
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012 927

Throughput Scaling in Cognitive Multiple Access
With Average Power and Interference Constraints

Ehsan Nekouei, Student Member, IEEE, Hazer Inaltekin, Member, IEEE, and Subhrakanti Dey, Senior Member, IEEE

Abstract—This paper derives tight ergodic sum-rate capacity
scaling limits for cognitive radio secondary networks under five
different communication environments (CoE) for two different
network types when secondary users’ (SUs) transmission powers
are optimally allocated. The network types studied are power-in-
terference limited (PIL) networks and interference limited (IL)
networks. In PIL networks, SUs’ transmissions are limited by
both an average total power constraint and a constraint on the
average interference that they cause to primary users (PUs). In
IL networks, SUs’ transmissions are only limited by an average
interference constraint. The capacity scaling results in PIL net-
works are derived for three different CoEs in which secondary
transmitter to secondary base station (STSB) channel gains are
Rayleigh distributed while secondary transmitter to primary base
station (STPB) channel gains are Rayleigh, Rician or Nakagami
distributed. It is shown that secondary network capacity scales
according to ��� ���� � in these three CoEs, where is the
number of SUs. In addition to these three CoEs, two more CoEs
are also studied for IL networks: Rician or Nakagami distributed
STSB channel gains and Rayleigh distributed STPB channel gains.
It is shown that the secondary network capacity scales according
to ���� � for all five CoEs in IL networks. This result implies
exponential capacity gains in IL networks over PIL networks.
The same capacity scaling results are shown to hold even for
heterogeneous cognitive radio networks in which different SUs
experience statistically different channel conditions. In some
cases, our analysis leads to a new notion called effective number of
users, which signifies the effective number of users contributing
to multiuser diversity in cognitive radio networks. For example,
effective number of users is given by ��

�
when STSB channel

gains are Rayleigh distributed and STPB channel gains are Rician
distributed with a Rician factor .

Index Terms—Cognitive radio networks, multiple access, mul-
tiuser diversity, sum capacity.

I. INTRODUCTION

A. Background and Motivation

W ITH the advent of 4G wireless networks striving for
ever higher data rates, efficient use of spectrum and

its scarcity are expected to be major (and bigger) design chal-
lenges to overcome in future wireless communication systems
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[1]. Cognitive radio technology empowered with radio etiquette
protocols (e.g., IEEE 802.22) has been proposed as a possible
solution to the spectrum scarcity and the problem of efficient
spectrum utilization by allowing unlicensed users (alternatively
called: secondary users or SUs) to access the spectrum reserved
for licensed users (alternatively called: primary users or PUs),
e.g., see [2] and [3]. The rationale is that SUs can use this spec-
trum as long as they do not cause harmful degradation to the
primary transmission. Potential spectrum utilization gains to be
achieved by the enablement of such cognitive radio technolo-
gies can be best assessed only when we have theoretical limits
on data rates that can be delivered to SUs subject to various
constraints imposed by cognitive radio etiquette protocols me-
diating transmissions. To this end, this paper contributes a suite
of results to theoretical limits on achievable aggregate data rates
in cognitive radio networks by providing tight capacity scaling
laws, as a function of the number of SUs, under transmission
power and interference constraints for various wireless channel
models.

Various paradigms for the interoperability of PUs and SUs in
a cognitive radio setting have been proposed such as underlay,
overlay and interweave [4]. The paradigm of interest in the cur-
rent paper is the underlay model, also known as the spectrum
sharing scenario, for cognitive radio networks. In this model,
SUs share the spectrum with PUs regardless of PUs’ ON/OFF

status as long as the interference caused by them to primary re-
ceivers is kept low to guarantee a required level of Quality-of-
Service (QoS) on the primary network. Federal Communica-
tions Commission (FCC) in the United States introduced a key
metric called interference temperature to measure the level of
interference at PUs for such spectrum sharing communication
scenarios [5]. In this paper, we will use the terms interference
power and interference temperature interchangeably with the
understanding that these two metrics are directly related to each
other [6]. Our starting point to investigate secondary network ca-
pacity scaling limits here will be the jointly optimal power-con-
trol and spectrum sharing policy subject to average interference
temperature constraints at PUs (as well as average transmission
power constraints at SUs) mandated by a radio etiquette pro-
tocol to mediate SUs’ transmissions.

Optimum cognitive spectrum sharing and power-control
mechanisms as well as fundamental performance limits subject
to various types of interference constraints and related QoS
performance metrics such as average or peak interference con-
straints, primary capacity loss constraints and primary outage
probability constraints have attracted considerable attention
over the last five years, e.g., see [7]–[11]. Recently, optimal
power allocation for ergodic sum capacity maximization in
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TABLE I
STSB AND STPB CHANNEL MODELS FOR DIFFERENT COES

a multiple access and broadcast secondary network under
various combinations of transmission power and interference
constraints have been obtained in [10]. Among many other
results, Zhang et al. in [10] showed that the jointly optimal
spectrum sharing and power-control policy maximizing in-
formation theoretic sum-rate capacity of a multiple access
secondary network with average transmission and interference
temperature constraints for continuous fading distributions
is to schedule the SU with the best joint power and inter-
ference channel state, in a sense that will be made precise
in Section III, according to a power allocation policy in the
form of a water-filling algorithm with changing water levels.
These results are reminiscent of opportunistic scheduling type
of results derived for primary networks in [12] and [13] (for
multiple access channels) and [14] (for broadcast channels),
and automatically trigger the need for a thorough investigation
of multiuser diversity or sum-rate scaling analysis in cognitive
radio multiple access or broadcast networks with increasing
numbers of SUs under various forms of transmission power
and interference constraints. This motivates our investigation
of sum-rate scaling analysis for cognitive radio multiple access
networks in this paper. In addition to various engineering
insights and design ideas, our analysis primarily leads to tight
capacity scaling limits for secondary multiple access networks
under the jointly optimal spectrum sharing and power-control
policy for different wireless channel and network models.

B. Contributions

Our main contribution in this paper is the derivation of tight
secondary network capacity scaling laws under five different
CoEs for two different cognitive radio network types, referred
to as PIL and IL networks, when transmission powers of SUs
are optimally allocated. In PIL networks, transmission powers
of SUs are limited by both an average total transmission power
constraint (on the secondary network) and an average interfer-
ence power constraint (on the primary network). Note that such
average total power constraints have been employed to study
the capacity of multiple access and broadcast primary networks
(e.g., see [17] and [18]) using duality theory. In IL networks,
SUs’ transmissions are only limited by an average interference
power constraint. We refer the reader to Table I for the statistical
channel models used in each CoE.

We start our analysis with CoEs in which statistical models
for STSB and STPB channel gains are given as in Table I with
the same parameters for all SUs, i.e., all STSB channels and all

STPB channels experience statistically identical channel con-
ditions, although we allow the STSB channels to have a dif-
ferent fading distribution from the STPB channels. The asym-
metry in fading distribution between STSB channels and STPB
channels is motivated by the fact that the secondary network
and the primary network may experience different fading con-
ditions, due to various factors such as different physical loca-
tions, network infrastructure, user mobility pattern and so on.
For example, the STSB channels may experience a rich scat-
tering environment (i.e., Rayleigh fading) whereas the STPB
channels may have a direct line of sight (i.e., Rician fading).
These different CoEs are indexed by CoE for .
For PIL networks under CoE , CoE , and CoE , we show that
the secondary network sum-rate capacity scales according to

with the number of SUs (Theorem 1). For IL net-
works under CoE for and , we show that the sec-
ondary network sum-rate capacity scales according to
(Theorem 2). The scaling law for IL networks under CoE is
given by , where is the Nakagami- fading dis-
tribution parameter (Theorem 2). Secondary network capacity
scaling laws for PIL networks under CoE and CoE are still
unknown. Our results are summarized in Table II.

From a practical point of view, these results provide bench-
mark curves for performance comparison and crucial insights
into achievable rates with the enablement of cognitive radio
technologies in next generation wireless systems. Moreover,
they also indicate that an exponential gain in secondary net-
work data rates is possible by relaxing the power limitation
on the secondary network. From a theoretical point of view, it
is a common practice to study sum-rate capacity of multiuser
communication systems either at high SNR regimes or under
a large user population assumption, e.g., see [19] and [30] and
references therein, to obtain a first-order approximation for the
ergodic sum-rate capacity of such systems. Our results provide
similar first-order approximations for the ergodic sum-rate ca-
pacity of a cognitive radio secondary network operating under
average transmission power constraints and constraints on the
average interference it causes to a primary network. They also
show that the secondary network is capable of achieving the
same throughput scaling as the primary network even with
extra interference temperature constraints.

In the process of obtaining first-order approximations for
the secondary network sum-rate capacity, second-order effects,
such as the effects of the fading distribution parameters, on the
multiuser diversity gains are often lost, and not visible in the
limit for an infinite SU population. However, these effects can
be important for understanding achievable data rates in finite
cognitive radio networks. To this end, our analysis in some
cases leads to a new concept called effective number of users,
which signifies the effective number of SUs contributing to
multiuser diversity gains for finite systems, through a careful
investigation of the effects of fading distribution parameters on
the sum-rate capacity scaling. In particular, effective number of
users is given by for PIL and IL networks under CoE ,
while it is given by for IL networks under CoE , where

and are parameters for the Rician and the Nakagami
fading distributions in CoE and CoE , respectively. Further-
more, it is observed that the multiuser diversity gain (MDG) is

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 12,2021 at 14:08:57 UTC from IEEE Xplore.  Restrictions apply. 



NEKOUEI et al.: THROUGHPUT SCALING IN COGNITIVE MULTIPLE ACCESS WITH AVERAGE POWER AND INTERFERENCE CONSTRAINTS 929

TABLE II
THROUGHPUT SCALING IN THE COGNITIVE RADIO NETWORK

not significantly affected by the fading parameters in CoE and
CoE for IL networks. (See the discussion in Section IV after
Theorems 1 and 2 for more details.)

Finally, we also establish sum-rate capacity scaling laws
for more heterogeneous CoEs, indexed by CoE for

, in which different SUs experience statis-
tically different channel conditions, i.e., parameters of the
statistical models given in Table I for STSB and STPB channel
gains are different for different SUs. We show that the same
scaling results, as demonstrated in Table II, hold for PIL
networks under CoE CoE (Theorem 3) and for
IL networks under CoE , CoE , CoE and CoE
(Theorem 4) even for such more heterogeneous CoEs. For IL
networks under CoE , we show that the sum-rate capacity
still scales logarithmically with , and obtain upper and lower
bounds for the pre-log factor in this scaling. (See Theorem 4
for more details.)

C. A Note on Notation and Paper Organization

When we write and
for two positive functions and , we mean

and , respec-
tively.

As is standard in the literature [31], a wireless channel is said
to be a Rayleigh fading channel if the channel magnitude gain
is Rayleigh distributed, or equivalently the channel power gain
is exponentially distributed. A wireless channel is said to be a
Rician- fading channel if the channel magnitude gain is Ri-
cian distributed with a Rician factor . For a Rician- fading
channel, the channel power gain is non-central chi-square dis-
tributed with two degrees of freedom. A wireless channel is said
to be a Nakagami- fading channel if the channel magnitude
gain is Nakagami distributed with a Nakagami factor .
For a Nakagami- fading channel, the channel power gain is
Gamma distributed. We refer the reader to [31] for more details
about fading distributions.

In what follows, when we say a CoE is homogeneous, we
mean that the parameters of the fading models are the same
across the SUs, and all STSB and STPB channels have unit

mean power gain. CoE notation is used to denote the th homo-
geneous CoE. When we say a CoE is heterogeneous, we mean
that fading parameters for different SUs are different. For het-
erogeneous CoEs , and are used to represent the Rician
factor and Nakagami factor for the th SU, respectively, while

is used to represent the mean channel power gain for the
th SU for Rayleigh fading channels. The mean channel power

gain for Rician and Nakagami fading channels is denoted by .
CoE notation is used to denote the th heterogeneous CoE.

We consider five different communication scenarios (CoS)
each for the homogeneous and the heterogeneous cases, as illus-
trated in Table I. Although Rayleigh fading can be obtained as
a special case of Nakagami- or Rician- ,
we have explicitly left the Rayleigh–Rayleigh combination as
a separate entry since this is the most popular communication
scenario usually investigated. Note also that due to the lack
of closed-form expressions of the distribution function of the
“joint power and interference channel state” for the CoSs
involving Nakagami–Nakagami, Rician–Rician, Rician–Nak-
agami, and Nakagami–Rician fading, we have not included
these scenarios in Table I. Derivation of throughput scaling
laws for these CoSs will be left for future work. For the homo-
geneous case, the CoSs in Table I will be referred to as
and for for PIL and IL networks,
respectively. For the heterogeneous case, they will be referred
to as and for for PIL and
IL networks, respectively. We will use to denote the
sum-rate in with SUs, which represents the sum-rate
for a PIL network consisting of SUs with statistical channel
models given as in CoE . Similarly, , and

denote the sum-rates in CoS , CoS and CoS ,
respectively, when there are SUs in the secondary network.

The rest of the paper is organized as follows. In Section II,
we compare and contrast our results with the relevant previous
work. Section III describes the system model and network con-
figuration along with our modeling assumptions. Section IV de-
rives and presents the secondary network sum-rate scaling laws
for different CoSs, provides various practical and theoretical
insights into the derived sum-rate scaling laws, and illustrates
the accuracy of our results, asymptotically correct in the large
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network limit with infinitely many SUs, by means of numer-
ical analysis for cognitive radio networks with finitely many
SUs. Section V concludes the paper. Our proofs are relegated
to appendixes.

II. RELATED WORK

Our results in this paper are related to two main groups
of works, which can be broadly classified under the names
i) optimum resource/power allocation and ii) sum-rate capacity
scaling via multiuser diversity, in the literature. Here, we will
only mention the papers which are most relevant to ours.

The optimum allocation of transmission powers for primary
networks is a well-understood research problem [12], [13], and
[15]. On the other hand, optimum allocation of transmission
powers in cognitive radio networks is a relatively new research
area. The capacity achieving power allocation policy for a single
SU under interference temperature constraints and the resulting
data rates were obtained in [8]. In [16], Suraweera et al. con-
siders the same setup in [8] and derive analogous results for
asymmetric fading environments. Similar results were also ex-
tended to ergodic, delay-limited and outage capacities of cog-
nitive radio networks with a single SU under various combina-
tions of average and peak transmission and interference power
constraints in [9]. Optimum power allocation policy achieving
(ergodic) capacity was further obtained for multiple access and
broadcast cognitive radio networks with multiple SUs under var-
ious combinations of average and peak transmission and inter-
ference power constraints in [10]. A survey on recent develop-
ments in the field can be found in [11].

Similar to these previous works, our analysis in this paper
also starts with the consideration of sum-rate maximizing power
allocation policy for multiple access cognitive networks under
average total transmission power constraint and a constraint on
the average interference caused by SUs to the primary network.
Different from these works, our motivation here is to derive
tight sum-rate scaling laws for cognitive radio networks with
increasing numbers of SUs. This difference in the motivation
leads us to consider a more stringent transmission power con-
straint than the ones considered in [9] and [10]. We show that,
even with an average total power constraint on the secondary
network, communication rates growing large are attainable with
increasing numbers of SUs thanks to MDGs.

Capacity scaling laws and multiuser diversity gains are exten-
sively studied for primary networks, e.g., see [19]–[21]. How-
ever, these works are only limited to Rayleigh fading chan-
nels. On the other hand, we study more general fading chan-
nels such as Rician and Nakagami- fading channels, which in-
clude the Rayleigh fading model as a special case, in this paper.
Even though our problem formulation involving multiple ac-
cess channel with average transmission and interference power
constraints is much different than those studied in [19]–[21],
similar techniques [22] are used to derive capacity scaling laws
under both formulations. Therefore, some parts of our analysis
are expected to find greater applicability to extend MDGs ob-
tained for the dual broadcast channels in primary networks be-
yond Rayleigh fading communication environments.

Related work also includes multiuser and multispectrum di-
versity results in cognitive radio networks [23]–[26]. In [23],

they performed a joint investigation of multiuser and multispec-
trum diversity gains for a cognitive radio network consisting of
a broadcast secondary network and a primary network with mul-
tiple orthogonal frequency bands. For Rayleigh fading channels,
they derived analytical expressions characterizing the secondary
network capacity when PUs are protected by a peak interfer-
ence power constraint. For a network model similar to the one
studied in [23], the authors in [24] considered secondary net-
work sum-rate capacity scaling under optimum matching of
SUs with primary network frequency bands. Without con-
sidering any protection on the primary network, they obtained
a double-logarithmic scaling law for the secondary network ca-
pacity for Rayleigh fading channels. Scaling laws for the sec-
ondary network capacity under simultaneous peak transmission
power and peak interference power constraints have also been
obtained recently in [25] and [26]. The authors in [25] studied
the capacity scaling laws for a multiple access secondary net-
work for Rayleigh fading channels, while [26] extends these
results to multiple access, broadcast and parallel access sec-
ondary networks. Similar to our results here, these papers es-
tablish logarithmic and double-logarithmic secondary network
capacity scaling behavior for peak transmission power and peak
interference power limited cognitive radio networks under some
approximations. Finally, capacity scaling laws of a cognitive
network with non-fading channels but with a random distribu-
tion of cognitive users have been established in [27], whereas
throughput scaling laws with spatially Poisson distributed pri-
mary users and spatially Poisson distributed secondary users
have been investigated in [28] in the sense of the seminal re-
sult by Gupta and Kumar [29].

The current paper differs from the above-mentioned recent
work on multiuser and multispectrum diversity in cognitive
radio networks on several important fronts. First of all, we
consider average (total) transmission power constraints on the
secondary network and average interference power protection
for the primary network, as opposed to peak transmission
power and peak interference power constraints in all previous
work. From a practical point of view, average transmission
and interference power constraints are more suitable for delay
insensitive traffic. From a technical point of view, they lead to
a different jointly optimum spectrum sharing and transmission
power policy (see Lemma 1), which, in turn, leads to new
estimates for the tail distribution of the received signal-to-inter-
ference-plus-noise ratio (SINR) at the secondary base station
(SBS), e.g., see Appendix A and Appendix C. Second, we
analyze secondary network capacity scaling for more general
fading models including Rician and Nakagami- fading (see
Tables I and II), whereas most of the previous work focused
on Rayleigh fading channels for the purposes of analytical
tractability. Finally, we consider more heterogeneous com-
munication environments in which different SUs experience
statistically different channel conditions (see Theorems 3 and
4), whereas all previous work assumed statistically identical
power gains for SUs.

III. SYSTEM MODEL

Consider an underlay cognitive radio network in which
SUs share a frequency band with a single PU as depicted in
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Fig. 1. � SUs forming a multiple access channel to the SBS and interfering
with signal reception at the PBS.

Fig. 1. Single PU assumption is just for the sake of clarity of
final results, and various extensions to multiple PUs are pos-
sible as discussed at the end of this section. SUs form a multiple
access channel to an SBS, and interfere with the signal recep-
tion at the primary base station (PBS). For ,
we let be the th STSB channel power gain. Similarly, we
let be the th STPB (interference) channel power gain. All
channels are assumed to be ergodic block-fading channels with
continuous power gain distributions as described in Table I. We
assume the availability of full channel state information (CSI),
i.e., availability of the random gain vectors and at the SBS.

We define a power allocation policy
as a mapping from

to , where represents the trans-
mission power allocated to the th SU at the joint fading state

. Let be the space of all functions from
to . We are interested in the solution of the following
functional optimization problem [32]

(1)

where all expectations are taken over random vectors and ,
represents the transpose operator, and (in boldface) is the

vector of ones. Note that, by taking the receiver noise variance at
the SBS as unity without loss of generality, our objective func-
tion for a given power allocation policy represents the mul-
tiple access sum-rate capacity under , which can be achieved
by using complex Gaussian codebooks and successive signal de-
coding at the SBS [13].

Remark 1: Similar to [8] and [10], we assume that the ef-
fect of primary’s interference on the throughput of secondary
network is negligible. This assumption is valid when either the
primary’s interference at the secondary receiver is not signifi-
cant or the secondary user’s receiver can decode the primary’s
data (if the primary has a strong signal for example) and cancel
the resulting interference.

For the sake of simplicity, we will start our analysis by consid-
ering homogeneous CoEs in which all STSB gains are indepen-
dent and identically distributed (i.i.d.) as well as STPB gains.
That is, all ’s and ’s are i.i.d. across SUs, and the random
vectors and are

also independent. We will relax this assumption later. The next
lemma gives the optimal power control policy solving (1).
Since is in the form of a water-filling policy, it is, indeed,
the jointly optimum spectrum sharing and power control policy
instructing us how to share the common spectrum among SUs
and the PU, and to perform power control optimally. We will
skip its proof since similar proofs have already appeared in [10]
under various combinations of average and peak transmission
power and interference power constraints.

Lemma 1: is given by the following water-filling scheme:

if

otherwise

where , is the Lagrange multiplier
associated with the average total transmission power constraint
in (1) and is the Lagrange multiplier associated with
the average interference power constraint in (1).

Note that we have used notation, rather than the
more common notation, to show the explicit dependence
of Lagrange multipliers on in Lemma 1. We define
and as and .
Here, can be interpreted as the joint power and interfer-
ence channel state of the th SU. Then, under , we schedule

the th SU for transmission with power if
and only if the th SU has the best joint power and interfer-
ence channel state, i.e., . Therefore, the sum-rate

achieved by is given by .
The primary purpose of this paper is to identify the scaling be-

havior of under various CoSs as the number of SUs becomes
large. To this end, we analyze two different network types, first
of which is PIL networks in which the network operation is
limited by both an average total power constraint on the sec-
ondary network and an average interference constraint on the
primary network. Technically speaking, we have and

for this network type. The second network type is IL
networks in which the network operation is only limited by an
average interference constraint on the primary network. Techni-
cally speaking, we have and for this network
type.

Various extensions of our results to cognitive radio networks
consisting of multiple PUs are possible. For example, if PUs
also form a multiple access channel to a PBS with an average
power constraint, the optimum power allocation strategy maxi-
mizing their sum-rate is to schedule only one PU with the best
CSI for transmission according to a water-filling power con-
trol scheme [12], [13]. Therefore, SUs effectively need to pro-
tect transmissions only from a single PU at each channel use,
and most of our results can be extended to this case straightfor-
wardly. More generally, we can consider a primary network in
which different PUs are scheduled for communication with

different primary receivers. In this case, it can be shown
that the th SU is scheduled for transmission (to maximize sec-
ondary network sum-rate) if and only if

for all , where is the
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Fig. 2. Throughput scaling in CoS , � � ��� �� ��, with � and � set to 16 and 0 dB, respectively.

interference channel power gain between the th SU and the
primary receiver, is the Lagrange multiplier associated

with the average total power constraint (on the secondary net-
work), and is the Lagrange multiplier associated with the
average interference power constraint at the primary re-
ceiver. If all are the same and equal to and all channels
are i.i.d. Rayleigh fading channels, then becomes
a Gamma distributed random variable. Therefore, exactly the
same throughput scaling result obtained for CoS continues
to hold for this multiple PUs case. Furthermore, even if inter-
ference channels between SUs and primary receivers are i.i.d.
Nakagami- fading channels, a similar discussion shows that
the same throughput scaling still holds since Gamma distribu-
tions form a stable family of distributions.

IV. MAIN RESULTS AND DISCUSSIONS

In this section, we state the main asymptotic sum-rate scaling
results of the paper along with numerical analysis illustrating
them for finite networks.

A. Scaling Results for Homogeneous CoE

We start our discussion by establishing the sum-rate scaling
laws in homogeneous CoEs. Later, we will build upon these
results to derive the sum-rate scaling laws in heterogeneous
CoEs. The next theorem states the sum-rate scaling results in
CoS CoS .

Theorem 1: The sum-rate in scales ac-

cording to for 1, 2, and 3.
Proof: Please refer to Appendix A.

In Appendix A, we give a detailed proof of Theorem 1 for
CoS in which STSB channels are Rayleigh fading chan-
nels and STPB channels are Rician- fading channels. CoS
can be obtained as a special case of CoS by setting to
0, and only key proof ideas for CoS are illustrated to avoid
repetitions.

Theorem 1 formally establishes -type scaling be-
havior for the sum-rate in CoS CoS . Furthermore, based
on our analysis in Appendix A, we can also characterize the
destructive effect of Rician fading on the sum-rate scaling in

CoS for finite numbers of SUs. That is, can be
lower and upper bounded as

by using (8), (11), and (12). This result suggests that the de-
structive effect of Rician fading on the throughput in CoS
can be regarded as reducing the number of SUs by a factor
of . Based on this observation, we define the effective
number of users contributing to MDG in CoS as .
Note that is a decreasing function of , and the
equality is achieved when . This implies that the effective
number of SUs is maximum when (i.e., no line-of-sight
component between SUs and the PBS), and decreases with
increasing . Since increasing means more power in the
line-of-sight fading components, this finding quantifies the
effect of line-of-sight fading components between SUs and the
PBS on the secondary network data rates. Finally, we establish
an important convergence property for Lagrange multipliers

in Appendix B by showing that converges to as
increases in all CoSs for PIL networks. This result indicates

that , , is almost the same with the data
rates calculated by fixing at in Appendix A for all
large enough. Based on this observation and (8) and (11) in
Appendix A, we conclude that an increase in leads to a
logarithmic increase on the secondary network throughput for
PIL networks.

In Fig. 2, we demonstrate the throughput scaling behavior
with increasing numbers of SUs in CoS , CoS and
CoS . In this figure, we set to 16 dB and to 0 dB.
Similar qualitative behavior continues to hold for other values
of and . The graphs with 1, 2, and 3 in Fig. 2(a)
represent the throughput scaling in CoS with different
Rician factors, and the graph with in Fig. 2(a) represents
the throughput scaling in CoS . Fig. 2(b) demonstrates the
throughput scaling in CoS for different values of Nakagami
fading parameters. As Fig. 2 shows, an increase in the number
of SUs leads to a corresponding increase in the secondary
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network throughput due to MDGs as predicted by Theorem 1.
In addition, the scaling behavior of the throughput, as shown
in Fig. 2, is the same as the -type of behavior in
Theorem 1, up to a constant factor which comes from i) the
effects of , and fading distribution parameters on the
throughput of the secondary network, and ii) the higher order
error terms due to the approximation process. In particular,
the logarithmic effect of on the throughput is further
indicated by the closeness of the simulated data rates and the

curves in Fig. 2.
As the Rician factor in CoS and the Nakagami fading

parameter in CoS increase, SUs’ transmission powers
become more limited due to more severe interference caused
to the PBS, and as a result, we start to observe a decrease in
the secondary network throughput. In CoS , the maximum
throughput is achieved when there is no line-of-sight fading
component between SUs and the PBS, i.e., CoS . Similarly,
in CoS , the throughput is maximized with , which
corresponds to the mildest fading condition in STPB channels,
as far as the SU throughput is concerned.

Now, we turn our attention to homogeneous IL networks.
The next theorem establishes the secondary network throughput
scaling behavior in CoS CoS . In Appendix C, we give a
detailed proof of Theorem 2 for CoS in which STSB chan-
nels are Rayleigh fading channels, and STPB channels are Ri-
cian- fading channels. CoS can be obtained as a special case
of CoS by setting to 0, and only key proof ideas for other
CoSs are illustrated to avoid repetitions.

Theorem 2: The sum-rate in CoS scales ac-

cording to for and

for .
Proof: Please refer to Appendix C.

We will start our discussion on the secondary network
throughput scaling for IL networks by first analyzing the effect
of various system parameters on the throughput scaling and
providing effective number of users interpretations. Then, we
will compare and contrast our analytical throughput scaling
results with our numerical results obtained through simulations
for finite networks.

The fundamental distinction between the throughput scaling
results for IL networks and those established for PIL networks
is that the secondary network throughput now scales according
to , whereas this scaling behavior was in pre-
viously studied CoSs for PIL networks. Therefore, by relaxing
the power constraint on the secondary network, we achieve an

exponential gain in secondary network data rates. Furthermore,
we can upper and lower bound as (2), shown at the
bottom of the page, by using (20), (22), and (23). This im-
plies that the effective number of users contributing to MDGs in
CoS is given by , which is the same effective number
of users given for CoS . In CoS , we can lower and upper
bound as (3), shown at the bottom of the page, by using
(26) and (27). This finding implies an effective number of users
of contributing to MDGs in CoS . In addition, effec-
tive numbers of users in CoS and CoS can be given by
(i.e., see (29), (30), (34), and (35)), implying that MDGs in
these CoSs do not critically depend on the STSB channel fading
parameters. Finally, we establish an important asymptotic be-
havior of Lagrange multipliers in Appendix D by showing
that converges to as tends to infinity in all CoSs
for IL networks. Based on this observation and (20), (22), (26),
(29), and (34) in Appendix C, we conclude that an increase in

leads to a logarithmic increase on the secondary network
throughput for IL networks.

Although our main focus in this paper is to consider an av-
erage total transmission power constraint across the SUs, it is
also possible to envisage other scenarios in which all SUs have
their own individual average transmission power constraints. In
these cases, each SU brings its individual power resources in,
and having more SUs implies higher average total transmis-
sion power available for the secondary network. Intuitively, this
suggests that a secondary network with individual power con-
straints becomes an IL network as the number of SUs tends to
infinity. This idea can be made rigorous by assuming that all
SUs have the same average transmission power constraint
and by showing that (identical) Lagrange multipliers asso-
ciated with the individual transmission power constraints must
scale according to in these cases. The proof of this
result is not difficult, and essentially it follows by showing that

. Details are omitted due to space restrictions. From
a theoretical point of view, such a scaling behavior of sug-
gests that as becomes large, transmission powers of SUs are
mainly limited by the average interference constraint rather than
the individual power constraints. Therefore, throughput scaling
behavior of a secondary network with individual power con-
straints will be similar to an IL network, i.e., we observe log-
arithmic growth in the rate with the number of SUs. A rigorous
proof of this result for all possible CoSs is not provided here due
to space constraints, but as an example, we provide a sketch of
the proof of this result for CoE in the next lemma.

(2)

(3)

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 12,2021 at 14:08:57 UTC from IEEE Xplore.  Restrictions apply. 



934 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

Fig. 3. Throughput scaling in CoS , � � ��� �� � � � � ��, with � set to 0 dB ((a)–(c)). The CDF of � ��� � for CoS and CoS (d).

Lemma 2: Consider a secondary network with a symmetric
individual average transmission power constraint of and
an average interference constraint . Let be the er-
godic sum-rate under CoE in this case, with the optimal SU
transmission power allocation policy (derived in [10]). Then,

.
Proof: Note that the throughput in this network is upper

bounded by an IL network under CoE with the same average
interference constraint. Thus, . To
show the other way, consider a suboptimal power allocation
policy, , in which the power of the th SU is given by

, where and
. Let be the throughput of the secondary net-

work when the transmission powers of SUs are allocated ac-
cording to . Then, it follows that and

, which implies
. This completes the proof.
Remark 2: Operating in an IL scenario does not necessarily

imply that the average total transmission power of the secondary
network is infinite. It can be shown that the average transmission
power in CoS for is finite while the network is IL.

We now present our numerical results for throughput scaling
in IL networks. In Fig. 3(a), we depict the simulated secondary
network throughput for CoS and CoS with fixed at 0
dB. For other values of , similar qualitative behavior con-

tinues to hold. The graphs with 1, 2, and 3 in Fig. 3(a)
represent the throughput scaling in CoS with different Rician
factors, and the graph with in Fig. 3(a) represents the
throughput scaling in CoS . As shown in Fig. 3(a), throughput
increases logarithmically with the number of SUs, which is con-
sistent with the MDGs predicted by Theorem 2. As the power
in line-of-sight components of Rician fading STPB channels in-
creases, the interference caused to the PBS by the secondary
network becomes more severe. To compensate this effect, SUs
reduce their transmission power, which results in a throughput
reduction in the secondary network as illustrated in Fig. 3(a).

In Fig. 3(b), we plot the secondary network throughput in
CoS for 0.5, 0.75, 1, and 1.25 with fixed at 0 dB.
Theorem 2 predicts an -type scaling behavior for the
secondary network throughput, and our simulation results are in
close agreement with this scaling behavior. For example, when
the secondary network contains 1000 SUs, our simulation re-
sults give 6.2, 7.5, 9.7, and 14.3 for secondary network data rates
measured in nats per channel use for 1.25, 1, 0.75, and 0.5,
respectively. On the other hand, data rates (in nats per channel
use) predicted by Theorem 2 are 5.52, 6.9, 9.2, and 13.8 for
1.25, 1, 0.75, and 0.5, respectively. As increases in Fig. 3(b),
STPB channels become more deterministic, and we cannot uti-
lize multiuser diversity effects in these (interference) channels
to eliminate interference on the primary network. This leads to
a decrease in SUs’ transmission power levels to satisfy interfer-
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Fig. 4. Normalized secondary network throughput in CoS �� � ��, CoS and CoS �� � ����.� is fixed in 0 dB.

ence constraints, and finally we observe an associated drop in
the secondary network throughput. It should also be noted that
an increase in results in a more severe throughput reduction
than the one observed in CoS with increasing due to an ex-
ponential dependence of effective number of users on .

In Fig. 3(c), we plot the secondary network throughput in
CoS and CoS for CoS and CoS
with fixed at 0 dB. We observe very close data rates in
both CoS and CoS . In contrast to other CoSs, throughput
scaling in CoS and CoS does not heavily depend on the
fading parameters, and therefore we continue to observe sim-
ilar throughput scaling behavior for other values of and .
In general, MDGs rely heavily upon the tail distributions of the
underlying random variables of interest [34]. In our setup, such
gains depend on the tail distribution of . As illustrated in
Appendix C and Lemma 11 in Appendix D, the tail distribu-
tion of can be approximated by the tail distribution of

with in CoS and CoS for large
enough. In Fig. 3(d), we plot the CDF of for different
values of , and parameters. As observed in this figure,
the tail distributions become indistinguishable in both CoSs for
large values of , which justifies why we observe very similar
values for and . Moreover, (29) and (34) sug-
gest that throughput scaling in CoS and CoS does not de-
pend on the fading parameters critically.

In Fig. 4, we plot the normalized secondary network
throughput as a function of the number of SUs for

CoS CoS to further illustrate the accuracy of our scaling
results. The normalized throughput converges to 1 for

CoS and CoS , whereas it converges to (2 in this case)
for CoS with finite but large enough numbers of SUs, as
predicted by Theorem 2.

It is also instructive to study throughput scaling behavior
of secondary networks as or tends to infinity. Consider
first CoS and CoS . As tends to infinity in these CoSs,
STPB channels become more and more deterministic, and
signals transmitted from SUs are received by the PBS without
any power degradation. Therefore, for large values of ,
we cannot utilize multiuser diversity gains between SUs and
the PBS, and the average interference constraint gradually
reduces to a constraint on the transmission power. For CoS ,
this implies that the network becomes a transmission power
limited network with a maximum average permissible power
level of , and the throughput scaling gradually reduces
from a -type behavior to a -type behavior.

In this case, it is possible to show that double logarithmic
throughput gains are achieved by utilizing multiuser diversity
gains between SUs and the SBS by following the same proof
techniques used in this paper. Such a reduction in throughput is
also consistent with our scaling results given in Theorem 2 for
CoS . However, Theorem 2 only predicts that must
be as tends to infinity without revealing precise
throughput scaling dynamics. For CoS , the secondary
network becomes a power limited network with a maximum
average permissible power level of as
tends to infinity. still scales according to ,
and hence the throughput scaling behavior in CoS does not
change with . The same discussion also holds for CoS and
CoS as tends to infinity.

In Fig. 5(a), we plot the secondary network throughput in
CoS and CoS as a function of the Rician factor when the
number of SUs is fixed either at or at . We
set 16 dB for CoS and 0 dB for CoS and
CoS . For large enough, the secondary network throughput
in CoS and CoS can be approximated as

and .
This implies that the destructive effect of an upward change in

on data rates is magnified by a factor of in CoS
when compared to its effect on data rates in CoS . This is
also confirmed through simulations in Fig. 5(a). As the power
in the line-of-sight fading components increases, the secondary
network throughputs in both network types decrease, but with a
higher rate of change for the IL network. Some further qualita-
tive insights are as follows. As increases, the IL network starts
to behave more like a power limited network with an average
power constraint . On the other hand, as increases, the in-
terference constraint becomes the more dominant constraint for
the PIL network, and determines transmission power levels in
CoS , i.e., average transmission power cannot exceed .
As a result, both network types essentially behave like power
limited networks with the same power constraints, and the same
data rates are achieved in both CoSs, as illustrated in Fig. 5(a).
The same arguments continue to hold for data rates in CoS
and CoS as increases, as illustrated in Fig. 5(b).

B. Scaling Results for Heterogeneous CoE

Here, we extend our secondary network throughput scaling
results given for homogeneous CoEs above to heterogeneous
CoEs in which different SUs are allowed to experience different
channel conditions. To this end, we will let represent the
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Fig. 5. Change of secondary network throughput (a) as a function of the Rician � factor and (b) as a function of the Nakagami � factor. (a) is given for CoS
and CoS . (b) is given for CoS and CoS . � � ���� ���, � � 16 dB and � � 0 dB.

mean channel power gain for the th Rayleigh fading channel,
represent the mean channel power gain for the th Rician

or the th Nakagami fading channel,1 represent the Rician
factor for the th Rician fading channel, and represent the
Nakagami parameter for the th Nakagami fading channel.

In a realistic scenario, it is expected that different SUs have
different distances to the SBS and the PBS, and therefore have
different mean channel power gains due to path-loss. It is also
expected that different signals from different SUs are blocked by
different obstacles existing in the network with various degrees
of blocking, and therefore they have different channel power
gains in the line-of-sight fading components. Our scaling results
in this part are provided by taking all of these realistic factors
into account.

We also need some technical assumptions in order to prove
the throughput scaling results for the power-interference limited
and the interference limited cases for the heterogeneous CoEs,
formally presented below in Theorems 3 and 4, respectively. We
let , , ,

, , ,
and . It is assumed that

, , , , ,
, and . These assump-

tions do not limit the generality of our scaling results below.
By considering path-loss, , ,
and imply that SUs cannot be too close or too far
away from the SBS and the PBS. and
are automatically satisfied by definition. When or

, the same calculations in Appendix E and F can
be repeated for deterministic channels, and the same scaling re-
sults continue to hold for PIL networks, but the scaling results
may change for IL networks from a -type behavior to a

-type behavior as discussed above.
The next theorem establishes the throughput scaling behavior

in CoS CoS .
Theorem 3: The sum-rate in CoS scales ac-

cording to for 1, 2, and 3.
Proof: Please refer to Appendix E.

1Since Rician and Nakagami fading channel models do not appear together
in the CoSs considered in this paper, this notation does not cause any confusion.

Fig. 6. Throughput scaling in CoS with � and � set to 16 dB and 0
dB, respectively. � ’s are uniformly distributed over ����� ����.

In Appendix E, we only give the proof of this theorem for
CoS and CoS . CoS is a special case of CoS ,
and is obtained by setting Rician factors to zero. Note also
that the coexistence of SUs experiencing Rayleigh fading and
Rician fading STPB channels is allowed in CoS in its full
generality. Theorem 3 demonstrates that the -type
throughput scaling behavior in PIL networks is not changed
even if different SUs experience different fading channel
conditions.

In Fig. 6, we demonstrate the sum-rate of CoS with
increasing numbers of SUs. In this figure, we set to
16 dB and to 0 dB. We also assume that the means of
STSB and STPB channel gains are uniformly distributed over

. In these simulations, the sum-rate for each is
averaged over 100 000 independent channel realizations with a
fixed set of mean channel gains generated uniformly at random
over , as mentioned above. As increases, the mean
channel gains of the existing users are kept fixed, whereas the
mean channel gains of the new users are chosen again randomly
from the uniform distribution over . As Fig. 6 shows,
the sum-rate in CoS increases double logarithmically with
the number of SUs as predicted by Theorem 3.
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Fig. 7. Normalized throughput in CoS with � set to 0 dB. � ’s are
uniformly distributed over ����� ����.

The next theorem establishes a similar extension of
Theorem 2 to IL networks under the heterogeneity assumption.

Theorem 4: The sum-rate in CoS scales ac-

cording to for . In CoS ,

the sum-rate is bounded as

.
Proof: Please refer to Appendix F.

In Appendix F, we give a proof of this theorem for CoS
and CoS CoS . CoS is a special case of CoS , and
is obtained by setting Rician factors to zero. Theorem 4 shows
that the secondary network throughput for IL networks still has
a -type behavior even in heterogeneous CoEs with dif-
ferent fading parameters for different SUs. In CoS , it is not
possible to find the exact throughput scaling due to exponen-
tial effects of the Nakagami fading parameter on the effective
number of users. Therefore, Theorem 4 only provides upper and
lower bounds on the throughput scaling in this heterogeneous
CoS.

In Fig. 7, we plot the normalized sum-rate of CoS as a
function of the number of SUs. In this figure, we set to
0 dB, and we assume that ’s are uniformly distributed over

. The simulated sum-rate is obtained using the same
averaging procedure as described above for the CoS case.
As Fig. 7 shows, the sum-rate in CoS scales according to

with the number of SUs as predicted by Theorem 4.

V. CONCLUSION

In this paper, we have focused on the secondary network
sum-rate scaling in cognitive radio networks under different
communication environments when SUs’ transmission powers
are optimally allocated. We have analyzed two different net-
work types: PIL networks and IL networks. In a PIL network,
SUs’ transmissions are limited by both an average total power
constraint and a constraint on the average interference that they
cause to PUs. In an IL network, SUs’ transmissions are only
limited by an average interference constraint. In PIL networks,
we have assumed Rayleigh fading model for the channels be-
tween SUs and the PBS, and Rayleigh, Rician or Nakagami
fading models for the channels between SUs and the SBS. For
PIL networks, our analysis shows that the secondary network

throughput has a -type behavior in all communica-
tion environments considered. For IL networks, in addition to
these three communication environments, we have also con-
sidered Rayleigh fading model for the channels between SUs
and the PBS, and Rician or Nakagami fading models for the
channels between SUs and the SBS. For IL networks, our re-
sults show that the secondary network throughput scales ac-
cording to , which implies an exponential increase in the
throughput scaling behavior when compared to PIL networks.
These results have also been extended to heterogeneous com-
munication environments in which different SUs experience dif-
ferent channel conditions. Finally, in some cases, our analysis
has produced a new notion called effective number of users,
which represents the effective number of SUs contributing to
multiuser diversity gains.

APPENDIX A
PROOF OF THEOREM 1

Proof of Throughput Scaling in : Recall
. When changes, the distribution of

also changes. Therefore, the random variables of interest
in this paper are in the form of triangular arrays, and the standard
techniques from the extreme value theory cannot be applied
directly [22]. To overcome this difficulty, we will first focus on a
slightly modified sequence of random variables, and then argue
why the same scaling results must hold for the original problem.
To this end, let for any given fixed and

. Let be the CDF of . Then, using the prob-
ability distribution function of as and that of as (Ri-
cian- ) ,
(where denotes the modified Bessel function of the first
kind), one can easily show that

.
Using the Rician- distribution for , it then follows that

, where
and . Using a formula

for the integral in the above expression (see [35, p. 689]),
one can then obtain .
Let . satisfies the

Von Mises conditions [22], i.e., ,

where denotes the probability density function (PDF)
corresponding to . Therefore, we can find sequences
of real numbers and such that

converges in distribution to a Gumbel dis-
tributed random variable. That is, if is the CDF of

, then
for all . Furthermore, normalizing constants
and can be chosen to satisfy and

, and they can be further expanded as

and

.
The following lemma, Lemma 3, characterizes the asymptotic

behavior of . This lemma will be very helpful
to estimate the tail probabilities lying under . In Lemma
3, we allow to vary with but do not show this relation
explicitly.
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Lemma 3: For , where is given as
(4) at the bottom of the page.

Proof: Using asymptotic expansions of and , we
have

and

(5)

Using the above expansions, we calculate the asymptotic expan-
sion for as (6) at the bottom of the page.

The asymptotic expansion for is obtained as

.
As an application of Lemma 3, we can put

and to obtain (7) at

the bottom of the page. Equation (7) implies that con-

verges in probability to and converges in proba-
bility to 1. Roughly speaking, these results intuitively suggest
that the secondary network throughput should scale according
to as tends to infinity. Since the convergence
in probability does not always imply convergence in mean
[33], we need some more work to establish the exact asymp-
totic behavior of . To this end, let

. It is not hard to prove

that . First, define the event

Then, .

Therefore, for all large enough, can be lower
bounded as

(8)

The desired result immediately follows from (8).
To prove the other direction ,

we will prove a stronger result given by the next lemma. In
the next lemma, showing the effect of the Rician factor on

explicitly will be helpful to provide effective number
of users interpretation in Section IV.

Lemma 4:

Proof: follows from

Fatou’s lemma [33] and the convergence of

in probability to . To prove the other direction, we put
in Lemma 3, where is an integer.

(4)

(6)

(7)
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Then, and

. Thus, for large enough, we can write

(9)

Hence, .
Take now a subsequence such that

and almost surely. We can upper

bound as (10) at the bottom of the page. For

large enough, the summation is

always finite and a decreasing function of . Thus, we have

We finish the proof by taking the limits, and using the dominated
convergence theorem.

By using Lemma 4, we can upper bound for
all large enough as

(11)

where , and (a) follows from Jensen’s inequality. There-
fore, we have , which implies

for all and .

Now, consider the original setup, and let
. Assume that .

Otherwise, all arguments (above and below) can be repeated
by setting when necessary. For PIL networks, both
constraints are active, i.e., and , and

therefore we have and

. These equalities

imply that and for all . We also
argue that . Otherwise, for any , the

transmission power becomes larger than
for all large enough, where . As shown

above, scales according to . scales

according to . Thus, the transmission power becomes
larger than with probability arbitrarily close to one for all

large enough, which violates the average total transmission
power constraint for small enough. Therefore, we can find

and such that

(12)

for all large enough. The proof is complete since
for all and .

Proof of Throughput Scaling in : We will
only provide key proof ideas since the proof of throughput
scaling in CoS is similar to the one given for CoS .
For any and , let and

as above. After some anal-
ysis, the CDF of in this case can be derived

as , where is the

Nakagami fading parameter. satisfies the Von Mises
conditions, i.e., , where is the
PDF corresponding to . Therefore, there exist sequences
of real numbers and such that
converges in distribution to a Gumbel distributed random
variable. and can be chosen to satisfy
and , which can be further expanded as

and

. Let be the CDF of .
The following lemma characterizes the asymptotic behavior of

. In Lemma 5, we will allow to vary with
but do not show this relation explicitly.

(10)
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Lemma 5: For ,

, where

Proof: Using asymptotic expansions of and , we
have

and

(13)

Using expansions for and

given above, can be written
as

(14)

The asymptotic expansion for is obtained as

,
which completes the proof.

The rest of the proof follows the similar arguments that we
used in the throughput scaling proof for . Therefore,
we skip them to avoid repetitions.

APPENDIX B
CONVERGENCE BEHAVIOR OF

In this appendix, we will establish an important convergence
behavior for the Lagrange multipliers for all ,

. As we claim in Section IV, this property will
imply that has logarithmic effects on the secondary net-
work throughput.

Lemma 6: For all , ,
.
Proof: We define , , and as in

Appendix A. From Appendix A, we have .
Thus, . Now, we show that

as follows:

(15)

Pick such that . For large enough,
we have and

. When (i.e., in the absence of any average
interference constraint), since
and scales according to in all CoSs consid-

ered. From Appendix A, we also have .

Therefore, and . We

also have . Thus, and

. Using (15), can be lower

bounded as

Taking as on both sides and applying Fatou’s
lemma, we have

which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Proof of Throughput Scaling in : Recall
and . Similar to

our proofs above, we introduce the auxiliary random vari-
ables and for a
fixed to prove the throughput scaling result in CoS .
Let be the CDF of , and be the CDF of

. Note that, using a similar derivation as in the Proof
of Theorem 1 in Appendix A, or by simply putting in
the expression for in Appendix A, can

be derived as . satisfies

, where denotes the PDF corre-
sponding to . Therefore, we can find a sequence of real
numbers such that converges in distribution
to a Frechet distributed random variable. That is, for all ,
we have . The normalizing
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constants can be chosen to satisfy , which
implies the asymptotic expansion

The following lemma characterizes the asymptotic behavior
of . In this lemma, we allow to vary with but do
not show this relation explicitly.

Lemma 7: For ,

, where is given by

(16)

Proof: Using the asymptotic expansion of , we have

and

Therefore, we have

(17)

Finally, the asymptotic expansion of is obtained as

.

As an application of Lemma 7, we put and

to obtain (18) at the bottom of the page,

which implies that converges in probability to 1.
Similar to our proof for PIL networks, (18) intuitively suggests
that the secondary network throughput should scale according
to for IL networks. Next, we will make this intuition
rigorous.

To this end, let .

It is easy to prove . We first define
the event [see (19) at the bottom of the page]. Then,

. Therefore, for all large enough,
can be lower bounded as

(20)

The desired result immediately follows from (20). To prove the
other direction, i.e., , we define the
events

for . By using Lemma 7, we can estimate probabilities
as Then, is upper

bounded as

(21)

(18)

(19)
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For large enough, and

are always finite and decreasing
functions of . Thus, we have

(22)

Therefore, we have , which implies

that for all .
Now, consider the original setup. For IL networks, the

interference constraint is active, i.e., , and therefore

holds. Since ,

this identity implies for all . We also argue
that . Otherwise, we can find a subse-
quence such that converges to 0 almost surely,

. Then, the average interference caused to

the PBS becomes larger than for all

large enough. By using dominated convergence theorem,

we have , which implies

, and the average

interference constraint is violated. Therefore, we can find
small enough such that

(23)

for all large enough. The proof is complete since
for all .

Proof of Throughput Scaling in : For any , let
and as above. After

some analysis, the CDF of in this case can

be derived as , where is the

Nakagami fading parameter. Let be the CDF of .
satisfies , where is the PDF

corresponding to the . Therefore, we can find a sequence of
real numbers such that converges in distribu-
tion to a Frechet distributed random variable. The normalizing
constants can be chosen to satisfy , which

implies . The following lemma character-
izes the asymptotic behavior of .

Lemma 8: For ,

, where is given by

(24)

Proof: Using the asymptotic expansion of , we have

. We use this re-

sult to find an asymptotic expansion for as

(25)

Finally, the asymptotic expansion of is obtained as

.
Using Lemma 8 and following the same steps as in the

throughput scaling proof given for CoS , we obtain

(26)

for any . It also holds that . Since

(27)

for small enough, we have .

Proof of Throughput Scaling in : For any , let
and as above. The

CDF of is given by in this case.

satisfies . Therefore, there exists

a sequence of real numbers, , such that con-
verges to a Frechet distributed random variable. The normal-
izing constants can be chosen to satisfy

. Hence, the asymptotic expansion of can be written as
. The following lemma characterizes

the asymptotic behavior of .
Lemma 9: For ,

, where is given by

(28)

Proof: Using the asymptotic expansion for ,
can be expanded as

. Hence, can be expanded as

.
Using Lemma 8 and following the same steps as in the

throughput scaling proof given for CoS , we obtain

(29)
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for any . It also holds that . Since

(30)

for small enough, we have .

Proof of Throughput Scaling in : For any ,
let and as above.

The CDF of is given by

in this case. satisfies . Therefore,
there exists a sequence of real numbers, , such that

converges to a Frechet distributed random variable. The
normalizing constants can be chosen to satisfy

. Observe that tends to infinity and tends
to zero as tends to infinity. We define ,
and express as (31) at the bottom of the page. Using
(31), an asymptotic expansion for can be obtained as

. Now, we prove the next lemma that
characterizes the asymptotic behavior of , which is the
CDF of .

Lemma 10: For ,

, where is given by

(32)

Proof: Using the asymptotic expansion for ,
can be expanded as

(33)

Hence, can be expanded as

.
Using Lemma 10 and following the same steps as in the

throughput scaling proof given for CoS , we obtain

(34)

for any . It also holds that . Since

(35)

for small enough, we have .

APPENDIX D
CONVERGENCE BEHAVIOR OF

In this appendix, we will establish an important convergence
property for the Lagrange multipliers for all CoS ,

, in the next lemma. As we argue in Section IV,
this property will imply that has logarithmic effects on the
secondary network throughput.

Lemma 11: For all CoS , ,
.

Proof: Pick such that . Then,

for all

large enough. By using the dominated convergence theorem, we
have

This implies that . The proof is

complete since .

APPENDIX E
PROOF OF THEOREM 3

Proof of Throughput Scaling in : For PIL
networks, we will start our analysis with the proof of the
throughput scaling result in CoS . For CoS , the Rayleigh
fading channel between the th SU and the SBS has a mean
channel power gain , i.e., , whereas the Rician
fading channel between the th SU and the PBS has a Rician
factor , and its mean channel power gain is equal to ,
i.e., . With a slight abuse of notation, the CDF
of will be denoted by ,
and the CDF of will be denoted
by .2 We let , ,

, ,
and . It is assumed that , ,

, , and .
After some analysis, can be derived as

2The notation used to represent the CDFs of � and � should not be
confused with the notation used to represent the CDFs of the auxiliary random
variables � ��� �� and � ��� �� introduced in previous appendixes.

(31)
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Then, is equal to .
After some calculations, we can show that ,

and , which implies
that is a decreasing function of , and an
increasing function of and . Hence, we have

(36)

Under some mild conditions on the tails of 3, the sum-rate
can be written as

(37)

Using (36) and (37), can be upper and lower bounded
as

(38)

Observe that is the sum-rate of a cognitive radio secondary
network in which STSB channels are Rayleigh fading chan-
nels with the same mean channel power gain , and STPB
channels are Rician fading channels with the same Rician factor

and the same mean channel power gain . Similarly,
is the sum-rate of a cognitive radio secondary network in

which STSB channels are Rayleigh fading channels with the
same mean channel power gain , and STPB channels are
Rician fading channels with the same Rician factor and
the same mean channel power gain . Following the similar
steps that we used to prove throughput scaling in , it is
easy to prove that and have -type behavior.
Therefore, we have

Proof of Throughput Scaling in : In this case, the
Rayleigh fading channel between the th SU and the SBS has
a mean channel power gain , i.e., , whereas
the Nakagami fading channel between the th SU and the
PBS has a Nakagami parameter , and its mean
channel power gain is equal to , i.e., . The
similar assumptions on , and above
also hold in this case without loss of any generality. The
CDF of is given by

. After some calculations, we

3The required condition is ��� �� ��� � ���� ��� ��� 	 
 for all finite
� , which is satisfied by the distributions of interest in this paper.

can show that , and

. Hence, we have

(39)

where is the CDF of , and ,
, , , and are defined as above. Using

(39), can be upper and lower bounded as

(40)

Following our earlier analysis for homogeneous CoSs, it is easy
to show that and scale according to , which

implies .

APPENDIX F
PROOF OF THEOREM 4

Proof of Throughput Scaling in : For IL net-
works, we will start our analysis with the proof of the
throughput scaling result in CoS . For CoS , the
Rayleigh fading channel between the th SU and the SBS
has a mean channel power gain , i.e., , whereas
the Rician fading channel between the th SU and the PBS
has a Rician factor , and its mean channel power gain
is equal to , i.e., . It is easy to show that
the CDF of is given by

, and the following
inequalities

(41)

hold, where is the CDF of , and
, , , , and are defined as above.

The same assumptions above on these system parameters con-
tinue to hold for IL networks too, but is now a nec-
essary assumption to make use of multiuser diversity between
SUs and the PBS. Using (41), can be upper and lower
bounded as

(42)

Following our earlier analysis for homogeneous CoSs, it is easy
to show that and scale according to , which im-

plies .

Proof of Throughput Scaling in : In this case, the
Rayleigh fading channel between the th SU and the SBS has
a mean channel power gain , i.e., , whereas the
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Nakagami fading channel between the th SU and the PBS has
a Nakagami parameter , and its mean channel
power gain is equal to , i.e., . It is easy to show
that the CDF of is given by

, and the following inequalities

(43)

hold, where is the CDF of ,
and , , , , and are defined as
above. The same assumptions above on these system parameters
continue to hold in this case, too. Using (43), we have

(44)

Following our earlier analysis for homogeneous CoSs, it is
easy to show that and scale according to
and , respectively. Hence, we have

.

Proof of Throughput Scaling in : In this case, the
Nakagami fading channel between the th SU and the SBS has a
Nakagami parameter and a mean channel power
gain , i.e., , whereas the Rayleigh fading channel
between the th SU and the PBS has a mean channel power gain

, i.e., . It is easy to show that the CDF of

is given by , and
the following inequalities:

(45)

hold, where is the CDF of ,
and , , , , and are defined as
above. The same assumptions above on these system parameters
continue to hold in this case, too. Using (45), can be
upper and lower bounded as

(46)

Following our earlier analysis for homogeneous CoSs, it is easy
to show that and scale according to , which im-

plies .

Proof of Throughput Scaling in : In this case, the
Rician fading channel between the th SU and the SBS has a Ri-
cian factor and a mean channel power gain , i.e.,

, whereas the Rayleigh fading channel between the th SU and
the PBS has a mean channel power gain , i.e., .
It is easy to show that the CDF of is given

by ,
and the following inequalities:

(47)

hold, where is the CDF of ,
and , , , , and are defined as
above. The same assumptions above on these system parameters
continue to hold in this case, too. Using (47), can be
upper and lower bounded as

(48)

Following our earlier analysis for homogeneous CoSs, it is easy
to show that and scale according to , which im-

plies .
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