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Abstract—This paper investigates an optimal quantizer design
problem for multisensor estimation of a hidden Markov model
(HMMs) whose description depends on unknown parameters.
The sensor measurements are simply binary quantized and trans-
mitted to a remote fusion center over noisy flat fading wireless
channels under an average sum transmit power constraint. The
objective is to determine a set of optimal quantization thresholds
and sensor transmit powers, called an optimal policy, which
minimizes the long run average of a weighted combination of
the expected state estimation error and sum transmit power.
We analyze the problem by formulating an adaptive Markov
decision process (MDP) problem. In this framework, adaptive
optimal control policies are obtained using a nonstationary value
iteration (NVI) scheme and are termed as NVI-adaptive policies.
These NVI-adaptive policies are adapted to the HMM parameter
estimates obtained via a strongly consistent maximum likelihood
estimator. In particular, HMM parameter estimation is performed
by a recursive expectation–maximization (EM) algorithm which
computes estimates of the HMM parameters by maximizing a
relative entropy information measure using the received quantized
observations and the trajectory of the MDP. Under some regu-
larity assumptions on the observation probability distributions
and a geometric ergodicity condition on an extended Markov
chain, the maximum-likelihood estimator is shown to be strongly
consistent. It is shown that the NVI-adaptive policy based on
this sequence of strongly consistent HMM parameter estimates
is (asymptotically, under appropriate assumptions) average-op-
timal. Essentially, it minimizes the long run average cost of the
weighted combination of the expected state estimation error and
sum transmit power across the sensors for the HMM with true
parameters in a time-asymptotic sense. The advantage of this
scheme is that the policies are obtained recursively without the
need to solve the Bellman equation at each time step, which can
be computationally prohibitive. As is usual with value iteration
schemes, practical implementation of the NVI-adaptive policy
requires discretization of the state and action space, which re-
sults in some loss of optimality. Nevertheless, numerical results
illustrate the asymptotic convergence properties of the parameter
estimates and the asymptotically close to optimal performance of
the adaptive MDP algorithm compared to the performance of an
MDP based dynamic quantization and power allocation algorithm
designed with perfect knowledge of the true parameters.

Index Terms—Hidden Markov models (HMMs), maximum-like-
lihood (ML) estimation, quantization, state estimation, wireless
sensor networks.
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I. INTRODUCTION

W IRELESS sensor networks (WSNs) have attracted a sig-
nificant level of research interest due to their wide range

of current and potential applications such as in environment and
structural health monitoring, surveillance, detection, and esti-
mation of enemy targets in battlefield situations, and location
aware services, etc. In detection/estimation tasks involving such
WSNs, severe bandwidth constraints, limitations imposed by
the fading wireless channels and the energy/power constraints
of the small battery powered sensors have thrown up a new set
of challenges. Various estimation problems with quantized (bi-
nary or with a small number of bits) data have been studied in
[1] and [2]. Essentially, these studies consider parameter esti-
mation problems. More recently, estimation of linear dynamical
systems using quantized measurements have been considered
in [3], while optimal quantizer design for Kalman filtering with
quantized innovations has been investigated in [4].

In this paper, we study optimal quantization and power allo-
cation for estimation of hidden Markov models (HMMs) with
unknown parameters via multiple sensors communicating (bi-
nary) quantized measurements to a fusion center over fading
wireless channels described by finite-state Markov chains. We
present an adaptive Markov decision process (MDP) based ap-
proach for computing the optimal quantizer thresholds and the
sensor transmit powers for minimizing expected state estima-
tion error when the HMM parameters are unknown and need to
be estimated from the quantized measurements.

A. Related Work

HMMs have long been considered as useful stochastic signal
models in a broad range of areas, such as robotics, econometrics,
biochemistry and biology. Parameter estimation of an HMM
was first studied by Baum and Petrie [5] in 1966. They pro-
posed a nonrecursive (offline) maximum-likelihood (ML) esti-
mator for HMMs with observations taking only finitely many
values. Assuming stationarity of the underlying Markov chain,
they proved consistency and asymptotic normality of the ML es-
timator, where consistency refers to the almost sure convergence
of the ML parameter estimates to the true parameter values
under the probability measure induced by the true parameters,
and asymptotic normality refers to the convergence in distri-
bution of (a suitably scaled) parameter estimation error to a
normal distribution. Since then there has been an abundant lit-
erature on HMM inference. Here, we briefly mention some re-
lated works. In [6], the conditions for consistency in [5] were
weakened (strict positivity conditions on the Markov chain state
transition probabilities and the state to observation probabilities
were relaxed) and some identifiability results were presented.
Later, Leroux in [7] proved consistency of the ML estimator
for general HMMs under some mild conditions while its local
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asymptotic normality was proved in [8]. Recursive (online) es-
timators for HMMs have been studied in [9] and [10] with their
approaches being different in choosing scaling matrices used in
the recursive procedure. In [9] and [10], no convergence results
are provided, but their simulation studies show that the algo-
rithms often converge well in practical cases. A batch recursive
HMM estimator using a stochastic approximation algorithm has
been proposed in [11] and [12] and proved to be consistent.
Moreover, recursive estimation of parameters of an HMM de-
fined as a Markov chain observed through a noisy infinite im-
pulse response (IIR) channel has been studied in [13] with guar-
anteed convergence for some special cases. On line parameter
estimation using recursive EM algorithm has been studied in
[14] for estimation of various Markov-modulated time-series. In
[15], a stochastic approximation algorithm for recursive estima-
tion of HMMs has been proved to be consistent. These results
have been generalized to autoregressive models with Markov
regimes in [16] with an analysis of the asymptotic properties of
the recursive algorithm.

Regarding state estimation of HMMs with quantized mea-
surements, there are many studies reported in the literature
which address state estimation of HMMs with various types
of observations and under different constraints (see, e.g.,
[17]–[20]). In particular, a recent study [19] considered state
estimation of a general HMM with binary quantized mea-
surements sent over temporally correlated flat fading channels
using an unconstrained MDP approach. The authors in [19]
considered minimization of the long-term expected average
of a cost function defined as the Lagrangian combination of
expected state estimation error and total power consumption
across the sensors. Furthermore, in a more recent study [20],
the authors addressed the same problem as in [19] by using an
alternative constrained MDP approach. In order to find optimal
policies, they employed a linear programming technique which
has a provably lower implementation complexity and is more
efficient in terms of computations and memory requirements.
In all of these studies, though, it is assumed that the parameters
of the underlying HMM are known to the state estimation
algorithm.

In most real applications, however, parameters of the HMM
are unknown to the state estimator. This raises a new chal-
lenging problem involving joint estimation of the true parameter
values and the HMM states based on the quantized measure-
ments received over fading wireless channels under an average
sum transmit power constraint, which is the primary focus of
this paper.

B. Summary of Contributions

In contrast to related work such as [19] and [20], in this
paper, we relax the restrictive assumption of true HMM pa-
rameter values being known, and explore the problem of joint
state and parameter estimation of a general HMM, with binary
quantized observations, whose description depends measurably
on unknown parameters. Incorporation of a parameter estima-
tion algorithm into our state estimation algorithm presented
in [19] is the subject of the present research. We propose an
approach based on a coupled adaptive MDP controller (which
determines the optimal quantization thresholds and the optimal
transmit powers at the sensors) and recursive EM based param-
eter estimator operating at the fusion center. This approach is

Fig. 1. Block diagram of the estimation setup for HMMs with unknown pa-
rameters using multiple sequences of binary-quantized observations.

described in detail below. Our approach (illustrated in Fig. 1)
proposes a coupled algorithm in which state and parameter
estimation are performed jointly as a single task at the fusion
center. The first component of this task is an MDP module (also
called the controller), whose function is to obtain an optimal
policy (in our case, quantization thresholds and power levels)
by performing state estimation so as to minimize expected state
estimation error constrained on an average sum power (across
all the sensors) budget. The MDP controller uses a nonsta-
tionary value iteration (NVI) scheme in order to obtain adaptive
optimal policies. The NVI scheme adapts the optimal policy
to the current estimate of unknown model parameters received
from the second module, referred to as Parameter Estimator.
The parameter estimator module finds the best model estimate
by monitoring the sequence of MDP states and actions taken
by the controller as well as the trajectory of the dynamical
system via received observation sequences at the fusion center.
The advantage of the nonstationary value iteration scheme is
that the policies are obtained in an iterative manner without
the need to solve the Bellman optimality equation at each time
step, which in our case is highly computation-intensive.

Since all convergence results that can be obtained for the
estimates to the true parameter value are asymptotic results, the
optimality conditions will only be achieved in the “limit” sense.
Therefore, we formulate our problem as an infinite horizon
average cost adaptive MDP (essentially MDPs which depend
on unknown parameters) problem, following the approach pre-
sented by Hernández-Lerma in [21] and further developed in
[22]. There are many other approaches to average cost adaptive
MDP problems, e.g., see the pioneering works of Kurano [23]
and Mandl [24], and also [25] and [26]. The reason to choose an
average cost criterion is because it depends only on the limiting
behavior of the costs and not on the costs during the early
periods [22]. Since the performance during the early stages
does not contribute to the final average cost, the errors made
by the controller module in the early steps when the parameter
estimator module is still learning the parameters will have no
effect in the limit. Therefore, if the parameter estimator module
performs a strongly consistent parameter estimation, one can
expect the controller performance to be average optimal. It is
shown in [22] that this is indeed the case, under appropriate
assumptions, which forms the basis of our coupled NVI-based
adaptive MDP control algorithm and recursive EM-based
parameter estimation algorithm.
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Remark 1.1: Note that as is usual with any value iteration
scheme associated with solving the Bellman equation for a
long-run average cost MDP problem, numerical implementa-
tion of the NVI-based adaptive control algorithm requires a
discretization of the state and action space. Thus, when solved
with a discretized state and action space, there is some loss of
optimality and the resulting NVI-adaptive policy only provides
an approximation to the true “average-optimal” NVI-adaptive
policy for the continuous state and action space. One expects
that the approximation to get better as the number of dis-
cretized levels increases. Nevertheless, our numerical results
illustrate that the performance of this discretized NVI-adaptive
algorithm is close to that of the stationary policy obtained for
the HMM with true parameters (albeit also with discretized
state and action space), as presented in [19]. See also Remark
3.3 for comments on the relationship between the solution to
the unconstrained weighted (based on a Lagrange multiplier
associated with the average sum power) cost considered in this
paper and the solution to the corresponding constrained MDP
version of this problem, as considered (with known HMM
parameters) in [20].

We use an online expectation-maximization (EM) algorithm
based on the ML criterion for estimating the parameters of the
HMM using the MDP trajectory and the observations received
from the fusion center. We also establish strong consistency
of the proposed online ML parameter estimators using the
so-called mean ordinary differential equations method [27].
Numerical results are presented to illustrate the performance
of our coupled dynamic quantization, sensor power allocation,
and HMM parameter estimation algorithm. Note that a previous
conference version of some of these results appeared in [28].
The current journal version provides an enhanced version with
a detailed strong consistency proof of the online ML method
and additional numerical results. Efforts have been made to
reduce material already presented in [28] as much as possible
without compromising the readability of the paper.

C. The Sequel

The material in this paper is organized as follows. In
Section II, we present the model formulation for the dynamical
system. Section III presents an MDP model for the problem
formulated as an adaptive infinite-horizon average cost MDP
problem. The optimal solution to the MDP problem is charac-
terized by a recursive NVI scheme and corresponding adaptive
policies. It is shown that, under appropriate assumptions, the
policies adapted to the estimates of the model parameters
are average optimal. In Section IV, we present the online
EM algorithm based for HMM parameter estimation. Strong
consistency of the proposed online ML estimator is estab-
lished in Section V. Numerical results are given in Section VI.
Section VII presents a summary of the paper with some con-
cluding remarks. Detailed online estimation equations are
provided in the Appendix.

II. DYNAMICAL SYSTEM MODEL

Notations: Throughout the paper, and denote the sets of
real numbers and positive integers, respectively. We denote by

the class of -times continuously differentiable functions.
Also, represents probability distributions with respect to some

-finite measure. stands for the expectation with respect to

Fig. 2. Dynamical system model showing the Markov chain observed in noise
by M sensors with their observations being quantized and sent to the Fusion
Center via fading channels modeled by finite-state Markov chains.

the probability measure , where denotes a probability dis-
tribution parameterized by a parameter (vector) , with respect
to some -finite measure. In this paper, vector means a column
vector and denotes the transpose notation.

A block-diagram of the multisensor observation setup of
the dynamical system, including the communication channel
over which the quantized sensor observations get sent to the
fusion center is shown in Fig. 2. Below we describe this frame-
work in details. The state process of the dynamical system
evolves according to a discrete-time finite-state homogeneous
first-order stationary Markov process with state space

and transition probability matrix
, where

for , . The order of the process is
fixed and known, whereas, the state values are unknown. Let

denote the vector of unknown state
values. The transition matrix and state space depend
measurably on a parameter (vector) in a compact Euclidean
space . The “true” value of the parameter is denoted by

, and is assumed to be fixed but unknown. Note that for
all , we have and for each
. The initial state probability vector of is denoted by

, where .
It is assumed that the Markov process is hidden

and is observed indirectly by noisy measurements
, , obtained from sensors

where is fixed. Write as the
random vector of measurements obtained from the number
of sensors at time . Also, let denote a vector of

random processes, with each process being a
sequence of conditionally independent random variables given
a realization of . Each random measurement
is characterized by a conditional density with
respect to the Lebesgue measure for , where
is a Euclidean space. Write and let

be a vector of independent noise processes, where
each process is assumed to be an independent and
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identically distributed (i.i.d.) sequence of scalar real-valued
innovations with known marginal distribution parameterized
by a vector .

Remark 2.1: In our numerical studies, we shall deal with
zero-mean white Gaussian noise processes , thus
having , where
we use the notation as a short-hand for
the univariate Normal probability density function, where

.
Due to severe bandwidth limitations in sensor networks, the

measurements are then quantized according to a threshold-
based binary quantization scheme with the sequence

denoting the sequence of quantization
thresholds. Note that the analysis in this paper can be readily
extended to consider higher number of quantizer thresholds, al-
beit at the expense of increased computational complexity. Let

represent the quantized data at time
, where if and otherwise.

The th sensor transmits its quantized output , with power
level to a remote fusion center over a discrete time flat
fading channel. Let be the
sequence of power levels and be the
sensors’ channel state vector at time . We model each channel
state process as a stationary ergodic Markov chain
with state space and transition probability
matrix1 , where ,

, . Each channel state may represent a value of the
channel gain. The initial state distribution of is given by

, where .
Remark 2.2: Note that finite-state Markov chain models have

often been used in the information theory literature to charac-
terize wireless channels. The channel is typically modeled by
appropriately partitioning the range of the received signal-to-
noise ratio (SNR) into a set of intervals (states) using a suit-
able partitioning criteria, e.g., for the Gilbert–Elliot model for a
two-state channel see [29], [30]. For Markov models with higher
number of states see [31] and references therein.

We assume that the channel state information is perfectly
known at the receiver which also knows the transition probabil-
ities of the Markov fading channel. Note that such channel esti-
mation can be carried out in a training phase periodically once
every fading block using pilot symbols from the fusion center
under the condition that the channels between each sensor and
the fusion center is symmetric (i.e., the sensor to fusion center
channel and the fusion center to sensor channel are identical
such as in a time division duplex (TDD) scheme). This is a fair
assumption since the fusion center is typically not limited by en-
ergy/power constraints. The transmission power for each sensor
is chosen from a set of finitely many discrete power levels,
which is generally the case for most practical sensor systems.

Let be the vector of decoded

binary symbols at the fusion center, where as

well. is described by the following channel input–output

transition probability
, where , , , .

The off-diagonal entries in the input–output transition matrix
are called crossover probabilities. A

1To simplify our subsequent analysis, we assume that � � � for all � � �,
� � � and � � � � � .

Fig. 3. Illustration of a two-state Markov chain fading communication channel.

graphical illustration of a two-state Markov chain commu-
nication channel for the th sensor is given in Fig. 3,
where the binary input–output transition probabilities from

to are shown as a function of the channel states
and . We assume that the sensors use a simple binary

phase shift keying (BPSK) modulation scheme to transmit
the binary quantized measurements over orthogonal additive
white Gaussian noise channels. The crossover probability can

be computed as , where is a

constant, is gain of the wireless channel, is the variance
of the additive white Gaussian channel noise, is the distance
between the th sensor and the fusion center, and is the path
loss exponent of the wireless channel, and is the com-
plementary standard normal cumulative distribution function
(cdf). Note that under certain standard symmetry assumptions
on the modulation scheme and noise, the channel input–output
transition probability matrix becomes a symmetric matrix (the
channel is called a binary symmetric channel (BSC)), which
is the case assumed in our analysis for simplicity. For further
details on how to compute the crossover probabilities, see [19].

We may now specify an HMM corresponding to the
observation sequence , decoded at the fusion
center, by , where

, and , the so-called state-to-obser-
vation2 probability matrix, is a diagonal matrix with th
diagonal entry , being
the conditional probability mass function of defined as

.
The task of the fusion center is to find the optimal quantizer

thresholds and the optimal sensor transmit powers while
jointly estimating the state and the parameters of the underlying
Markov chain with the objective being minimization of
average state estimation error subject to an average sum power
constraint across the sensors. The optimal quantizer thresholds
and the optimal transmit powers for each sensor are then fed
back to the individual sensors via the fusion center to sensor
feedback channels (assumed to be delay and error free) to be
used for sensor transmissions at the next time slot, see [19] for
further details.

Definition 2.1: [28] Define the information state vector
with th element , also known as

normalized HMM filter density or normalized forward vari-
able, being defined as ,

where denote the sequence of
estimates of model parameters up to time , and ,
are the -fields generated by , , ,
respectively. Also, define the filtered state estimate as

.

2see [19] for details on deriving the state-to-observation probabilities.
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The following recursive equations for computing the condi-
tional filtered probability densities are well known and we state
them without proof:

Lemma 2.1: and may be computed in-
ductively using the following forward recursion:

;
, ;

, ;

;
where is the -dimensional column vector with all elements
equal to one and is the (unnormalized) forward variable
with respect to the Lebesgue measure .

The state space of the forward variable can be
defined as the simplex .
For numerical tractability of solving an associated Bellman
equation later, we approximate the continuum information
state by a discretized vector , where

is the state space of the discretized forward variable
. Note that after discretization, it is ensured that

, (see [17] for further details). Let de-
note the range space of each variable which is, in general,
equal to for . The theory in Section III holds
true, in general, for with the usual topology. However,
in further analysis, to simplify the implementation of our value
iteration algorithm, we restrict the action space to a finite set
of discrete values in . For further details on this discretization
procedure, again see [17].

III. MDP CONTROLLER

A. Preliminaries

We define to be an adaptive MDP de-
pending on an unknown parameter , where and
are called state and action spaces, respectively. is assumed to
be a nonempty countable (possibly infinite) set endowed with
a discrete topology. The action space is assumed to be a
nonempty Borel space defined as a Borel subset of a complete
separable metric space. Further, , the so-called immediate
(or per-stage) cost function, is a continuous measurable func-
tion on and is the transition law of the
MDP. is the set of admissible state-action pairs defined as

which is a topological subspace
of .

Remark 3.1: Note that and depend measur-
ably on a parameter (vector) whose “true” value, , is fixed
but unknown. It is also assumed that the set of admissible pa-
rameter values is given by a Borel space . Henceforth, for sim-
plicity, we may use shorter notations and .

Remark 3.2: In order to simplify the implementation of our
optimal quantization and power allocation algorithm, we as-
sume the action space to be a finite topological space endowed
with the discrete topology. However, the theoretical results pre-
sented in the following hold in greater generality for all action
sets which are Borel spaces. In particular, can be a count-
able (possibly infinite) set endowed with the discrete topology,
or a compact metric space which is complete and separable, or
in general , endowed with the usual topology [22].

B. Adaptive Markov Decision Process Model

In this section, we formulate our quantization problem as
an adaptive infinite-horizon average cost MDP problem. Let

be an adaptive MDP depending
on a parameter vector as defined above, where

, are corresponding state and
action spaces, respectively. The immediate cost function
is defined by ,
which is a weighted combination of two cost func-
tions: the conditional expected state estimation error

, and the total power consumption

across the sensors at time , , .
Note that here we consider a constraint on the total average
power consumption across all sensors, which is motivated by
possible scenarios where the total power consumption may be
limited due to a minimum lifetime constraint on the network, or
where fair performance comparison irrespective of the number
of sensors may be required. In a clustered sensor network
scenarios, total power consumption within a cluster may also
be limited to reduce interference on a neighboring cluster [32].
It is of course possible to consider individual power constraints
in our framework at the cost of increased complexity due to
the introduction of a Lagrange multiplier for each sensor’s
average power constraint. In the special case of all sensors
having identical signal-to-noise ratio and statistically identical
fading channels and identical average power constraints of ,
considering a total power constraint of would yield the
same optimal solutions as in the case with individual power
constraints.

Remark 3.3: Note that in the combined cost function
by using the weighting factor , a constrained quantization
problem is transformed into an unconstrained (Lagrangian)
problem. The Lagrangian is the combination of the original
cost (mean square estimation error) and the average sum
power constraint (e.g., ) weighted by
some constant factor called the Lagrange multiplier or
tradeoff parameter. A suitably chosen value of ensures that
the required sum power constraint is satisfied with equality. As
opposed to duality theory in convex optimization, the analysis
of a duality gap or conditions under which strong duality
holds in the case of a constrained MDP problem is far more
complicated, especially in the case of state and actions taking
values in Borel spaces, which is the case in our paper. This is
due to the conversion of the partially observed MDP to a fully
observed MDP via the information state approach and also
the fact that the sensor quantizer thresholds and transmission
powers can take real values. One can impose a compactness
assumption on the action space and the information state lives
on the simplex and is thus compact. Strong duality between the
constrained MDP and the corresponding unconstrained MDP
for compact Borel state and action spaces has been shown to
hold via equivalent linear program formulations under some
conditions in [33]. For more general Borel state and action
spaces and unbounded costs, similar dual linear programming
formulations have been used to prove strong duality under
certain assumptions in [34]. Most of the conditions provided in
[33] can be verified to hold for our problem once the maximum
sensor transmit powers are constrained, due to continuity and
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boundedness of the cost and constraint functions and weak
continuity of the Markov transition kernel for a given state
and action value. However, some of the additional conditions
on when a deterministic stationary policy as a solution to the
dual problem also solves the constrained problem are harder to
verify. Even if these conditions can be verified, note that due
to discretization, there will always be some loss in optimality,
as explained in Remark 1.1 earlier. Hence from a practical
implementation point of view, the NVI-adaptive policy for the
Lagrange parameter based cost will always have a duality gap
with the optimal policy for the constrained problem.

Remark 3.4: Due to the lack of exact knowledge of the
Markov process state at the fusion center, direct minimiza-
tion of the mean square state estimation error
would require solving a partially observable MDP (POMDP)
problem. In order to avoid the complications in determining
the solution to a POMDP problem, we express the error cost
function in terms of the information state variable in
order to convert the partially observable MDP problem into a
fully observable MDP problem, see [17], [19]. This technique
of converting a POMDP to a fully observed MDP in terms
of the information state model is standard. Note however that
due to this conversion, we end up with a Borel state space
MDP, which is usually approximated by a finite state MDP via
suitable discretization of the information state space.

For a given parameter value , if the MDP is in
state and action is taken,
then the observation will be received at the fusion center
and the MDP state changes to according
to the transition probability distribution which is
computed by , where
for and , is
the product of M channel transition probabilities computed by

for , . From Lemma 2.1, it is
clear that the value of the forward variable in the next MDP
state is obtained by recursion , where

is the discretization operator (that rounds the
argument to the nearest discretized value) for the information
state as described in [17], and is the unnormalized forward
variable with respect to the Lebesgue measure computed by

.
For each (fixed) value of , we specify an objective

function , expressed as the long-term average expected
cost per time step, or simply the average cost defined by

(1)

where is the initial condition, is a
policy, and is the non-empty space of all admissible random-
ized history-dependent policies. For each fixed value of ,

denotes the expectation with respect to which is the
unique probability measure on for a given policy ,
and initial state . The function is a performance
metric for our quantization problem measuring the performance
when a given policy is used and the system starts with the ini-
tial condition .

Our quantization problem may then be expressed as an adap-
tive stochastic control problem defined as follows. Determine
an average-optimal policy and its corresponding average
optimal cost as the solution to the following optimization
problem

where is the function defined in (1) and is
a strongly consistent convergent sequence of estimates for

. The idea behind this is to compute a sequence of es-
timates of the true parameter , and show that
if converges to -a.s. as then policies
(suitably3) adapted to the approximating MDP sequence

are average-optimal for the true
MDP [22]. We develop this approach in Section IV. We
introduce the following assumptions from [28].

Assumptions 3.1: For the adaptive MDP the following
hold:

A1) Each state is associated with a nonempty mea-
surable compact set of admissible actions when
the MDP is in state .
A2) The immediate cost is a continuous function
of for uniformly in .
A3) For some constant , the immediate cost function
satisfies uniformly in .

Remark 3.5: Note that for the adaptive MDP defined
in Section III-B, Assumptions A1) and A3) in 3.1 are satisfied
due to the fact that for , and and are
finite topological spaces. It can be shown that the immediate cost
function is a continuous function of the action of the power
level , and quantization thresholds for the choice of our
measurement noise distribution (Gaussian) and the continuous
dependence of the channel crossover probabilities on the power
levels. Thus, A2) in Assumption 3.1 is also satisfied. Moreover,
the parameter space is assumed to be compact and its elements
are admissible parameter vectors which satisfy all the required
constraints such as those imposed by transition probabilities of
the Markov process .

C. -Optimality Equation

It has been shown (cf. [35, Th. 5.5.3]) that the search do-
main for optimal policies in the stochastic control problem
may be restricted only to the space of Markov policies instead
of the general domain of randomized history-dependent poli-
cies. Let denote the space of all deterministic Markov deci-
sion rules defined as measurable functions
such that for every and . As-
sume that for each , the action at each
time step is determined by a stationary deterministic Markov
policy , where . Henceforth,
for brevity, may be denoted by .

Remark 3.6: It should be noted that under Assumptions 3.1
A1), the space of deterministic Markov decision rules is a
compact set. Therefore, the search for optimal policies using

-optimality (2) and (3) to be presented in the following may be
refined by finding minimum rather than infimum of the set .

3A suitably adapted policy refers to an NVI adaptive policy to be introduced
in Section IV.
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Now we introduce the following assumption:
Assumption 3.2: For any , ,

, the matrix is primitive and
non-singular uniformly in .

Remark 3.7: Notice that Assumption 3.2 holds under very
mild conditions for the noise process when the tran-
sition probability matrix is primitive uniformly in . For
further details see [20].

For each , the -optimality equations ( -OEs), also
known as the Bellman equations,4 associated with the adaptive
average cost MDP problem may be expressed as

(2)

(3)

where , , is the average
per-stage cost in steady state. Clearly, we are after its optimal
value . is called the cost-to-go
function in which with being the Banach
space of real-valued bounded measurable functions with the
uniform norm . The function

is referred to as the differential cost defined as the
expected total difference between per-stage cost and the
stationary cost .

Remark 3.8: As mentioned at the end of Section II, in order to
compute numerical solution to the -optimality equations, the
forward variable is replaced by a discretized approximation
which yields fully discretized -optimality equations. This, of
course, depending on the choice of the discretization step leads
to a suboptimal solution to the original problem. However, it
can be shown following similar techniques used in [36] (see also
[37]) that under a certain continuity condition on the differen-
tial cost associated with the Bellman equation, as the discretiza-
tion step approaches zero, the optimal cost associated with the
discretized -optimality equations converges to the optimal so-
lution of the original continuous state space average cost opti-
mality equation.

We also introduce the following additional assumptions from
[28]:

Assumption 3.3: The cost-to-go function is a continuous
function of for every , ,
and .

Note that for the adaptive MDP with a finite state space
, Assumption 3.3 may be reduced to the following condition

that the conditional probability measure is a contin-
uous function of for , , and .

In order to establish the existence of solutions to the -OEs
for every , an ergodicity condition was shown to hold in
[28] (see Lemmas 3.1 and 3.2), which for a given , under
Assumption 3.2 implies that the average cost MDP problem

associated with forms a recurrent (ergodic) MDP.
This means that the transition matrix corresponding to every

4cf. [35] Sec. 8.4.

deterministic stationary policy consists of a single recurrent
class and no transient states. This is because using [28, Lemma
3.2], it can be shown5 that the cost associated with every
deterministic stationary Markov policy is uniform in , that
is, for .

Thus we may characterize optimal policies and their corre-
sponding average costs using only the single -optimality (3)
as follows:

(4)
where , and .

Now, we establish existence of solutions to the -optimality
(4). Under Assumptions 3.1 and 3.3 and using the ergodicity
results from [28], it can be shown from Corollary 3.6 in [22],
that there exists a solution to the -optimality (4),
where is a real-valued bounded measurable function
on and is a real-valued bounded mea-
surable function on for each . Based on this argument
which insures the existence of a solution to the -OE, we present
the following theorem:

Theorem 3.1: Suppose that Assumptions 3.1 and 3.3 hold,
and there exist functions , and
in the Banach spaces of real-valued bounded measurable func-
tions which satisfy the -OE (4). Assume there is a stationary
deterministic Markov decision rule which minimizes
the right-hand side of the -OE (4), i.e., for each and

(5)
where . Then, the stationary policy is average-
optimal for the MDP , that is, action

at time determined by the stationary policy
minimizes the cost defined in (1) and the value

of the optimal cost is .
Remark 3.9: This theorem is essentially the -analog (param-

eterized version) of the existence theorem for optimal policies
in average cost unichain models. See Proposition 1 in Chapter
8 in [38] or similarly Theorem 8.4.4 in [35].

D. Nonstationary Value Iteration

In this section, we develop the formulation for approximating
MDP models and introduce a nonstationary value iteration
(NVI) scheme and corresponding NVI adaptive Markov poli-
cies and show that under appropriate assumptions these adaptive
policies are average optimal for the limit (true) MDP . The
approach followed in this section is inspired by results on ap-
proximations and adaptive policies for average cost MDPs pre-
sented in [39] and further extended in [22].

Let be a sequence in converging to the true param-
eter according to the following definition, where refers to
the vector space of admissible histories up to time for ,
where and for .

Definition 3.1: A sequence of measurable func-
tions is defined to be a sequence of strongly

5cf. part (b) of Lemma 3.3 in [22].
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consistent estimators of the true parameter such that
-a.s. is satisfied uniformly in for

every .
Remark 3.10: Note that there are several methods to estimate

parameters of the HMM in sense of the Definition 3.1. How-
ever, at this point, to maintain readability of the manuscript, it is
simply assumed that the strongly consistent estimator
is available. This task is performed by the recursive ML param-
eter estimator module which is discussed in Section IV. Con-
vergence of the ML estimator is then established in Section V
where it is shown that the proposed recursive estimator is indeed
strongly consistent.

Assumption 3.4: There are constants and such that the
per-stage cost function and the MDP transition kernel
satisfy the following inequalities uniformly in
for every , :

where is the metric on the parameter space .
In the following, we define adaptive policies as policies which

determine the control actions adaptively based on the parameter
estimates. First, we define nonstationary value iteration (NVI)
functions recursively as follows.

Definition 3.2: Let be an arbitrary function defined on
, e.g., , and for every , and

(6)

where .
It is clear from Definition 3.2 that the NVI functions

are obtained in an iterative manner starting from
an arbitrary initial function without the need to solve the
Bellman -optimality (4) at each time step , which in the case
of our quantization problem is computationally intensive. This
advantage makes the NVI scheme directly applicable to our
problem. Note also that Assumption 3.4 is a sufficient condition
for the NVI function is Lipschitz continuous in
uniformly on (see [28] for more details). The NVI adaptive
policy corresponding to the NVI functions is then
defined as follows.

Definition 3.3: Let , called the NVI adaptive
policy, be a sequence of deterministic Markov decision rules,
where for each , is a measurable function
such that action determined by mini-
mizes the right-hand side of the -optimality (6) for every .
It is clear that the initial action at time is determined by

.
The following theorem establishes the average optimality of

the NVI adaptive policy for the true MDP .
Theorem 3.2: Suppose that Assumptions 3.1, 3.2, 3.3, and

3.4 hold. Let be any sequence of measurable functions
in converging to the true parameter -a.s. according

to the Definition 3.1. Also, let be an adaptive
policy as defined in Definition 3.3, where
for every . Then is an average-optimal policy for
the true MDP .

Remark 3.11: Theorem 3.2 is the -analog of [22, Th. 6.6]
for average cost MDPs. The proof follows from [22, Cor. 7.8,
pp. 80] and the detail is omitted here.

IV. RECURSIVE ML PARAMETER ESTIMATOR

A. Preliminaries

In this section, we develop the formulation for a recursive
ML estimation of parameters of the HMM . The proposed re-
cursive ML estimator is a measurable function in which, at
each time step , finds the best estimate of the HMM parame-
ters based on the MDP trajectory until time . The
proposed method is an iterative (online6) variant of the gener-
alized expectation maximization (EM7) algorithm for HMMs.
The generalized EM algorithm uses the monotonicity property
that the true likelihood increases at each iteration. Starting from
some initial estimate, the EM algorithm iteratively finds the best
estimate of the HMM parameters using ML criterion in two
steps: an Expectation step ( -step) followed by a Maximization
step ( -step). In the proposed algorithm, the -step involves
finding the distribution for the complete data given the known
values for the observed (incomplete) data and estimates of the
model parameters. The -step finds new estimate of the param-
eters so as to increase the likelihood function (for further detail
see [42] and [43]).

The proposed method is an adaptation of an online estima-
tion algorithm based on relative entropy information measure
presented in [10]. Hence, in the following we only present the
variations necessary to our problem and all further details are
omitted.

B. The Online EM Algorithm

In this section, we present an online EM algo-
rithm which recursively estimates the parameters
of the HMM . Let

be the estimate of
model parameters at time . Let denote
the observable (incomplete) data at the fusion center from
time instant up to time , where is the -field
generated by , for . For simplicity,
we denote by , and by . Henceforth, for
brevity, the state-to-observation probability distribution

, may be denoted by
. Let denote the sequence of

model estimates till time based on the observations .
Also, denote the sequence of unobservable (hidden) Markov
chain states until time by . In the following,

denotes a probability measure on with respect to
some -finite measure. It is shown in [10] that the -step

6see [5], [40], [41] for the classic offline (nonrecursive) EM algorithm, known
as Baum–Welch algorithm, for estimation of HMMs using the forward–back-
ward procedure.

7see [42] for a general formulation of the EM algorithm and its basic
properties.
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of the online EM algorithm maximizes the relative entropy
information measure which is equivalent to maximizing

, where is the marginal
likelihood function of the observable (incomplete) data
parameterized by . The -step may be expressed as follows:

(7)

where for is computed in the -step as follows:
E-step

where is the likelihood function of the com-
plete data if were fully observable.

Remark 4.1: Note that in the -step optimization problem
(7), depending on the distribution of the sensors’ observations
further constraints on the elements of the parameter vector
might be required. As an example, for zero-mean Gaussian mea-
surement noise processes , the standard deviation pa-
rameter in the conditional density must
be strictly positive. This can be ensured by introducing addi-
tional number of constraints given by ,

.
Define the constraint set ,

where is the dimension of the parameter vector , and
is a constraint defined as a real-valued -function

on . For our HMM parameter estimation problem, this con-
straint set includes the constraints on the transition probability
elements as well as the noise density parameters as mentioned
earlier. Without loss of generality, assume that
for an active constraint at , that is, if . Let
denote the set of indices of the active constraints at defined by

.
Remark 4.2: For tractability purposes, in our simulations,

we shall deal with unconstrained optimization by considering
a Lagrangian formulation. Thus, in order to insure positiveness
of transition probabilities and standard deviation of the noise
processes, we use a standard parameterization by considering
square roots as , where
with for every , , and for

. The optimization problem in -step may then
be expressed as follows:

(8)

where the weighting factors are Lagrangian multipliers.

Definition 4.1: We introduce the following variables8 which
are used to implement the forward–backward procedure in order
to evaluate in the EM algorithm:

where .
These variables can be recursively computed using standard

recursions which can be found in [10], [13], and are not pre-
sented here due to space restrictions. By Theorem 3.2 suppose
at each time step , action is determined according
to a deterministic NVI adaptive policy . Further
assume that the trajectory has been observed.
Then, for the function may be evaluated as
follows:

(9)

where is the Kronecker delta function, and the functions
and are evaluated as follows:

(10)

Remark 4.3: From (9) we may write the following recursion9

for the function , :

(11)

We now present the following stochastic approximation al-
gorithm which recursively adjusts the parameter vector by
finding the (local) maximum of the objective function at
each time step. Under appropriate regularity conditions intro-
duced in Section V, the -step of the online EM algorithm can
be written as the following recursion:

- (12)

8Note that the (unnormalized) forward variable �� has been introduced ear-
lier in Lemma 2.1.

9In the following, this recursion is used in evaluating the score function.
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where is a sequence of decreasing small scalar gains
which satisfy certain well-known conditions10 as follows:

(13)

and is the score function defined as

(14)

Remark 4.4: Using recursion (11), it is straightforward to
show that the incremental score function can be computed as
follows:

(15)

A detailed summary of the estimation algorithms for the various
HMM parameters are provided in the Appendix.

Remark 4.5: Note that is chosen to be a function of
the parameter type, that is, Markov chain transition probabili-
ties, state levels, and measurement noise of the sensors each has
different gain values. This improves the convergence rate of the
parameters. Convergence analysis of the above algorithm given
by (12), (15) can be carried out using the standard mean ODE
approach as in [44] under some regularity assumptions on the
observation probability distributions along with an additional
geometric ergodicity condition on an extended Markov chain
[16]. A detailed analysis is presented in Section V.

V. ASYMPTOTIC ANALYSIS OF THE ON-LINE ML ESTIMATOR

In this section, we analyze the asymptotic behavior of the
parameter estimation algorithm presented in the previous sec-
tion. In particular, we study the convergence of the estimation
algorithm (12) using the ordinary differential equation (ODE)
method [27], [44]. The idea behind the ODE approach is to show
that, under appropriate conditions on the noise and using suit-
ably adopted step-size , the asymptotic behavior of the differ-
ence (12) can be efficiently determined by analyzing stability
of a mean ODE. In this way, the asymptotics of the iterate se-
quence can be studied by analyzing the limit trajectory
or equilibrium point(s) of a continuous time process found by
interpolating the iterates with interpolation intervals
[27]. In the following, we follow a related approach in [16] by
showing that their sufficient conditions hold in case of our algo-
rithm. In order to maintain rigor and completeness, we explic-
itly state the set of assumptions and the necessary intermediate
results in the context of our recursive parameter estimation al-
gorithm.

A. Preliminary Assumptions

Define the vector and the matrix by

We introduce the following assumptions:
Assumption 5.1: For any , and any , and for

a given , and , the conditional probability

10see [44] for further details.

distribution of the observable data given the realization
is absolutely continuous with respect to a nonneg-

ative and -finite measure , with -a.e. positive densities
uniformly in .

Remark 5.1: In case of our quantization problem, is a
counting measure on . Assumption 5.1 is satis-
fied if the probability of receiving a particular
(from the th sensor) at the fusion center given the Markov
chain is in state , is positive. Note again that this is satisfied
for i.i.d. Gaussian sensor measurement noise and the assumed
ergodic properties of the independent finite-state Markov com-
munication channels between the sensors and the fusion center.

Remark 5.2: Under Assumptions 3.2 and 5.1, the Markov
process is geometrically ergodic on the state
space under the measure , where is defined by

, see [45].
Assumption 5.2: is a real-valued -function with

bounded first and second derivatives denoted by and
, respectively, satisfying the following inequality:

(16)

where is a constant, and denotes a suitable metric on
the parameter space .

Assumption 5.3: For any , is a real-valued
-function on .
Remark 5.3: Assumption 5.3 is satisfied if the marginal den-

sities of the innovations are continuous with their
derivatives being bounded with respect to . Clearly, this holds
for innovations with normal distributions.

For every , let denote the -dimen-
sional prediction filter vector of the Markov process state

, with its th element being defined by

where denotes the conditional density of the state at
time given a realization of the observed data until time . It
can be shown [46] that the prediction filter satisfies the following
recursion known as the forward Baum equation

with the induction being initialized by . The random
sequence takes values in the simplex , defined as
the set of probability distributions over the state space with
respect to the Lebesgue measure .

Define the random sequence , where
is the matrix of partial deriva-

tives of with respect to components of the parameter
vector , with its th column defined by ,

. It is clear that resides in a set defined as
, where denotes the -dimen-

sional column vector with all elements equal to zero.
Let denote the -dimensional filter vector

of the Markov process state , with its th element de-
fined by . Similar to the prediction
filter, define as the matrix of
partial derivatives of with respect to components of the
parameter vector .
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Assumption 5.4: Under the probability measure , the ex-
tended Markov process is geomet-
rically ergodic on the state space . As a result,
it has a unique invariant probability measure under the mea-
sure .

Remark 5.4: Under Assumption 5.4, the initial conditions
and are forgotten exponentially fast and as such they are
asymptotically trivial in our analysis.

Remark 5.5: Geometric ergodicity of the Markov process
, where , corresponds

to the prediction filter, has been studied in [45]. We briefly men-
tion their sufficient conditions in the following. Define for any

Then, the sufficient condition is that Assumptions 3.2 and 5.1
hold and and are both finite. It can be shown that
Assumption 5.4 holds under the same sufficient conditions, see
also [47]. Note that for any , is finite when the in-
novations are i.i.d. Gaussian random processes. Note
that the i.i.d. Gaussian measurement noise and the ergodicity
of the Markov channel process ensure the continuity and posi-
tivity assumption needed to make the transition probabilities of
state to (quantized) measurements received at the fusion center
all strictly positive. It is then easy to see that if in addition, the
Markov chain transition probability matrix is primitive for
all , Assumption 5.4 will be satisfied.

B. Kullback–Leibler Measure

Define the matrix . From
recursion (11), at each time step , the function
(suitably normalized) in the online EM estimation algorithm (7),
may be expressed as

or equivalently in terms of the filter vector

(17)

Define for any

(18)

It can be shown that if Assumptions 3.2, 5.1, and 5.4 hold
and , , and are finite, then the functions and

are locally Lipschitz continuous uniformly on .
See [45] for a proof in a similar case. Using this and Assump-
tions 3.2, and 5.1–5.4, suppose , , and are finite, then

-a.s. is satisfied uniformly in ,
where

in which denotes the marginal density function of the in-
variant measure defined on .

It has been shown [48] that the true parameter is an ele-
ment of defined as the set of global
minima of the Kullback–Leibler information measure de-
fined by .

From (14) and (17), the incremental score function
can be expressed in terms of the extended observation

which includes the filter vector and
its derivative as follows:

(19)

C. Convergence Analysis

In this section, we provide convergence analysis of the esti-
mation algorithm given in (12). Using (19) and considering all
the required constraints on the parameter , we may rewrite the
estimation algorithm given in (12) in the form

(20)

where , called the constraint set defined earlier, is assumed to
be a nonempty, convex and compact set, and is the projection
of the parameter estimate to the constraint set . The recursion
(20) can be written as the following stochastic approximation
algorithm:

(21)

where defines a small residual perturbation (also known
as the correction or projection term) on the algorithm necessary
to confine the parameter estimate to the constraint set if it ever
slips away from , see [27, p. 121].

In order to analyze the asymptotics of the iterate sequence
in (20), we define a projected ODE for a continuous time

process obtained by interpolating the iterates
with interpolation intervals as follows:

(22)

where is the projection or correction term defined as
the minimum distance needed to bring to the con-
straint set , and is the convex cone generated by
the set of outward normals . The
function , known as mean vector field, is defined by

. For further
details on projected ODE, see [27].
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Assumption 5.5: For each , is uniformly
integrable, the function is a -function in , and also
for each , is a -function on .

Assumption 5.6: There exists nonnegative measurable func-
tions and , where is bounded on bounded -set,
such that

and as and such that for some integer

Define for any

Remark 5.6: A sufficient condition for Assumptions 5.5 and
5.6 is that , , , and are finite. It is clear that this
is satisfied for the innovations which are i.i.d. Gaussian
random processes, see [15]. Essentially, Assumptions 5.5 and
5.6 impose uniform integrability and Lipschitz continuity on
the incremental score function [see (19)], given by
the derivative of the per stage cost in the normalized expected
log-likelihood function , which is maximized via the re-
cursive ML algorithm to find the parameter estimates.

Note that according to Lyapunov stability, a set is
locally asymptotically stable for the ODE (22) if for each

there is a such that all trajectories starting in
never leave and ultimately go to , where

denotes an neighborhood of . We now make the following
assumption:

Assumption 5.7: Suppose that the set is locally asymp-
totically stable for the ODE (22). For any initial condition

, for , where is the set of limit point(s) of the
mean ODE (22), the trajectories of (22) goes to .

Theorem 5.1: Suppose Assumptions 3.2, and 5.1–5.7 hold.
Then, converges to -a.s. as .

Remark 5.7: The proof follows from [16, Th. 3.4], see also
[27, Ch. 6, Th. 1.1].

VI. PERFORMANCE EVALUATION

In this section, numerical results are presented to illustrate
the performance of the proposed joint optimal quantization and
power allocation and HMM estimation algorithm. We study
the effect of initial estimates on the convergence of HMM
parameters and optimal cost, and illustrate the effect of distance
and channel quality on the performance of the ML estimator.
Also, simulations have been performed for different values
of the tradeoff parameter (corresponding to various values
of average sum powers) to illustrate the performance of our
estimation scheme compared to the case when we have exact
knowledge of the true parameters. Unless otherwise mentioned,
the variables which are assumed fixed throughout the following

experiments are as follows: the step size in discretizing the
information state is 0.01, the path loss exponent of
the wireless channel is considered (for example, in an
indoor factory environment [49]), and the constant coefficient

for computing crossover probabilities is .
First we illustrate the performance of the online EM

parameter estimation algorithm. For these simulations, we
generated random sequences of 80 000 observations obtained
by two sensors measuring a two-state Markov chain
with state space and transition kernel

. The measurement noises

of the sensors are assumed to be zero-mean white Gaussian noise
processes with a noise variance vector . The
sensors are located at different distances from the fusion center
with distance vector , where the figures are
given in meters. Therefore, in the following experiments, the
parameter vector based on usual parameterization is defined as

and the true parameter is
given by .
Note that, however, as mentioned in Remark 4.2 in
order to deal with constraints the actual parameters
to be estimated are based on new parameterization as

. The wireless channels
from the sensors to the fusion center are assumed to be inde-
pendent and each channel is modeled by a two state Markov
chain with state space . The channel states and

represent the corresponding channel gains
and , respectively, where clearly corresponds
to a “worse” channel state. The channels are assumed to be
asymmetric across the two sensors, that is, having different
fading statistics with the transition probability matrices given by

, . The noise power

of the wireless channel for each sensor is .
The power levels for each sensor is chosen from the action space

,with thefiguresbeing inmW.The actionspace
of the quantization thresholds foreach sensor isgiven by the finite
set . Note that the action space for the
sensor transmission powers and quantization threshold levels can
actuallybe (locally)optimizedbyusingagradient-free stochastic
optimization approach [based on an adaptive simultaneous
perturbation based stochastic approximation (SPSA)], as was
done by us in a previous paper [20]. However, we have not
explored this aspect in the current paper in order to keep the
computational complexity low. The tradeoff parameter for
these initial experiments is set to (thus corresponding to
no constraint on the average sum power).

As mentioned earlier, the gain sequence must
satisfy certain sufficient conditions given in (13) in order to
ensure almost sure convergence of the model parameters.
These conditions essentially mean that should tend to zero
as at a rate neither too fast nor too slow. We picked

, where takes different values11 de-
pending on the parameter type. The typical values chosen in our
numerical examples are , , ,

.

11
� may also be chosen based on the parameter type to further improve the

convergence rate.
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Fig. 4. Convergence of the state level parameters (a) �� ��� � and (b) �� ��� �
for various initial conditions. The true values �� �� � � ���� and �� �� � �
��� are marked by the red lines.

As for other implementation aspects, we have used fixed-lag
estimation schemes to approximate the fixed interval variables

, , , and , , by fixed-lag vari-
ables12 , , and with sufficiently large chosen
to be . This is done to reduce computational complexity
of the online algorithm on a finite but very long observation
sequence.

For the Markov chain state levels and we have
examined four different initial estimates in the range up to ,
where , away from the true values ,
and . The initial estimates for the state level parameters
according to usual parameterization are given as

12For further details on how to evaluate the fixed-lag variables refer to [10]
Section IV.

Fig. 5. Convergence of the transition probabilities � ��� � and � ��� � for
different initial estimates. The green lines represent the true values.

Fig. 4 shows the effect of the above initial estimates on the con-
vergence of state level parameters and , respec-
tively. The estimates are averaged over each time steps.
Convergence is achieved in all cases, although it is slower in
cases where more than one initial estimates are or further
apart from the true values as, for example, in . Even in cases
where the initial condition for one state level is close or equal
to a different true state level, we still achieve a relatively fast
convergence.

Fig. 5 shows the convergence of the transition probabilities
and under several initial conditions. The initial

estimates are

For all these initial conditions, fast convergence have been
achieved even for where more than one initial estimate is
equal to the true parameter value. Note that the initial point
is chosen such that both and start from the same point
0.1 which is considerably away from their true values.

Fig. 6 shows the convergence of the NVI adaptive cost for

various initial conditions. It is clear that has slower conver-
gence regarding NVI cost because convergence of its parameters
is also achieved in a slower rate as can be seen in Fig. 4. Nev-
ertheless, under all above initial conditions, the NVI cost does
converge to the true optimal cost obtained by the relative
value iteration algorithm (with the true parameter values) pre-
sented in [18]. Note that after the transient period, the relative
error of the NVI cost (with respect to ) reduces to less than

for . The relative error in convergence of
the NVI cost is illustrated in Fig. 7 for several initial estimates.
The error values are computed from the NVI costs which are av-
eraged over each 500 time steps. Note that after the early tran-
sition stage, the relative error reduces to less than for

.
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Fig. 6. Convergence of the NVI cost � under different initial conditions. The
green line represents true optimal cost � .

Fig. 7. Relative error between the NVI cost � and true optimal cost � .

Fig. 8. Optimal and NVI Error/Power curves.

Fig. 8 shows the optimal state estimation error for various av-
erage sum power values across the sensors (obtained by varying

the tradeoff factor ) for the NVI adaptive policy ( as )
and the optimal policy (the relative value iteration algo-
rithm of [18] for the true parameter values). As the available
average sum power becomes low, the quality of the parameter
estimates becomes poorer. As a result, the difference between
the average state estimation error computed by the NVI policy
and the one computed based on the optimal policy (with the
knowledge of the true parameters) becomes larger. The solution
to this is (if possible) to first compute the parameter estimates
using the highest power levels at the sensors in order to learn
the model parameters more accurately. This could be thought
of as a training phase. Then, based on these estimated parame-
ters, one may perform state estimation while jointly finding the
optimal quantization and power allocation policies using the rel-
ative value iteration algorithm of [18] for a given average power
constraint (see also [19]). The performance of this scheme is
shown by the curve titled as the “Estimated Policy” in Fig. 8.
As expected, the performance of this scheme is much closer to
that of the optimal policy .

VII. CONCLUSION

In this paper, we have presented a novel method for jointly
obtaining state and parameter estimates and designing optimal
quantizer thresholds and transmit powers for a multi-sensor
HMM estimation problem. The problem is motivated by moni-
toring applications of bandwidth and power constrained wireless
sensor networks where multiple sensors observe an underlying
Markov chain and binary quantize their noisy measurements
before sending them to a remote fusion center over noisy wire-
less fading channels. The main contribution of this paper lies
in proposing a novel, intelligent coupled recursive ML-based
parameter estimation algorithm and a nonstationary value it-
eration (NVI)-based adaptive MDP control algorithm at the
fusion center, for minimizing the expected state estimation
error under an average sum power constraint across the sensors.
Convergence of the parameter estimates and the asymptotic
average optimality of the NVI algorithm are analytically proved
(following existing results in [16] and [22]) under typical as-
sumptions on the underlying Markov chain and the associated
noise processes. Performance of this coupled algorithm in terms
of the average state estimation error for various average sum
power values are also illustrated via extensive numerical studies.

Finally, it must be said that although we focus on a par-
ticular dynamic resource allocation problem for multisensor
state estimation of an HMM over fading channels in a wireless
sensor network, the coupled NVI based adaptive control and
recursive ML-based parameter estimation algorithm can be
applied to many other problems where MDP or partially ob-
served MDP-based control algorithms are used to make dynamic
decisions but the parameters of the underlying processes are
unknown. In fact, in most practical scenarios, the parameters of
the underlying Markov chains, associated noise processes and
fading channels (in the case of wireless networks) are not known
a priori and need to be estimated in real-time. Examples of such
MDP-based adaptive control applications abound in the litera-
ture on wireless networks for design of scheduling, transmission
control, power control, admission control, and dynamic spec-
trum access algorithms as well as in other types of networks such
as optical and satellite communication networks. References
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are too many to be included here but an earlier survey of such
applications to communication networks can be found in [50].

APPENDIX

SUMMARY OF THE ESTIMATION EQUATIONS

In the following, we summarize the estimation equations for
our three different types of parameters based on the online algo-
rithm presented in (12). Suppose
is the (incomplete) data observed at the fusion center from

th sensor at time and let be
the observation vector received from all sensors. Also, let

be the model estimate at time .
Then, , and for , can be
computed as follows:

(23)

(24)

where the state-to-observation probability mass function is
given by

in which , ,
for , and is the

state-to-observation probability mass function for sensor mea-
surement and is calculated as

(25)

where is the indicator function on set which takes the
value 1 if and 0 otherwise. The partial derivative of
with respect to the state level parameter in (24) can be
computed in a straightforward manner as follows:

Finally, is calculated as follows:

(26)

where the partial derivative of with respect to in (26)
is given by
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