∗
f

are the optimal nonnegative Lagrange multipliers associated
with the ATP constraint and the AIP constraint, respectively,
which can be obtained by solving λ∗

f (E[p(g0, g1)]−Pav) = 0
and μ∗

f (E[g0p(g0, g1)]−Qav) = 0 .
However, the assumption of full CSI at the SU-TX (es-

pecially that of g0) is usually unrealistic and difficult to
implement in practical systems, especially when this channel
is not time-division duplex (TDD). In the next section, we are
therefore interested in designing a power allocation strategy

Spectrum sharing for a licensed band

SU-BS

CR network 
managerSU-TX

g

g PU-BS

B bits feedback

SU-UU B

its fee

U TX

Fig. 1. System model for narrowband spectrum sharing scenario with limited
rate feedback.

of the outage probability minimization Problem (1) based on
quantized CSI at the SU-TX acquired via a no-delay and error-
free 1 feedback link with limited rate.

III. OPTIMUM QUANTIZED POWER ALLOCATION (QPA)
WITH IMPERFECT g1 AND g0 AT SU-TX

A. Optimal QPA with limited rate feedback strategy

As shown in Fig.1, following our earlier work [13], we
assume that there is a central controller termed as CR network
manager who can obtain perfect information of g0 and g1,
from PU-RX at the PU base station and SU-RX at the SU base
station respectively, possibly over fibre-optic links, and then
forward some appropriately quantized (g0, g1) information to
SU-TX through a finite-rate feedback link. For further details
on the justification of resulting benefits due this assumption,
see [13]. Under such a network modelling assumption, given
B bits of feedback, a power codebook P= {p1, . . . , pL} of
cardinality L = 2B , is designed offline purely on the basis
of the statistics of g0 and g1 information at the CR network
manager. This codebook is also known a priori by both SU-TX
and SU-RX for decoding purposes. Given a channel realization
(g0, g1), the CR network manager employs a deterministic
mapping from the current instantaneous (g0, g1) information
to one of L integer indices (let I(g0, g1) denote the mapping,
which partitions the vector space of (g0, g1) into L regions
R1, . . . ,RL, defined as I(g0, g1) = j, if (g0, g1) ∈
Rj , j = 1, . . . , L), and then sends the corresponding index
j = I(g0, g1) to the SU-TX (and the SU-RX) via the feedback
link. The SU-TX then uses the associated power codebook
element (e.g., if the feedback signal is j, then pj will be used
as the transmission power) to adapt its transmission strategy.

Remark 1: Note that the CR network manager could be
assumed to be located at the SU-BS for the current setup
and in this case, the PU-BS simply has to cooperate with the
SU-BS by sending the real-time full CSI information of g0.
However, for future generalization of our work to a multi-cell
cognitive network scenario, we assume that the CR network

1Since we consider a slow block-fading environment and only a few
bits of CSI feedback (per fading block) are required, the feedback delay is
significantly less than the coherence time of the fading channels concerned.
Thus, according to [32], the effect of feedback delay can be negligible.
Moreover, with such small data rate, error-free feedback can be easily
achieved by employing efficient and strong error control coding over the
feedback link [32].
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manager is a separate entity, which can obtain information
from multiple PU-BS and SU-BS if necessary.

Define an indicator function Xj , j = 1, . . . , L, as Xj ={
1, if 1

2 log(1 + g1pj) < r0

0, otherwise
. Let Pr(Rj), E[•|Rj ] rep-

resent Pr((g0, g1) ∈ Rj) and E[•|(g0, g1) ∈ Rj ], respec-
tively. Then the SU outage probability minimization problem
with limited feedback can be formulated as

minimize
pj≥0, Rj ∀j

L∑
j=1

E[Xj |Rj ]Pr(Rj)

subject to
L∑

j=1

E[pj |Rj ]Pr(Rj) ≤ Pav,

L∑
j=1

E[g0pj |Rj ]Pr(Rj) ≤ Qav. (2)

Thus the key problem to solve here is the joint optimization
of the channel partition regions and the power codebook such
that the outage probability of SU is minimized under the above
constraints.

The dual problem of (2) is expressed as, maximizeλ≥0, μ≥0

g(λ, μ) − λPav − μQav , where λ, μ are the nonnegative
Lagrange multipliers associated with the ATP and AIP con-
straints in Problem (2), and the Lagrange dual function g(λ, μ)
is defined as

g(λ, μ) = minimize
pj≥0, Rj , ∀j

L∑
j=1

E[Xj + (λ + μg0)pj |Rj ]Pr(Rj).

(3)

The procedure we use to solve the above dual problem is:
Step 1: With fixed values of λ and μ, find the optimal solu-

tion (power codebook and quantization regions) for the
Lagrange dual function (3).

Step 2: Find the optimal λ and μ by solving the dual problem
using subgradient search method, i.e, updating λ, μ until
convergence using

λl+1 =

[
λl − αl

(
Pav −

L∑
j=1

E[pj |Rj ]Pr(Rj)

)]+
,

μl+1 =

[
μl − βl

(
Qav −

L∑
j=1

E[g0pj |Rj ]Pr(Rj)

)]+
,

(4)

where l is the iteration number, αl, βl are positive scalar
step sizes for the l-th iteration satisfying

∑∞
l=1 α

l =
∞,

∑∞
l=1(α

l)2 < ∞ and similarly for βl, and [x]+ =
max(x, 0).

Remark 2: A general method to solve Step 1 is to employ a
simulation-based optimization algorithm called Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithm (for
a step-by-step guide to implementation of SPSA, see [23]),
where one can use the objective function of Problem (3) as
the loss function and the optimal power codebook elements
for each channel partition are obtained via a randomized
stochastic gradient search technique. Note that due to the
presence of the indicator function and no explicit expression
being available for the outage probability with quantized

power allocation, we can’t directly exploit the Generalized
Lloyd Algorithm (GLA) with a Lagrangian distortion, as we
used in [13], to solve Problem (3). SPSA uses a simulation-
based method to compute the loss function and then estimates
the gradient from a number of loss function values computed
by randomly perturbing the power codebook. Note that SPSA
results in a local minimum (similar to GLA), but is computa-
tionally highly complex and the convergence time is also quite
long.

Due to the high computational complexity of SPSA and
its long convergence time to solve Problem (3), we will next
derive a low-complexity approach for solving Problem (3).
However, due to the original problem (2) not being convex
with respect to the power codebook elements, the optimal
solution we can obtain is also locally optimal.

Let P = {p1, . . . , pL}, where p1 > · · · > pL ≥ 0, and
the corresponding channel partitioning R1, . . . ,RL denote an
optimal solution to Problem (3). Let p(I(g0, g1)) represent
the mapping from instantaneous (g0, g1) information to the
allocated power level. We can then obtain the following result:

Lemma 1: Let {v1, . . . , vL} denote the optimum quan-
tization thresholds on the g1 axis (0 < v1 < · · · <
vL) and {s1, . . . , sL−1} indicate the optimum quantization
thresholds on the g0 axis (0 < s1 < · · · < sL−1).
Then we have ∀j, j = 1, . . . , L − 1, p(I(g0, g1)) ={
pj , if vj ≤ g1 < vj+1, 0 ≤ g0 < sj

pL, otherwise
, where vj =

c
pj
, j = 1, . . . , L, and for ∀j, j = 1, . . . , L − 1, when

μ > 0, sj = 1
μ(pj−pL) − λ

μ , while when μ = 0, sj = ∞,
then condition 0 ≤ g0 < sj boils down to λ < 1

pj−pL
. The

region RL includes two parts : the set RL1 = {(g0, g1) : vj ≤
g1 < vj+1, g0 ≥ sj , ∀j = 0, . . . , L − 1} with s0 = 0, v0 = 0
and the set RL2 = {(g0, g1) : g1 ≥ vL, g0 ≥ 0}. The entire
set RL1 is in outage.

Proof: See Appendix A.

Remark 3: When μ > 0, which implies that the AIP
constraint is active, from Lemma 1, the optimum partition
regions possess a stepwise structure, as shown in Fig.2.
When μ = 0, i.e, the AIP constraint is inactive and
only ATP constraint is active (we must have λ > 0),
Problem (2) becomes a scalar quantization problem involving
quantizing g1 only, and Lemma 1 reduces to : p(I(g1)) ={
pj , if vj ≤ g1 < vj+1, ∀j, j = 1, . . . , L− 1

pL, otherwise
, where

λ < 1
pj−pL

, ∀j = 1, 2, . . . , L − 1 and the two sub-
regions of RL become RL1 = {g1 : 0 ≤ g1 < v1} and
RL2 = {g1 : g1 ≥ vL}, and RL1 is in outage. Note that
in this case we must have Qav ≥ Pav , due to Qav ≥∑L

j=1 E[g0pj |Rj ]Pr(Rj) =
∑L

j=1 E[pj |Rj ]Pr(Rj) = Pav ,
where the last equality follows from the fact the
E[g0|Rj ] = E[g0] = 1 since Rj is formed purely based on
the values of g1, which is independent of g0. Note also that
one can easily prove the converse, that when Qav ≥ Pav, one
must have μ = 0.

From Lemma 1, (due to the fading channels being indepen-
dently exponentially distributed with unity mean) Problem (2)
becomes,
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(outage)

Fig. 2. The stepwise structure of optimum quantization regions for µ > 0
case.

minimize
pj≥0, ∀j

PL
out = 1− e−v1 +

L−1∑
j=1

(e−vj − e−vj+1)e−sj

subject to

pL +

L−1∑
j=1

(pj − pL)(e
−vj − e−vj+1)(1− e−sj ) ≤ Pav,

pL +

L−1∑
j=1

(pj − pL)(e
−vj − e−vj+1)(1− e−sj (1 + sj)) ≤ Qav,

(5)

where PL
out denotes the outage probability with B = log2 L

bits feedback QPA, vj = c
pj
, j = 1, . . . , L and for ∀j, j =

1, . . . , L−1, when μ > 0, sj =
1

μ(pj−pL) − λ
μ , whereas when

μ = 0, sj = ∞. Although the above optimization problem
may be verified to be non-convex, we can employ the KKT
necessary conditions to find a local minimum for Problem (5).
Taking the partial derivative of first order of the Lagrangian of
Problem (5) over pj , j = 1, . . . , L− 1, and setting it to zero,
we can obtain

(e−vj − e−vj+1)[λ(1 − e−sj ) + μ(1− e−sj (1 + sj))]

= e−vj
c

p2j
[f̂(pj−1)− f̂(pj)], 1 ≤ j ≤ L− 1; (6)

where f̂(p0) = 1 and f̂(pj) = (pj−pL)(λ+μ(1−e−sj)), 1 ≤
j ≤ L− 1. (6) also can be rewritten as j = 1, . . . , L− 1,

pj+1 =
c

vj − ln

(
1−

c

p2
j

[f̂(pj−1)−f̂(pj)]

λ(1−e−sj )+μ(1−e−sj (1+sj))

) , (7)

Equating the partial derivative of the Lagrangian function of
Problem (5) over pL to zero gives,

L−1∑
j=1

(e−vj − e−vj+1)[λ(1 − e−sj ) + μ(1− e−sj (1 + sj))]

+ e−vL
c

p2L
f̂(pL−1) = λ+ μ. (8)

Optimal values of λ and μ can be determined by solving

λ

[
pL +

L−1∑
j=1

(pj − pL)(e
−vj − e−vj+1)(1− e−sj )− Pav

]
= 0

μ

[
pL +

L−1∑
j=1

(pj − pL)(e
−vj − e−vj+1)(1− e−sj (1 + sj))

−Qav

]
= 0. (9)

Thus, for fixed values λ and μ, we need to solve the L
equations given by (7), (8) to obtain the power codebook.
Given p1 and pL, from (7) we can successively compute
p2, . . . , pL−1, and then we can jointly solve the equation (7)
with j = L − 1 and equation (8) numerically for p1 and pL.
The optimal value of λ and μ can be obtained by solving
(9) with a subgradient method, i,e. by updating λ and μ until
convergence using (4). One can thus repeat the above two
steps (i.e, given λ and μ find the optimal power levels, and
then using the resulting optimal power levels update λ and
μ) iteratively until a satisfactory convergence criterion is met.
This procedure can be formally summarized as:

a) First, if Pav ≤ Qav, we must have μ = 0, λ > 0.
Starting with an arbitrary positive initial value for λ,
solve (6), (8) to obtain a power codebook {p1, . . . , pL},
and then use this codebook to update λ by (4). Repeat
these steps until convergence and the final codebook will
be an optimal power codebook for Problem (5).

b) If Pav > Qav, we must have μ > 0 by contradiction
(since if μ = 0, we must have Pav ≤ Qav). Let λ =
0, then solving KKT conditions gives an optimal value
of μ and corresponding power codebook {p1, . . . , pL}.
With this codebook, if

∑L
j=1 E[pj |Rj ]Pr(Rj) ≤ Pav ,

then it is an optimal power codebook for Problem (5).
Otherwise we must have λ > 0 too, in which case,
starting with arbitrary positive initial values for λ and μ,
obtain the corresponding power codebook {p1, . . . , pL},
and then update λ and μ by (4). Repeat these steps until
convergence and the final codebook will be an optimal
power codebook for Problem (5).

B. QPA algorithm based on quantized g0 from PU-BS and full
g1 from SU-BS

In this section (see Remark 1), we assume the CR network
manager is located at the SU-BS and thus is able to obtain
full information on g1 without any backhaul link. In this
case, the PU-BS simply has to cooperate with the SU-BS
(or equivalently, the CR network manager) by sending CSI
of g0. Motivated by finite-rate constraints of existing wireless
backhaul links, here we consider using a finite rate feedback
link to obtain quantized information of g0 from PU-BS.
In this case, the CR network manager designs the optimal
QPA algorithm based on full information of g1 but quantized
information of g0 (we call it the QPA-Qg0 algorithm).

More specifically, PU-BS quantizes g0 by minimizing
its corresponding squared distortion measure

∑L′

n=1 E[(g0 −
g′0n)

2|Rn]Pr(Rn) using the typical Lloyd Algorithm, where
g′0n is the reconstruction vector for g0 in the quantization
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region Rn. Then PU-BS maps the instantaneous g0 informa-
tion into one of L′ integer indices and sends the index to the
CR network manager. Since the codebook of the PU-BS for
quantizing g0 is designed offline, the CR network manager can
be made aware of this codebook a priori. The CR network
manager then designs a locally optimal QPA-Qg0 algorithm
power codebook P = {p1, . . . , pL} based on quantized g0
(i.e., based on fixed quantization thresholds on the g0 axis) and
full g1 information, it then maps the received g0 index together
with instantaneous g1 information into one of L integer indices
and sends the index to the SU-TX.

The key issue here is how to design the optimal QPA-Qg0
algorithm. For simplicity, we assume L = L′, although this
method can be generalized to any L′. With a set of given
quantization thresholds on the g0 axis, 0 < s1 < · · · < sL−1,
let {v1, . . . , vL} denote the optimum quantization thresholds
on the g1 axis (0 < v1 < · · · < vL). Then, when Pav ≤ Qav,
i.e., μ = 0, the AIP constraint is inactive, no matter what the
index for quantized g0 is, the QPA-Qg0 algorithm is identical
to the optimal QPA algorithm. When Pav > Qav, i.e., μ > 0,
the AIP constraint is active. In this case, using a proof similar
to that of Lemma 1, we can show that the optimal quantization
regions of QPA-Qg0 has a stepwise structure as given in
Lemma 1 but with known g0 quantization thresholds. Then
similar to (5), the outage probability minimization problem
with limited feedback for QPA-Qg0 case can be formulated
as

minimize
pL≥0

PL
out = 1− e−v1 +

L−1∑
j=1

(e−vj − e−vj+1)e−sj

subject to

pL +

L−1∑
j=1

1

λ+ μsj
(e−vj − e−vj+1)(1− e−sj ) ≤ Pav,

pL +

L−1∑
j=1

1

λ+ μsj
(e−vj − e−vj+1)(1− e−sj (1 + sj)) ≤ Qav,

vj =
c

pL + 1
λ+μsj

∀j = 1, . . . , L, sL = ∞. (10)

The above problem first needs to be solved for pL by any
appropriate nonlinear equation solver. After obtaining pL,
pj = pL + 1

λ+μsj
, ∀j = 1, . . . , L− 1, can be obtained easily.

Numerical results illustrate that the outage performance gap
between the QPA-Qg0 algorithm and original QPA algorithm
is considerably small especially for small Qav values. See
section VI for more details on simulation results .

C. Suboptimal QPA Algorithm

In this section, we derive a computationally efficient but
suboptimal algorithm for the case when the number of feed-
back bits becomes large. When the number of feedback bits
B (or alternatively, L) goes to infinity, we can obtain the
following Lemma that allows us to obtain this suboptimal but
computationally efficient quantized power allocation algorithm
for large but finite L.

Lemma 2: limL→∞ pL = 0
Proof: See appendix B.

Remark 4: Lemma 2 shows that regardless of whether
μ > 0 or μ = 0, with high rate quantization, the power level

for the last region RL approaches zero, which also implies
the following as L → ∞:
1) The non-outage part of RL, given by RL2, disappears
gradually. In other words, RL → RL1. Thus, when L → ∞,
RL becomes the outage region with zero power assigned to
it.
2) When μ > 0, the quantization thresholds on the g0 axis
sj → s′j (where s′j =

1
μpj

− λ
μ ), which gives vj = cλ+ cμs′j ,

and it means all the points given by coordinates (s′j , vj) lie on
the line of g1 = cλ+cμg0. Therefore, as L → ∞, the stepwise
shape of the structure in μ > 0 case (i.e, the boundary between
non-outage and outage regions) approaches the straight line
g1 = cλ + cμg0, which is consistent with the full CSI-based
power allocation result in [4].

Thus, when L is large, applying Lemma 2 (i.e, pL → 0) to
Problem (5), the above L KKT conditions (6) and (8) can be
simplified into L− 1 equations:

(e−vj − e−vj+1)[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]

=e−vj
c

p2j
[pj−1(λ + μ(1− e−s′j−1))− pj(λ+ μ(1− e−s′j ))],

∀j = 1, . . . , L− 1
(11)

where when μ > 0, the quantization thresholds on the g0
axis are given by s′j = 1

μpj
− λ

μ , s′0 = 0, and p0 = 1
λ+μs′0

,

while when μ = 0, s′j = ∞, s′0 = 0, and p0 = 1
λ .

(11) can be also written as (12). Thus, for given values
of λ and μ, starting with a specific value of p1, we can
successively compute p2, . . . , pL−1 using the first equation
of (12) (recall that vj = c

pj
). Then the second equation in

(12) becomes an equation in p1 only, which can be solved
easily using a suitable nonlinear equation solver. We call this
suboptimal QPA algorithm as ’Zero Power in Outage Region
Approximation’(ZPiORA), which is applicable to the case of
a large number of feedback bits, where the exact definition of
“large” will be dependent on the system parameters. Through
simulation studies, we will illustrate that for our choice of
system parameters, ZPiORA performs well even for as low as
B = 2 bits of feedback.
Alternative suboptimal algorithms: For comparison pur-
poses, we also propose two alternative suboptimal algorithms
described below:

(1) The first suboptimal algorithm is based on an equal aver-
age power per (quantized) region (EPPR) approximation
algorithm, proposed in [24] in a non-cognitive or typical
primary network setting for an outage minimization
problem with only an ATP constraint. More specifically,
by applying the mean value theorem (similar to [24])
into the KKT conditions (6) with j = 2, . . . , L − 1,
we can easily obtain that pj(e

−vj − e−vj+1)[λ(1 −
e−sj ) + μ(1 − e−sj (1 + sj))] ≈ pj−1(e

−vj−1 −
e−vj )[λ(1− e−sj−1) + μ(1− e−sj−1(1 + sj−1))], j =
2, . . . , L − 2. Adding the two equations of (9) to-
gether and applying (8), we have

∑L−1
j=1 pj(e

−vj −
e−vj+1)[λ(1 − e−sj ) + μ(1− e−sj (1 + sj))] = λPav +
μQav −e−vL c

pL
(pL−1−pL)(λ+μ(1−e−sL−1 )). Since

e−vL c
pL

(pL−1 − pL)(λ + μ(1 − e−sL−1)) can be ap-
proximated as pL−1(e

−vL−1 − e−vL)[λ(1 − e−sL−1) +
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pj+1 =
c

vj − ln

⎛
⎝1−

c

p2
j

[
pj−1(λ+μ(1−e

−s′
j−1 ))−pj(λ+μ(1−e

−s′
j ))

]

λ(1−e
−s′

j )+μ(1−e
−s′

j (1+s′j))

⎞
⎠
,

∀j = 1, . . . , L− 2;

λ(1− e−s′L−1) + μ(1− e−s′L−1(1 + s′L−1))
c

p2
L−1

[pL−2(λ+ μ(1− e−s′L−2))− pL−1(λ+ μ(1− e−s′L−1))]
= 1. (12)

μ(1 − e−sL−1(1 + sL−1))] by using the mean value
theorem, we can obtain the following L (approximate)
equations, namely pj(e

−vj−e−vj+1)[λ(1−e−sj )+μ(1−
e−sj (1 + sj))] ≈ λPav+μQav

L , j = 1, . . . , L − 1 and
pL(1 − ∑L−1

j=1 (e
−vj − e−vj+1)[λ(1 − e−sj ) + μ(1 −

e−sj (1 + sj))]) ≈ λPav+μQav

L . Then one can jointly
solve the above L equations and two other equations
((6) with j = 1 and (8)) for λ, μ, pj , ∀j = 1, . . . , L. We
call this suboptimal algorithm as the “Modified EPPR
(MEPPR)” approximation algorithm. Obviously, ZPi-
ORA is computationally much simpler than this method,
especially when μ > 0. Furthermore, from simulations,
when Pav or Qav is small, the performance of ZPiORA
is always better than MEPPR. It is seen however that
when both Pav and Qav are large, for a small number
of feedback bits, MEPPR may outperform ZPiORA,
whereas with a sufficiently large number of feedback
bits, ZPiORA is a more accurate approximation due to
Lemma 2 (when L is large, pL approaches zero, whereas
MEPPR has pL > 0 ∀L). See Section V for more details.
Note that, an equal probability per region (excluding
the outage region) approximation algorithm employed
in [10] for scalar quantization can not be applied to
our case (vector quantization), since it will increase the
computational complexity even further.

(2) The second algorithm is based on GLA with a sigmoid
function approximation (GLASFA) method proposed
by [25], where the sigmoid function is used to ap-
proximate the indicator function in the Lagrange dual
function (3). More specifically, given a random initial
power codebook, we use the nearest neighbor condi-
tion of Lloyd’s algorithm with a Lagrangian distortion
d((g0, g1), j) = Xj + (λ + μg0)pj to generate the
optimal partition regions [26] given by, Rj = {(g0, g1) :
Xj + (λ + μg0)pj ≤ Xi + (λ + μg0)pi, ∀i 	= j},
i, j = 1, . . . , L. We then use the resulting optimal
partition regions to update the power codebook by
pj ≈ argminpj≥0E[σ(k(12 log(1 + g1pj) − r0)) + (λ +
μg0)pj |Rj ]Pr(Rj) for j = 1, . . . , L, where we use
the approximation Xj ≈ σ(k(12 log(1 + g1pj) − r0)),
σ(x) = 1

1+ex being the sigmoid function where the
coefficient k controls the sharpness of the approximation
(for detailed guidelines on choosing k see [25]). The
above two steps of GLA are repeated until convergence.
Numerical results illustrate that ZPiORA significantly
outperforms this suboptimal method. See Section V for
more details.

IV. ASYMPTOTIC OUTAGE BEHAVIOUR OF QPA UNDER

HIGH RESOLUTION QUANTIZATION

In this section, we derive a number of asymptotic expres-
sions for the SU outage probability when the number of
feedback bits approaches infinity. To this end, we first derive
some useful properties regarding the quantizer structure at
high rate quantization:

Lemma 3: As the number of quantization regions L → ∞,
we can obtain the following result: with μ > 0, the optimum
quantization thresholds on the g0 axis satisfy s′1 − s′0 ≈ s′2 −
s′1 ≈ · · · ≈ s′L−1−s′L−2, where s′j =

1
μpj

− λ
μ , j = 1, . . . , L−1

and s′0 = 0. With μ = 0, the optimum quantization thresholds
on the g1 axis satisfy v1

v0
≈ v2

v1
· · · ≈ vL−1

vL−2
, where vj = c

pj
, j =

1, . . . , L− 1 and here v0 = cλ.
Proof: See Appendix C.

Lemma 4: In the high rate quantization regime, as L → ∞,
we have

L−1∑
j=1

(e−vj − e−vj+1)[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]

≈ λPav + μQav

L− 1

L−1∑
j=1

1

pj
, (13)

where when μ > 0, s′j =
1

μpj
− λ

μ , whereas when μ = 0, s′j =

∞, and (13) simplifies to ce−v1 ≈ Pav

L−1

∑L−1
j=1 vj with vj =

c
pj

.
Proof: See Appendix D.

With Lemma 3 and Lemma 4, the main result of this section
can be obtained in the following Theorem.

Theorem 1: The asymptotic SU outage probability for a
large number of feedback bits is given as, for μ > 0,

PL
out ≈ 1− e−cλ∗

f

⎡
⎢⎢⎣1− (1 − e−

a
L )

1− e
−a

(
1+ 1

cμ∗
f

)

1− e−
a

(
1+ 1

cμ∗
f

)

L

⎤
⎥⎥⎦ (14)

where a is a constant satisfying

(λ∗
fPav + μ∗

fQav)(λ
∗
f +

a

2c
)ecλ

∗
f

≈
[
(λ∗

f + μ∗
f )

(
1− cμ∗

f

1 + cμ∗
f

(
1− e

−a

(
1+ 1

cμ∗
f

)))

− c(μ∗
f )

2

(1 + cμ∗
f )

2

(
1− e

−a(1+ 1
cμ∗

f
)

(
1 + a

(
1 +

1

cμ∗
f

)))]
.
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And we have limL→∞ PL
out = 1 −

e−cλ∗
f

⎡
⎣1− 1−e

−a

(
1+ 1

cμ∗
f

)

1+ 1
cμ∗

f

⎤
⎦. For μ = 0, PL

out ≈

1 − e−cλ∗
f(1+

β
L ), where β is a constant given by

e−cλ∗
f ≈ λ∗

fPav
eβ−1
β . In this case we also have

limL→∞ PL
out = 1− e−cλ∗

f .
Proof: See Appendix E.

V. QPA FOR MULTIPLE SECONDARY USERS (SUS)
SPECTRUM SHARING OVER A COGNITIVE MULTIPLE

ACCESS CHANNEL

In our system model, when more than one SU transmit
to a SU-BS and share the same spectrum with an existing
PU, it becomes a cognitive multiple access channel (CMAC)
network [28]. Given M SUs, let g1i and g0i denote the
channel power gain for the link from the i-th SU-Tx (i =
1, . . . ,M ) to the SU-BS and the PU-BS, respectively. With
perfect CSI assumption, we indicate the transmit power for
SUs as P (g0, g1) � {p1(g0, g1), . . . , pM (g0, g1)}T , where
g0 � {g01 . . . , g0M}T and g1 � {g11 . . . , g1M}T . Then the
maximum achievable sum rate for CMAC [28][29] can be
expressed as R̂(g0, g1) =

1
2 log(1+gT1 P (g0, g1)). In this case,

we consider the sum-rate outage probability of SUs with given
r0 given by P̂out = Pr{R̂(g0, g1) < r0}. Thus, the sum-rate
outage minimization problem for the CMAC, under a sum ATP
of all SUs constraint together with a long term AIP constraint
at the PU-BS, can be formulated as

minimize
P (g0,g1)≥0

Pr

{
1

2
log(1 + gT

1 P (g0, g1)) < r0

}

subject to E

[
M∑
i=1

pi(g0, g1)

]
≤ Pav,

E
[
gT
0 P (g0, g1)

] ≤ Qav. (15)

Using a similar technique as [28], it is not hard
to verify that the optimal transmit power control
policy for Problem (15) is given as: p∗i (g0, g1) ={

c
g1n

, if i = n and λ̂∗
f + μ̂∗

fg0n < g1n
c

0, otherwise
, where

n = argmin{i=1,...,M}
λ̂∗
f+μ̂∗

fg0i
g1i

, c = e2r0 − 1, and λ∗
f , μ∗

f are
the optimal nonnegative Lagrange multipliers associated with
the sum ATP constraint and the AIP constraint, respectively.

Remark 5: The above optimal transmission
law for CMAC with full CSI implies that if

min{i=1,...,M}
λ̂∗
f+μ̂∗

fg0i
g1i

< 1
c , only one SU with the

minimum
λ̂∗
f+μ̂∗

fg0i
g1i

will transmit, otherwise, none of SUs is
allowed to transmit and an outage occurs.

When only quantized CSI is available at the SU transmitters,
let P = {P1, . . . , PL} with Pj = {p1j, . . . , pMj}T denote
the power codebook and {Rj , j = 1, . . . L} represent the
quantization regions. Then with the limited feedback strategy
as stated in Section III, the sum-rate outage minimization
problem for the CMAC network with finite rate feedback can

be expressed as

minimize
Pj≥0, Rj ∀j

L∑
j=1

E[X̂j |Rj ]Pr(Rj)

subject to
L∑

j=1

E

[
M∑
i=1

pij |Rj

]
Pr(Rj) ≤ Pav,

L∑
j=1

E[gT
0 Pj |Rj ]Pr(Rj) ≤ Qav, (16)

where X̂j , j = 1, . . . , L, is an indicator function, defined
as, in region Rj , X̂j = 1 if 1

2 log(1 + gT
1 Pj) < r0, and 0

otherwise.
It turns out that the structure of the optimal quantization

regions for the CMAC case is much more complex than
the single SU case. Fig. 3 gives an example of what (a
locally) optimal quantization structure looks like by using the
SPSA algorithm for M = 2 with 2 bits of feedback, i.e., 4
quantization regions spanning the entire (g0, g1) space (each
color stands for a particular region). Since the quantization
structure for two SUs is four-dimensional, in Fig. 3 we plot
two of its low-dimensional projections for visual illustration.
From Fig. 3, we can clearly see that unlike the single SU
case, which possesses a nice “stepwise” quantization regions
structure as we derived in Section III, it is extremely difficult to
compute the volumes of these high-dimensional regions with
irregular shapes in general. Thus, the optimal QPA algorithm
(as well as the other algorithms derived based on the analysis
of the the optimal QPA algorithm, including the ZPiORA
algorithm in Section III-C and the high resolution quantization
analysis in Section IV) 2 designed for the single SU case
cannot be directly applied to the CMAC case .

As we mentioned before, the SPSA algorithm is com-
putationally highly complex with a long convergence time,
and due to no explicit expression being available for the
outage probability of Problem (16), a modified GLA with a
Lagrangian distortion measure cannot be directly applied here.
However, the GLASFA method introduced in Section III-C
with a sigmoid function approximating the indicator function,
can be employed to obtain a suboptimal solution for Problem
(16). Thus we have X̂j ≈ σ

(
k
(
1
2 log(1 + gT

1 Pj)− r0
))

, j =
1, . . . , L, where σ(x) = 1

1+ex . We can apply the proce-
dure of the GLASFA method stated in Section III-C to
solve Problem (16), except that the two optimality condi-
tions of GLASFA method for the CMAC case become the
following. Given a random initial power codebook, generate
the optimal partition regions by Rj = {(g0, g1) : X̂j +
WTPj ≤ X̂m + WTPm, ∀m 	= j}, m, j = 1, . . . , L,
where W = {(λ + μg01), . . . , (λ + μg0M )}T . Then, given
optimal partition regions, update the power codebook by Pj ≈
argminPj≥0E[σ(k(12 log(1+gT1 Pj)−r0))+WTPj |Rj ]Pr(Rj)
for j = 1, . . . , L. Numerical results illustrate that with only
8 bits of feedback, the outage probability performance of the

2To highlight this issue, we have presented the analysis of the CMAC
case in a separate section, namely Section V, where we apply the suboptimal
GLASFA algorithm introduced in Section III-C as a possible power allocation
algorithm. Note that in Section III-C, GLASFA is used solely for the purpose
of comparison with our proposed suboptimal ZPiORA algorithm.
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(a) The projection of quantization structure on g1 space.
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Fig. 3. Structure of quantization regions (spanning over the entire (g0, g1)
space) for the case of two SUs with 2 bits of feedback obtained by SPSA
algorithm (since the quantization structure is four-dimensional, we only plot
its projections on lower dimensions ).

CMAC optimization problem with limited feedback (16) for
two SUs using GLASFA can eliminate most of the gap with
the corresponding full CSI case. See section VI for more
details on simulation results for this algorithm.

VI. NUMERICAL RESULTS

In this section, we will examine the outage probability
performance of the SU in a narrowband spectrum sharing
system with the proposed power allocation strategies via
numerical simulations. All the channels involved are assumed
to be independent and undergo identical Rayleigh fading, i.e,
channel power gain g0 and g1 are independent and identically
exponentially distributed with unity mean. The required trans-
mission rate is taken to be r0 = 0.25 nats per channel use.

Fig. 4 displays the SU outage probability performance of
the suboptimal algorithm ZPiORA versus Pav with feedback
bits B = {1, 2}, under Qav = −5 dB and Qav = 0 dB re-
spectively, and compares these results with the corresponding
outage performance of the suboptimal method MEPPR and
the optimal QPA. As observed from Fig. 4, when Qav = −5
dB, with B fixed, the outage performances of ZPiORA and
corresponding optimal QPA almost overlap with each other.
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Fig. 4. Outage probability performance comparison between ZPiORA,
MEPPR and optimal QPA.
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Fig. 5. Outage probability performance comparison between ZPiORA and
other possible suboptimal algorithm: GLASFA.

When Qav = 0 dB and Pav ≤ −5 dB, with the same
number of feedback bits, the outage performances of these two
methods are still indistinguishable; and with Pav > −5 dB, the
outage performance gap between ZPiORA and corresponding
optimal QPA is decreasing with increasing B. For example,
with 1 bit feedback, at Pav = 10 dB, the outage gap between
ZPiORA and optimal QPA is 0.0347, but with 2 bits of
feedback, the outage performance of these two methods are
very close to each other, which agrees with Lemma 2 that
ZPiORA is a near-optimal algorithm for large number of
feedback bits. Now we look at the performance comparison
between ZPiORA and MEPPR. As illustrated in Fig. 4, when
Pav or Qav is small, with B bits feedback, the performance
of ZPiORA is always better than MEPPR. This is attributed
to the fact that when Pav or Qav is small, it can be easily
verified that pL is close to zero, but MEPPR always uses
pL > 0. However, when both Pav and Qav are large (e.g.
Pav ≥ 0 dB and Qav = 0 dB), for 1 bit feedback case,
MEPPR outperforms ZPiORA and performs very close to the
optimal QPA, whereas with a sufficiently large number of
feedback bits (in fact, with more than just 2 bits of feedback),
ZPiORA is a more accurate approximation due to Lemma 2.
These results confirm the ZPiORA is a better option for a
large number of feedback bits, not to mention that ZPiORA
is much simpler to implement than MEPPR.
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Fig. 6. Effect of increasing feedback bits on outage performance of SU.
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Fig. 7. Outage probability performance of QPA-Qg0 algorithm.

In addition, Fig. 5 compares the outage performance of
ZPiORA with another suboptimal method (GLASFA) with
Qav = −5 dB. We can easily observe that with a fixed
number of feedback bits (2 bits or 4 bits), ZPiORA always
outperforms GLASFA. And ZPiORA is also substantially
faster than GLASFA. For example, with fixed λ and μ and
4 bits of feedback (Qav = −5dB, Pav = 10 dB), when
implemented in MATLAB (version 7.11.0.584 (R2010b)) on a
AMD Quad-Core processor (CPU P940 with a clock speed of
1.70 GHz and a memory of 4 GB), it was seen that GLASFA
(with 100,000 training samples, starting k = 20 and increasing
it by a factor of 1.5 at each step which finally converged
at about k = 768.8672) took approximately 299.442522
seconds (different initial guesses of the power codebook may
result in different convergence time). In comparison, ZPiORA
took only 0.006237 seconds to achieve comparable levels
of accuracy. These results further confirm the efficiency of
ZPiORA.

Fig. 6 illustrates the outage performance of SU with optimal
QPA strategy versus Pav with feedback bits B = {2, 4, 6},
under Qav = −5 dB and Qav = 0 dB respectively, and
studies the effect of increasing the number of feedback bits
on the outage performance. For comparison, we also plot the
corresponding SU outage performance with full CSI case.
Since ZPiORA is an efficient suboptimal method for large
number of feedback bits, we employ ZPiORA to obtain the
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Fig. 8. Comparison between asymptotic outage performance and QPA
performance with Qav = 0dB.
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Fig. 9. Asymptotic outage behaviour versus the number of quantization level
L.

outage performance instead of using optimal QPA for B = 6
bits. First, it can be easily observed that all the outage curves
decrease gradually as Pav increases until Pav reaches a certain
threshold, when the outage probability attains a floor. This is
due to the fact that in the high Pav regime, the AIP constraint
dominates. For a fixed number of feedback bits, the higher
Qav is, the smaller the resultant outage probability is, since
higher Qav means PU can tolerate more interference. Fig. 6
also illustrates that for fixed Qav , introducing one extra bit of
feedback substantially reduces the outage gap between QPA
and the perfect CSI case. To be specific, for Qav = 0 dB and
Pav = 10 dB, with 2 bits, 4 bits and 6 bits of feedback, the
outage gaps with the full CSI case are approximately 0.1083,
0.0249 and 0.006979 respectively. And for any Qav, only 6
bits of feedback seem to result in an SU outage performance
very close to that with full CSI case.

Fig. 7 shows the outage performance of QPA-Qg0 algo-
rithm, introduced in Section III-B, versus Pav with feedback
bits B = {1, 2, 4}, under Qav = −5 dB and Qav = 0 dB
respectively, and compares it with corresponding optimal QPA
algorithm. It can be observed from Fig. 7 that optimal QPA
algorithm always outperforms QPA-Qg0 as expected, however
the outage performance gap between these two schemes is
considerately small. When Qav = −5 dB, with 1,2,4 bits
of feedback, the outage performance of these two algorithms
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Fig. 10. Outage probability performance of a CMAC with two SUs using
GLASFA.

almost overlap with each other. When Qav = 0 dB, a
small outage gap appears between QPA-Qg0 and optimal QPA
algorithm. For example, with 2 and 4 bits of feedback, at
Pav = 10 dB, the outage gaps are only 0.0213 and 0.0160,
respectively.

Fig. 8 compares the asymptotic outage performance derived
in Theorem 1 and the optimal QPA performance B = {4, 6, 8}
under Qav = 0 dB. It is clearly observed that increasing
number of feedback bits substantially shrinks the outage
performance gap between the asymptotic outage approxima-
tion and the corresponding optimal QPA performance. For
instance, with 4, 6, 8 bits of feedback at Pav = 10 dB, the
outage gap between the asymptotic outage approximation and
the corresponding optimal QPA are around 0.0325, 0.00618,
0.000168 respectively. These results confirm that the derived
asymptotic outage expressions in Theorem 1 are highly accu-
rate for B ≥ 8 bits of feedback. In addition, Figure 9 depicts
the asymptotic outage probability behavior of SU versus the
number of quantization level L at Qav = 0 dB, Pav = 10
dB, and compares the result with the corresponding full CSI
performance. It can be seen from Fig. 9 that the outage
decreases as the number of quantization level L increases,
however, as L increases beyond a certain number (L ≥ 28, i.e,
B ≥ 8 bits), the outage probability curve starts to saturate and
approaches the full CSI performance. This further confirms
that only a small number of feedback bits is enough to
obtain an outage performance close to the perfect CSI-based
performance.

Fig. 10 shows the outage performance of CMAC opti-
mization problem (16) with limited feedback solved by the
GLASFA, for two SUs (i.e., M = 2) with Qav = −5
dB. The important observation from this figure is that again
only a few bits of feedback can remove most of the gap
with the corresponding full CSI performance. For example, at
Pav = 10 dB, there is only around 0.0584 outage gap between
8 bits of feedback and the full CSI counterpart.

VII. CONCLUSIONS AND EXTENSIONS

In this paper, we designed optimal power allocation al-
gorithms for secondary outage probability minimization with
quantized CSI information for a narrowband spectrum sharing
cognitive radio framework under an ATP constraint at SU-TX

and an AIP constraint at PU-RX. We prove that the optimal
channel partition structure has a “stepwise” pattern based on
which an efficient optimal power codebook design algorithm
is provided. In the case of a large number of feedback bits, we
derive a novel low-complexity suboptimal algorithm ZPiORA
which is seen to outperform alternative suboptimal algorithms
based on approximations used in the existing literature. We
also derive explicit expressions for asymptotic behavior of
the SU outage probability for a large number of feedback
bits. Although the presented optimal power codebook design
methods result in locally optimal solutions (due to the non-
convexity of the quantized power allocation problem), nu-
merical results illustrate that only 6 bits of feedback result
in SU outage performance very close to that obtained with
full CSI at the SU transmitter. An extended study on multiple
SUs (CMAC) is provided as well. Future work will involve
extending the results to more complex wideband spectrum
sharing scenario along with consideration of other types of
interference constraints at the PU receiver.

APPENDIX

A. Proof of Lemma 1:

We use an analysis method similar to [27] to prove our
problem’s optimal quantizer structure. Let P = {p1, . . . , pL},
where p1 > · · · > pL ≥ 0, and the corresponding channel
partitioning R = {R1, . . . ,RL} denote the optimal solution
to the Problem (2), and p(g0, g1) = pj , if (g0, g1) ∈ Rj .

Let R∗
j = {(g0, g1) : vj ≤ g1 < vj+1, 0 ≤ g0 < sj}, j =

1, . . . , L − 1 and R∗
L = R∗

L1 ∪ R∗
L2 = {(g0, g1) : vj ≤

g1 < vj+1, g0 ≥ sj , ∀j = 0, 1, . . . , L − 1} ∪ {(g0, g1) :
g1 ≥ vL, g0 ≥ 0}, where s0 = 0 and v0 = 0. We assume
that the set R∗

j \ Rj is a non-empty set, where \ is the
set subtraction operation (i.e, if (g0, g1) ∈ R∗

j \ Rj , then
(g0, g1) ∈ R∗

j but (g0, g1) /∈ Rj). Then, the set R∗
j \ Rj can

be partitioned into two subsets S−
j = (R∗

j \Rj) ∩ (∪j−1
k=1Rk)

and S+
j = (R∗

j \ Rj) ∩ (∪L
k=j+1Rk). In what follows, we

denote the empty set by ∅.
(1): We will show that S−

j = ∅, ∀j = 1, . . . , L.
(a): When j = 1, it is obvious that S−

1 = ∅. When 1 < j < L,
if S−

j 	= ∅, then we can always reassign the set S−
j into

region Rj without changing the overall outage probability.
This is due to the fact that within the set S−

j ∈ R∗
j , we

have vj ≤ g1 < vj+1 resulting in 1
2 log(1 + g1pj) ≥ r0,

and the power level in (∪j−1
k=1Rk) satisfies pk > pj . Thus

S−
j is never in outage. However, the new assignment can

achieve a lower Lagrange dual function (LDF) in (3), due to
g′(λ, μ)− g(λ, μ) = E[(λ+ μg0)(pj − pk)|S−

j ]Pr(S−
j ) < 0,

where g′(λ, μ) denotes the LDF with the new assignment,
which contradicts the optimality of the solution P ,R.
(b) When j = L, if S−

L 	= ∅, we can again reassign the
set S−

L into region RL. 1) If some part of S−
L is in the

set {(g0, g1) : 0 ≤ g1 < v1, g0 ≥ 0} of R∗
L1, we have

1
2 log(1 + g1p1) < r0, which implies that this part of S−

L is
always in outage. Therefore, this reassignment for this part of
S−
L will not change the outage probability but will decrease

the LDF due to the power level pL in RL is the lowest. 2)
For any j (j = 1, . . . , L− 1), if some part of S−

L (denoted by
“S−

Lp”) exists in the set {(g0, g1) : vj ≤ g1 < vj+1, g0 ≥ sj}
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of R∗
L1, we have 1

2 log(1+g1pj) ≥ r0, 1
2 log(1+g1pj+1) < r0

and (λ + μg0)(pj − pL) ≥ 1. And given S−
Lp ⊂ (∪L−1

k=1Rk),
let the power level for S−

Lp be pk (where k could be any
value from {1, . . . , L − 1}). Reassigning this part of set S−

L

into region RL will reduce the value of the LDF, since if
k ≤ j (implying pk ≥ pj), g′(λ, μ) − g(λ, μ) = E[1 +
pL(λ + μg0) − pk(λ + μg0)|S−

Lp]Pr(S−
Lp) < 0 and if k > j

(implying pk < pj), g′(λ, μ)−g(λ, μ) = E[1+pL(λ+μg0)−
1 − pk(λ + μg0)|S−

Lp]Pr(S−
Lp) < 0. 3) If some part of S−

L

belongs to the set R∗
L2, similar to (a), we can show that the

new partition for this part of S−
L does not change the overall

outage probability and meanwhile reduces the value of the
LDF. These all contradict optimality.
(2): We will now show that the set S+

j = ∅, j = 1, . . . , L.
When j = L, it’s straightforward that S+

L = ∅. When j < L,
we assume that S+

j 	= ∅. Within the set S+
j ∈ R∗

j , we
have vj ≤ g1 < vj+1, implying 1

2 log(1 + g1pj+1) < r0,
or in other words, S+

j ∈ (∪L
k=j+1Rk) is in outage. We can

reallocate the set S+
j into region Rj . This reassignment not

only lowers the outage probability (S+
j with pj will not be

in outage) but also lowers the value of the LDF, given by
g′(λ, μ)−g(λ, μ) = E[(λ+μg0)(pj −pk)−1|S+

j ]Pr(S+
j ) ≤

E[(λ+μg0)(pj −pL)− 1|S+
j ]Pr(S+

j ) < 0, due to g0 < sj =
1

μ(pj−pL) − λ
μ . This also contradicts optimality.

Therefore, we have R∗
j \ Rj = ∅, ∀j = 1, . . . , L,

i.e, R∗
j ⊆ Rj , ∀j = 1, . . . , L. Since ∪L

j=1R∗
j =

the whole space of (g0, g1) = ∪L
j=1Rj , and R∗

j ⊆ Rj , ∀j,
we can obtain that R∗

j = Rj , ∀j = 1, . . . , L.

B. Proof of Lemma 2:

We assume that limL→∞ pL 	= 0. Let δ = limL→∞ pL > 0.
From the KKT condition (8), we have

e−vL
c

p2L
(pL−1 − pL)(λ + μ(1− e−sL−1))

= (λ+ μ)(PL
out + e−vL) + μ

L−1∑
j=1

(e−vj − e−vj+1)e−sjsj

≥ (λ+ μ)
(
PL
out + e−vL

)
(17)

Let P f
out denote the outage probability with full CSI at SU-

TX, then we have PL
out ≥ P f

out and limL→∞ PL
out = P f

out.
Taking the limit L → ∞ on both sides of (17), we have

lim
L→∞

e−vL
c

p2L
(pL−1 − pL)(λ + μ(1− e−sL−1))

≥ (λ+ μ)(P f
out + e−

c
δ ) 	= 0 (18)

Given p1 > · · · > pL > 0, it is clear that the sequence
{pj}, j = 1, 2, . . . , L is a monotonically decreasing sequence
bounded below, therefore it must converge to its greatest-
lower bound δ, as L → ∞. Therefore, it can be easily
shown that for an arbitrarily small ε > 0, we can always
find a sufficiently large L such that pL−1 − pL < ε. Thus,
as L → ∞, (pL−1 − pL) → 0, which implies when μ > 0,
sL−1 = 1

μ(pL−1−pL) − λ
μ → ∞. This implies that

lim
L→∞

e−vL
c

p2L
(pL−1 − pL)(λ + μ(1− e−sL−1))

= e−
c
δ
c

δ2
(λ+ μ) lim

L→∞
(pL−1 − pL) = 0, (19)

which is in contradiction with (18). Thus, we must have
limL→∞ pL = 0.

C. Proof of Lemma 3:

As L → ∞, from Lemma 2, we have pL → 0. Applying it
to Problem (5), we have the KKT conditions as (11).

1) μ > 0: From s′j = 1
μpj

− λ
μ , we have pj = 1

λ+μs′j
, and

we also have p0 = 1
λ+μs′0

. Applying it to (11), the right hand
side (RHS) of equation (11) becomes,

RHS = e−vj
c

p2j

[
λ+ μ(1− e−s′j−1 )

λ+ μs′j−1

− λ+ μ(1− e−s′j )

λ+ μs′j

]

= e−vj
c(s′j−1 − s′j)

p2j

λ+μ(1−e
−s′j−1 )

λ+μs′j−1
− λ+μ(1−e

−s′j )
λ+μs′j

s′j−1 − s′j
.

(20)

From the mean value theorem (MVT), we have

λ+μ(1−e
−s′j−1 )

λ+μs′j−1
− λ+μ(1−e

−s′j )
λ+μs′j

s′j−1 − s′j

=
−μ

(λ+ μs′)2
[λ(1 − e−s′) + μ(1− e−s′(1 + s′))], (21)

where s′ ∈ [s′j−1, s
′
j). As the number of feedback bits B =

log2 L → ∞, the length of quantization interval on g0 axis
[s′j−1, s

′
j), j = 1, . . . , L− 1 approaches zero [24]. Hence (21)

becomes,

λ+μ(1−e
−s′j−1 )

λ+μs′j−1
− λ+μ(1−e

−s′j )
λ+μs′j

s′j−1 − s′j

≈ −μ

(λ+ μs′j)2
[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]. (22)

Applying (22) to (20), we have RHS ≈ e−vjcμ(s′j −
s′j−1)[λ(1−e−s′j )+μ(1−e−s′j(1+s′j))]. Similarly, as L → ∞,
we also have the length of quantization interval on the g1
axis [vj , vj+1), j = 1, . . . , L − 2 approaches zero, thus from
MVT, e−vj − e−vj+1 ≈ e−vj (vj+1 − vj). Thus the left
hand side (LHS) of equation (11) can be approximated as,
LHS ≈ e−vj (vj+1 − vj)[λ(1− e−s′j ) + μ(1− e−s′j (1 + s′j)).
Hence, we have ∀j = 1, . . . , L−2, vj+1−vj ≈ cμ(s′j−s′j−1),
from which we get s′j+1 − s′j ≈ s′j − s′j−1, ∀j = 1, . . . , L− 2,
namely, s′L−1 − s′L−2 ≈ · · · ≈ s′1 − s′0, since vj = cλ+ cμs′j .

2) μ = 0: In this case, we have s′j = ∞, j = 1, . . . , L− 1.
Thus (11) becomes e−vj−e−vj+1 = e−vj c

p2
j
(pj−1−pj), where

j = 1, . . . , L − 1 and p0 = 1
λ , which can be rewritten as

1
vj
(e−vj − e−vj+1) = 1

vj−1
e−vj (vj − vj−1), where v0 = c

p0
=

cλ. Applying MVT into as before, we have 1
vj
e−vj (vj+1 −

vj) ≈ 1
vj−1

e−vj (vj − vj−1), ∀j = 1, . . . , L− 2, which yields
vj+1

vj
≈ vj

vj−1
, ∀j = 1, . . . , L− 2, namely, vL−1

vL−2
≈ · · · ≈ v1

v0
.

This completes the proof for Lemma 3.
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D. Proof of Lemma 4:

As L → ∞, from Lemma 2, we have pL → 0. Adding the
two equations of (9) together and applying pL → 0, we have

L−1∑
j=1

pj(e
−vj − e−vj+1)[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]

= λPav + μQav. (23)

The KKT conditions (11) can be rewritten as

pj(e
−vj − e−vj+1)[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]

= pj−1e
−vj (vj − vj−1)

[f̂ ′(pj−1)− f̂ ′(pj)]
pj−1 − pj

, (24)

where f̂ ′(pj) = pj(λ + μ(1 − e−s′j )). As mentioned before,
when L → ∞, we have the length of quantization interval
on the g1 axis [vj−1, vj), j = 2, . . . , L− 1 approaching zero.
Hence we also have the length of the interval [pj−1, pj), j =
2, . . . , L − 1 approaching zero, since vj = c

pj
. Thus from

MVT, we have

e−vj−1 − e−vj ≈ e−vj (vj − vj−1)

f̂ ′(pj−1)− f̂ ′(pj)
pj−1 − pj

≈ λ(1− e−s′j−1) + μ(1− e−s′j−1(1 + s′j−1)).

(25)

Applying (25) into (24), we can obtain, ∀j = 2, . . . , L− 1

pj(e
−vj − e−vj+1)[λ(1− e−s′j ) + μ(1− e−s′j (1 + s′j))] ≈

pj−1(e
−vj−1 − e−vj )[λ(1− e−s′j−1 ) + μ(1− e−s′j−1(1 + s′j−1))].

(26)

Then applying the result of (26) into (23), we can have j =
1, . . . , L− 1

pj(e
−vj − e−vj+1)[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]

≈ λPav + μQav

L− 1
, (27)

which gives,

L−1∑
j=1

(e−vj − e−vj+1)[λ(1 − e−s′j ) + μ(1− e−s′j (1 + s′j))]

≈ λPav + μQav

L− 1

L−1∑
j=1

1

pj
. (28)

This completes the proof for Lemma 4.

E. Proof of Theorem 1:

1) μ > 0: From Lemma 3, we can easily obtain, s′j ≈
js′1,

1
pj

= λ + μs′j ≈ λ + jμs′1, and vj = c
pj

≈
cλ + jcμs′1, ∀j = 1, . . . , L − 1, Let z =

∑L−1
j=1 (e

−vj −
e−vj+1)[λ(1 − e−s′j ) + μ(1 − e−s′j (1 + s′j))], which implies
that 0 < z < λ + μ. Then from Lemma 4, we have

1
L−1

∑L−1
j=1

1
pj

≈ z′, where z′ = z
λPav+μQav

and 0 <

z′ < λ+μ
λPav+μQav

. Using the above results, we get s′1 ≈
2(z′−λ)

μL = d
L , where d = 2(z′−λ)

μ . Let a = cμd = 2(z′ − λ)c,

then s′1 ≈ a
cμL . Since 0 < z′ < λ+μ

λPav+μQav
, we have

limL→∞ a
L = 0. From the definition of z above, we have

z = (λ+ μ)e−v1 −
L−1∑
j=1

(e−vj − e−vj+1)
[
(λ+ μ)e−s′j

+μe−s′js′j
]

≈ e−cλ

⎡
⎣(λ+ μ)e−

a
L − (1− e−

a
L )(λ+ μ)

L−1∑
j=1

e−j( a
L+s′1)

−(1− e−
a
L )μs′1

L−1∑
j=1

je−j( a
L+s′1)

⎤
⎦

≈ e−cλ

⎡
⎣(λ+ μ)e−

a
L − (1− e−

a
L )(λ+ μ)

L−1∑
j=1

e−j b
L

−(1− e−
a
L )

a

cL

L−1∑
j=1

je−j b
L

⎤
⎦ , (29)

where b = a + Ls′1 = a
(
1 + 1

cμ

)
and we also have

limL→∞ b
L = 0. Since

∑L−1
j=1 e−j b

L = 1−e−b

1−e−
b
L

− 1, and

∑L−1
j=1 je−j b

L = −
e(−

b
L

−b)

(
Le

b
L −eb−L+1

)

(1−e−
b
L )2

, (29) becomes

z ≈ e−cλ

[
(λ+ μ)

(
1− (1− e−

a
L )

1− e−b

1− e−
b
L

)

−(1− e−
a
L )

a

cL

e−
b
L (1− e−b)− Le−b(1 − e−

b
L )

(1− e−
b
L )2

]
.

(30)

Since limL→∞ a
L = 0 and limL→∞ b

L = 0, we have 1 −
e−

a
L ≈ a

L and 1−e−
b
L ≈ b

L . And when L → ∞, we approach
the full CSI scenario, thus implying λ ≈ λf , μ ≈ μf . Using
these results in (30), we have

z ≈ e−cλ∗
f

[
(λ∗

f + μ∗
f )

(
1− a

b
(1− e−b)

)
− a2

cb2

((
1− b

L

)
(1− e−b)− be−b

)]

≈ e−cλ∗
f

[
(λ∗

f + μ∗
f )

(
1− a

b
(1− e−b)

)
− a2

cb2
(
1− e−b(1 + b)

)]
. (31)

Since z = (λPav + μQav)z
′ = (λPav + μQav)(λ + a

2c ) ≈
(λ∗

fPav + μ∗
fQav)(λ

∗
f + a

2c ), we can obtain a from the
following approximation:

(λ∗
fPav + μ∗

fQav)(λ
∗
f +

a

2c
)ecλ

∗
f

≈
[
(λ∗

f + μ∗
f )

(
1− cμ∗

f

1 + cμ∗
f

(
1− e

−a(1+ 1
cμ∗

f
)
))

− c(μ∗
f )

2

(1 + cμ∗
f )

2

(
1− e

−a

(
1+ 1

cμ∗
f

)(
1 + a

(
1 +

1

cμ∗
f

)))]
.

(32)
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From (32), with given Pav and Qav , a is a constant. Then
when L is large,

PL
out ≈ 1− e−v1 +

L−1∑
j=1

(e−vj − e−vj+1)e−s′j

≈ 1− e−cλ

⎡
⎣e− a

L − (
1− e−

a
L

) L−1∑
j=1

e−j b
L

⎤
⎦

= 1− e−cλ

[
1− (

1− e−
a
L

) 1− e−b

1− e−
b
L

]

≈ 1− e−cλ∗
f

⎡
⎢⎢⎣1− (

1− e−
a
L

) 1− e
−a

(
1+ 1

cμ∗
f

)

1− e−
a

(
1+ 1

cμ∗
f

)

L

⎤
⎥⎥⎦ ,

(33)

and limL→∞ PL
out = 1− e−cλ∗

f

[
1− 1−e

−a(1+ 1
cμ∗

f
)

1+ 1
cμ∗

f

]
.

2) μ = 0: Let y = v1
v0

= v1
cλ > 1, then again, from Lemma

3, we can get for j = 1, . . . , L− 1, vj ≈ cλyj . From Lemma
4, we have e−cλy ≈ λPav

L−1

∑L−1
j=1 yj = λPav

L−1
yL−y
y−1 . With

x = y − 1, we have, e−cλ(1+x) ≈ λPav(1 + x) (1+x)L−1−1
x(L−1) .

Now, suppose limL→∞ xL = ∞. Since (1+x)L−1 > 1+(L−
1)x + 1

2 (L − 2)(L − 1)x2, we have limL→∞
(1+x)L−1−1

(L−1)x >

limL→∞ 1 + 1
2 (L − 2)x = ∞. Then taking the limit as

L → ∞, we have limL→∞ e−cλ(1+x) = ∞, which contradicts
limL→∞ e−cλ(1+x) < 1, thus we must have limL→∞ xL =
0 ≤ β < ∞ (where β is a constant), implying as L → ∞,
x → β

L . Applying this result, we get e−cλ(1+ β
L ) ≈ λPav(1 +

β
L)

(1+ β
L )L−1−1

β
L (L−1)

. After taking the limit as L → ∞ on both

sides of above equation, we have e−cλ∗
f ≈ λ∗

fPav
eβ−1
β , from

which one can solve for β approximately. Note that in the
above approximation, we have used limL→∞(1+ β

L )
L−1 = eβ

and when L is large, λ ≈ λ∗
f . Therefore, when L is large,

PL
out = 1 − e−v1 = 1 − e−cλ(1+x) ≈ 1 − e−cλ∗

f (1+
β
L ),

limL→∞ PL
out = 1− e−cλ∗

f .
This completes the proof for Theorem 1.
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