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Abstract— In this work we address the problem of LQG
control where the communication between the sensor and the
controller/actuator is performed via Wi-Fi. We exploit one
feature of Wi-Fi (standard IEEE 802.11) which gives the ability
to switch among different data-rates in real-time: a lower
transmission rate provides a lower packet loss probability at
a price of a larger sampling period. As a matter of fact,
it is not obvious how to select the optimal rate from a
control perspective. Nevertheless, the packet error probability
as a function of the perceived SNR can be obtained either
analytically or empirically. Based on these curves, we determine
the optimal rate and the optimal LQG controller for any fixed
SNR. In a scenario with a time-varying SNR, we also propose
a rate adaptation strategy which is triggered by the measured
SNR. Numerical simulations and comparisons with current
literature are included to show the benefits of our approach.

Index Terms— Packet loss, LQG, Wi-Fi, Rate Adaptation

I. INTRODUCTION

In the last years extensive improvements have been made
in wireless networks in terms of data-rate, reliability, and
coverage [1] [2], allowing control engineers to employ this
technology on Networked Control Systems (NCSs). A NCS
consists of a control system where at least one of the two
links between the plant and the controller is implemented
through a network. This solution ensures many advantages:
the amount of wiring can be drastically decreased, resulting
in lower costs and in more comfortable connections, less
computational capabilities can be located to the plant, and
more complex controllers can be implemented. These inter-
esting properties come at the cost of the two main network-
induced constraints, namely the stochastic time delays and
the random packet losses, which deteriorate the performances
of the estimation and of the control, and may result in the
loss of stability, as it has been shown since the early works,
e.g. [3]. Many attempts have been made to deal with these
issues and many results have been obtained, see e.g. [4] [5].

In the past fifteen years, a large body of literature on Wire-
less Sensors Networks [6] has exploited mainly low data-rate
protocols, e.g. ZigBee, WirelessHart, and ISA100.11a. More
recently, the high date-rate standards of the IEEE 802.11
family, also refereed to as Wi-Fi, have attracted the interest
of the NCS community. The high transmission rates of Wi-Fi
(up to 54 Mbit/s with 802.11g and up to 150 Mbit/s with
802.11n) allow higher sampling rate, but high latency and
heavy stochastic timing behaviour make Wi-Fi not suitable

M. Pezzutto, F. Tramarin, and L. Schenato are with the Department of
Information Engineering, University of Padova, Via Gradenigo 6/b, 35131
Padova, Italy, S. Dey is with Inst for Telecomm Research, University of
South Australia while being on leave of absence from the Dept. of Signals &
Systems, Uppsala University, Uppsala, SE 75121 Sweden. This work is par-
tially supported by University of Padova, project MAgIC SCHE SID17 01.

for control systems. A possible solution for these issues
is done in [7] by applying TDMA-like methodology. An
interesting feature provided by Wi-Fi is the possibility to
switch among different transmission rates by the user on
a packet basis. It is well known that higher rates allow to
transmit a greater number of packets and hence to reduce the
sampling period. At the same time, thanks to more robust
modulations, lower rates are able to guarantee lower error
probabilities. The objective of this work is to exploit this
flexibility to devise an optimal (in the sense of LQG cost)
rate selection algorithm which is triggered by the measured
Signal-to-Noise Ratio (SNR).

A rate selection algorithm is recently proposed in [8],
which, for each packet and for the current SNR condition,
finds the number N of transmission attempts and the se-
quence of N transmission rates that minimize the residual
packet loss probability. In industrial scenario, Minstrel algo-
rithm [9] searches a trade-off between the throughput and
the arrival probability within a maximum delay. Differently
from our technique, these two algorithms consider a com-
munication metric (i.e. the transmission probability or the
throughput) that affects the control rather than the actual
control performance. In [10], the sampling rates of multiple
plants that share a network are selected according to an non-
linear constrained optimization problem. In contrast to our
approach, it does not consider the LQG cost but a metric
which measures the degradation of the performances due
to the discretization. In [11] the MAC parameters of the
network (e.g. the backoff exponent, the maximum number of
backoffs, the retry limit) are chosen to minimize the energy
consumption subject to an admissible LQG cost.

The main contribution of our work is the simultaneous
analysis of the optimal control and the rate selection problem
via an LQG framework. The main difference with respect to
the previous works is that the packet loss and the delay (i.e.
the sampling period) are a function of the transmission rate
and of the SNR level. We devise the optimal LQG regulator
where the control input is updated at the highest rate possible,
independently on the transmission rate. We consider two
scenarios. First we assume the SNR to be constant and we
find the joint optimal rate and LQG gains. In the second
scenario, we consider the more realistic case of time-varying
SNR. In this context, we propose to select the transmission
rate in real-time as if the SNR will be indefinitely constant,
i.e. the optimal rate obtained in the first case. Interestingly,
the optimal regulator has the same gains both with constant
and with time-varying SNR. Our approach of switching
between different rates has the potential to provide the best
possible performance at any SNR level.
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II. PROBLEM FORMULATION

Preliminary, it is important to clarify what we mean by
control rate and transmission rate and what is their relation
to the sampling period.
Control rate Rctr: it is the inverse of the sampling period to
which the system is discretized. It corresponds to the rate at
which the input and the estimate are updated.
Transmission rate Rtx: it is the inverse of the period between
two consecutive packets sent form the sensor to the estimator.
This definition does not coincide with the usual sense for
which transmission rate indicates the bytes sent over the
network per second, also called data-rate. Although they
are not exactly interchangeable, we consider to statically
associate a transmission rate to a data-rate, and we will
possibly refer to the data-rate by the associated transmission
rate.

We consider the set of periods Ti i ∈ {1, 2, . . . , L}, which
represent both the sampling periods and the periods between
two measurements. For sake of simplicity, we assume that
Ti = i·T1. The smallest period is simply indicated by T ,
so the set of given periods is {T, 2T, . . . , L·T}. From the
relation Ri = 1/Ti, it is possible to derive the set of rates
Ri i ∈ {1, 2, . . . , L}; it holds that Ri = R1/i.

A. Communication

We consider to connect the sensor and the estimator
through a Wi-Fi network. Our choice arises from the
widespread adoption of Wi-Fi, but our analysis can be
extended to any network protocol that allows the user to
dynamically select the transmission rate in real-time. Our
work does not employ a detailed protocol, but it relies on a
simplified network model. In the following we introduce our
main assumptions.

In our model, at each measurement instant, the sensor
samples the output, it accesses the network and sends the
measurement to the estimator at the chosen transmission rate.
The packet arrives with a certain probability λ which depends
on the transmission rate and on the SNR level:

λ = ψ(Rtx, SNR).

It is well known that, for a given SNR level, lower trans-
mission rates achieve lower error probability thanks to the
adoption of more robust modulations. We consider that the
packets have fixed length; we do not consider any packet
retransmissions. We assume that either the measurement
arrives within the following measurement instant or it never
arrives. Under this assumption, the packet loss probability
1− λ is the probability with which the packet is not arrived
before the following measurement instant.

Under these assumptions, approximated curves of packet
loss probability vs SNR are shown in Fig. 1. See for example
[12] for IEEE 802.11g. They can be inferred analytically
or empirically. Although the curves are quite typical, other
curves are also possible: our methodology can be applied
with any other curves, as long as the assumptions made above
hold.

Fig. 1: Curves of loss probability vs SNR.

B. System dynamics

Consider the continuous-time linear system:{
dx(t) = Acx(t)dt+Bcu(t)dt+ dw(t)

y(t) = Ccx(t)

where x(t)∈Rn, y(t)∈Rp, u(t)∈Rm, and w(t) is a Wiener
process such that w(t+τ)−w(t) ∼ N (0, Qcτ) with Qc ≥ 0.

Consider to control the system by a Networked Control
System. The sensor packetizes and sends the output to the
estimator through a wireless link, which is subject to random
packet loss. The controller communicates with the actuator
and with the estimator through reliable links, without delays
and packet losses: for example, when they are co-located.

To deal with this set-up, given the finite set of sampling
periods Ti i ∈ {1, 2, . . . , L}, we need to consider a set of
discrete-time systems:{

xk+1 = Aixk +Biuk + wk

yk = Cixk + vk
(1)

with Ai = A(Ti), Bi = B(Ti), Ci = Cc and wk ∼
N (0, Q(Ti)), vk ∼ N (0, R) with R > 0, where

A(τ) = eAcτ B(τ) =

∫ τ

0

eActBcdt

Q(τ) =

∫ τ

0

eActQce
A′ctdt.

Consider wk and vk independent and identically distributed,
and wk independent of vk. Assume that the initial state
is a Gaussian random vector with mean x0. Define the
measurement model at the estimator as:

ykh = γkhyh = γkh(Cixh + vh)

where γkh ∈ {0, 1} indicates if the measurement yh has
been present at the estimator location at time k > h. In
the following, to simplify the notation, if i = 1 we omit it,
so: A1 = A, B1 = B, C1 = C, and Q1 = Q.
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C. LQG cost
Consider the following quadratic cost measure:

JM (u(t)) = E

[
1

M

∫ M

0

(
x′(t)Wcx(t)

+ u′(t)Ucu(t)
)
dt

∣∣∣∣u(t), t ∈ [0,M ]

]
with Wc ≥ 0 and Uc > 0. At discrete time, with the sampling
period T , and K such that M = KT , the cost can be
rewritten as:

JK(uk) = c+ E

[
1

K

K−1∑
k=0

x′kWxk

+ 2x′kNuk + u′kUuk

∣∣∣∣∣ {uk}K−1k=0

]
with

W =
1

T

∫ T

0

A′(τ)WcA(τ)dτ

N =
1

T

∫ T

0

A′(τ)WcB(τ)dτ

U = Uc +
1

T

∫ T

0

B′(τ)WcB(τ)dτ

c =
1

T

∫ T

0

trace (Q(τ)Wc)) dτ.

III. OPTIMAL REGULATOR FOR CONSTANT SNR
In this section, we derive the Single-Rate Controller

(SRC). It has a fixed control rate, equal to the highest rate,
i.e. Rctr = R1, that can be associated to any transmission rate
Rtx. With this definition, the sampling period of the system
is T = 1/Rctr and it is independent of Rtx. For now, consider
Rtx fixed to a generic rate and the SNR constant: it follows
that the arrival probability is constant.

We define the information set Ik, that is the information
available at the controller/estimator at time instant k:

Ik =
{
{ykh}k−1h=0, {γ

k
h}k−1h=0, {uh}

k−1
h=0

}
.

Note that at time instant k the measurement yk is not
available, since we assume a non-zero transmission time to
send it over the network. We define the following variables:

x̂tk|k−1 := E[xk | It]
P tk|k−1 := E[(xk − x̂tk|k−1)(xk − x̂

t
k|k−1)

′ | It].
Since the process noise and the measurement noise are
Gaussian, x̂tk|k−1 is the optimal estimator [13].

With delayed packets, the optimal estimator can be found
following [14]:

x̂tk|k−1 =Ax̂tk−1|k−2 +Buk−1
+ γtk−1Kk−1(y

t
k−1 − Cx̂tk−1|k−2)

Kk−1 = AP tk−1|k−2C
′(CP tk−1|k−2C

′ +R)−1

P tk|k−1 = AP tk−1|k−2A
′ +Q

−γtk−1AP tk−1|k−2C
′(CP tk−1|k−2C

′ +R)−1CP tk−1|k−2A
′

The optimal estimator is time-varying and depends on the
particular realization of the packet arrival process γtk−1. The
filter equations do not directly depend on Rtx, but it affects
the values assumed by γtk−1, that in cascade affect the error
covariance P tk|k−1, the prediction gain Kk−1, and x̂tk|k−1.

In our framework we have assumed that a measurement
arrives within the following measurements instant or it never
arrives. With the SRC, the period between two following
measurements contains Rctr/Rtx sampling periods. It follows
that, if a measurement arrives before the following mea-
surement instant, it can arrive with a delay up to Rctr/Rtx

sampling periods. The optimal estimator works similar to
[14] with bounded delay: when the packet arrives, the filter
returns to the instant associated to the delivered measurement
and updates the estimates from that instant to the current one.

Now we focus on the control input. We look for the causal
feedback law that minimizes the LQG cost:

J∗K = min
{uk}K−1

k=0

JK(uk), s.t. uk = fk(Ik). (2)

Proposition III.1 Consider the discrete system (1) with
sampling period T . Consider the finite-horizon LQG problem
(2). Then, the cost can be rewritten as:

J∗K = c+
1

K

(
x̂′0S0x̂0+trace(S0P0)+

K−1∑
k=0

trace(Sk+1Q)

+ trace
(
(A′Sk+1A+W − Sk)P

k
k|k−1

))
(3)

with

Sk = A′Sk+1A+W

− (A′Sk+1B +N)(U +B′Sk+1B)−1(B′Sk+1A+N ′)

starting from SK = 0. The optimal control is:

uk = Lkx̂
k
k|k−1

Lk = (U +B′Sk+1B)−1(B′Sk+1A+N ′).

Proof: The theorem and its proof are an adaptation
from [15], including the mixed term in the quadratic cost,
excluding the penalty term on the final state, and using the
one-step predictor instead of the filter.
The SRC is the combination of the optimal estimator and the
optimal control given in this section. The control gain Lk is
time-varying but it can be computed off-line and it does not
depend on Rtx. On the other hand, the LQG cost depends on
the adopted Rtx, due to the dependence on P kk|k−1. It follows
that, if we consider two SRCs that adopt two different Rtx,
they have the same control gain but different LQG costs.

IV. OPTIMAL RATE FOR CONSTANT SNR

In this section, under constant SNR, we compute the LQG
cost specifically for each Rtx. We start from (3), that is the
cost obtained by the SRC on the optimal control input. Note
that, since the optimal control gain is independent of the
choice of the transmission rate, to minimize the LQG cost
first over only the input and then over only the transmission
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rate is equivalent to the joint minimization for the control
and the rate. Since the error covariance depends on the
arrival process, we consider the expected value of the infinite-
horizon cost. If limk→∞ Sk = S∞ exists, then:

J∗∞(Rtx, SNR) := lim
K→∞

supEγ [J∗K ] = c+ trace(S∞Q)

+ lim
K→∞

sup
1

K

K−1∑
k=0

trace
(
(A′S∞A− S∞ +W )Eγ [P kk|k−1]

)
.

where we emphasize the dependence on Rtx and on the SNR.
Then, the optimal (i.e. minimum infinite-horizon LQG cost)
transmission rate is:

R∗ = argmin
Rtx

J∗∞(Rtx, SNR).

In order to evaluate J∗∞(Rtx, SNR), we need to evaluate
limk→∞ Eγ [P kk|k−1]. As shown in [16], it can not be com-
puted in closed-form, but it can be upper-bounded. In the
following we use the operator:

gTiλ (X) = AiXA
′
i +Qi − λAiXC ′i(CiXC ′i +R)−1CiXA

′
i

with Ti the sampling period. As in [16], we define λi,c as the
arg inf of the set of λi for which gTiλi (X) = X as a unique
positive semidefinite solution.

First, we consider Rtx = Rctr = R1 and P[γkk−1=1] = λ1.
The inequality

E[P kk|k−1] ≤ P
k

k|k−1

where

P
k

k|k−1 = gTλ1

(
P
k−1
k−1|k−2

)
, P

0

0|−1 = E
[
P 0
0|−1

]
holds for every instant and so it is true also for k →∞. As
stated in [16], if λ1 > λ1,c, the sequence of upper-bounds
converges, i.e.:

lim
k→∞

P
k

k|k−1 = P

and we can find the limit by solving P = gTλ1
(P ). Then we

can upper-bound the optimal LQG cost as:

J
∗
∞(R1)=c+trace(S∞Q)+ trace

(
(A′S∞A+W−S∞)P

)
We show the computation for the case of Rtx = R2. In

this scenario, the plant does not send the output at each
sampling time, but it sends a packet every 2 sampling times.
Without loss of generality, we assume that only the output
at every even sampling times is sent, while the output at odd
sampling times is never sent. Recalling that the measurement
y2h arrives in the time interval [2h, 2h+2] or it never arrives,
we can summarize:

γ2h+2+j
2h = γ2h+2

2h ∀j ∈ N
γ2h+2+j
2h+1 = 0 ∀j ∈ N.

The sent packets are successfully delivered within the next
measurement instant with a probability λ2. Within the period
between two measurements, which is equal to 2 sampling
periods, the packet arrives at the controller at a random time
instant, that is assumed to be uniformly distributed. It follows
that the output y2h is available at the controller before the

next control instant (i.e. 2h+ 1) with a probability equal to
λ2/2. In conclusion, the arrival process can be modelled as:{

P
[
γ2h+1
2h = 1

]
= 1

2λ2

P
[
γ2h+2
2h = 1

]
= λ2

With this hypothesis, we compute the cost. The error covari-
ance assumes different steady-state values on the odd and on
the even sampling instants. For this reason we can split the
sum in two parts:

J∗∞(R2, SNR) = c+ trace(S∞Q)

+ lim
K→∞

sup
1

K

K−1∑
k=0,
even

trace
(
(A′S∞A− S∞ +W )Eγ [P kk|k−1]

)

+

K−1∑
k=0,

odd

trace
(
(A′S∞A− S∞ +W )Eγ [P kk|k−1]

) .

Proposition IV.1 If λ2 > λ2,c, the optimal LQG cost can
be upper-bounded by

J
∗
∞(R2, SNR) = c+ trace(S∞Q)

+
1

2
trace

(
(A′S∞A+W − S∞)

(
P

2h
+ P

2h+1
))

where

P
2h

= g2Tλ2
(P

2h
)

P
2h+1

= gTλ2
2

(P
2h
).

Proof: The proof is omitted for reason of space. It
follows from gTλ ◦ gT0 (X) = g2Tλ (X) and the properties
studied in [16].

Following the same procedure, we can find the steady-
state upper-bound of error covariance and the cost for every
transmission rates. For example, if Rtx = R3 it holds:

P
3h

= g3Tλ3
(P

3h
)

P
3h+1

= gTλ3
3

(P
3h
)

P
3h+2

= g2T2
3λ3

(P
3h
)

and

J
∗
∞(R3, SNR) = c+ trace(S∞Q)

+
1

3
trace

(
(A′S∞A+W − S∞)

(
P

3h
+ P

3h+1
+ P

3h+2
))

For the general case where Rtx = Ri, the cost is:

J
∗
∞(Ri, SNR) = c+ trace(S∞Q)

+
1

i
trace

(
(A′S∞A+W − S∞) ·

i−1∑
j=0

P
ih+j

)
.
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V. OPTIMAL SOLUTION FOR TIME-VARYING SNR

In the time-varying case we do not simultaneously op-
timize for the rate and control, since this requires the
knowledge of statistics on the behaviour of the SNR. We
decide to fix the rate policy based on the static scenario. At
each step, the rate R(k) to transmit yk is selected to minimize
the infinite-horizon LQG cost as if the SNR remains constant
and equal to the value of time instant k, i.e. SNRk:

R(k) = argmin
Rtx

J∗∞(Rtx, SNRk) (4)

Note that R(k) determines also the period before the fol-
lowing sent packet. Without any modification, the SRC is
able to switch among different rates and so it can adopt this
rate selection algorithm. Indeed, the SRC requires to have
an estimate at every sampling period but it is not sensitive
to how the estimate is obtained. The time-varying estimator
works with every transmission rate, because the missing of
a packet due to the adoption of a lower transmission rate is
treated as a packet lost. Interestingly, the SRC is still optimal
also with time-varying SNR. The optimality follows from the
Proposition III.1, that gives the optimal control input if the
sampling period is constant, which is the case of the SRC.
The optimality of the estimator is preserved for the given
information set.

VI. SIMULATIONS

The system used for the test is a pendulum on a cart, for
which we consider the state-space model linearized in the
neighbourhood of the origin [17]:

Ac =


0 1 0 0
0 −33.746 −2.1107 0
0 0 0 1
0 111.33 39.327 0

 Bc =


0

5.3725
0

−17.724


Cc =

[
1 0 0 0

]
Dc = [0]

and we choose the following parameters:√
Qc =

[
10−8 0 10−8 0

]′
Qc =

√
Qc
√
Qc
′
R = 10−8√

Wc =
[
10 100 0 0

]
Wc =

√
Wc

′√
Wc Uc = 1.

The sampling periods are {T, 2T, 3T}, where T = 0.005 s,
and the inverses give the rates. We associate R1, R2, R3

to the data-rates 54, 36, 18 Mbit/s, respectively, and the loss
probabilities from Fig. 1. The asymptotic costs plotted in
Fig. 2 are computed in according to the formulas of the Sec.
IV with constant SNR. Note that the cost is not evaluated in
the entire range of SNR but only in the range for which the
arrival probability allows to compute the steady-state upper-
bound of the error covariance, i.e. λi > λi,c. According to
our algorithm, the optimal rate for a given fixed SNR is
the one which gives the lowest cost, i.e. the lowest curve.
The cost obtained by choosing always the optimal rate is
indicated by the dot line. As it is depicted in Fig. 3, we
see that the optimal rate is not always the one for which
the loss probability is the lowest. To illustrate the benefits
of our adaptive scheme, we decide to compare the SRC to

Fig. 2: LQG cost.

Fig. 3: Optimal loss probability.

the LQG controller over lossy network devised in [15]. The
implementations of the two regulators are quite similar in
term of complexity and both require approximately the same
computational capabilities. In both, we add integral action for
tracking of step reference. The testbed is the response to a
square wave under a piece-wise constant SNR:

SNR(t) =


20 dB t ∈ (0 s, 25 s)

14 dB t ∈ (25 s, 50 s)

6 dB t ∈ (50 s, 75 s)

By construction, the SRC is able to switch among the
three rates without any modification; on the other hand,
we consider two LQG controllers over lossy network with
fixed rate, one with the highest rate (that gives the sampling
period T ), and one with the slowest rate (that gives the
sampling period 3T ). The results are reported in Fig. 4.
We see that, in ideal condition with high SNR, i.e. in
(0 s, 25 s), the SRC and the LQG with the highest rate clearly
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Fig. 4: Response to square wave among the three controllers.

outperform the LQG controller with the slowest rate. The
latter achieves nearly the same overshoot but a settling time
approximately 5 s longer than the other two. When the SNR
decreases, the loss probability obtained with R1 becomes
relevant. In (25 s, 50 s), the controller with R1 achieves
worse performances. In (50 s, 75 s), it becomes unstable,
while the SRC and the LQG with the smallest rate are
still reliable, but with worse performances due to the higher
packet loss. The SRC with adaptive rate achieves both the
reliability of the controller with the most robust transmission
rate and the performance (in terms of overshoot and settling
time) of the controller with the smallest sampling time.

VII. CONCLUSION

In this paper, we have considered the problem of LQG
control of a continuous system, where the sensor and the
controller are connected through a wireless link based on
Wi–Fi. We devised an LQG controller, named SRC, which
is able to deal with time-varying SNR, and we provided
an optimal choice of the transmission rate. We shown that
our controller outperforms other LQG controllers over lossy
network.
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