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Abstract 

In this paper, we address the problem of risk-sensitive filtering and smoothing for discrete-time Hidden Markov Models 
(HMM) with finite-discrete states. The objective of risk-sensitive filtering is to minimise the expectation of the exponential 
of the squared estimation error weighted by a risk-sensitive parameter. We use the so-called Reference Probability Method 
in solving this problem. We achieve finite-dimensional linear recursions in the information state, and thereby the state 
estimate that minimises the risk-sensitive cost index. Also, fixed-interval smoothing results are derived. We show that L2 
or risk-neutral filtering for HMMs can be extracted as a limiting case of the risk-sensitive filtering problem when the 
risk-sensitive parameter approaches zero. 
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I. Introduction 

Risk-sensitive filtering involves minimisation o f  the expectation o f  an exponential in quadratic cost criteria. 
As opposed to L2 filtering, (termed as risk-neutral filtering in [6]), which achieves the minimisation of  a 
quadratic error criteria, risk-sensitive filtering robustifies the filter against plant and noise uncertainties by 
penalising all the higher-order moments o f  the estimation error energy. It also allows a trade-off between 
optimal filtering for the nominal model case and the average noise situation, and robustness to worst-case 
noise and model uncertainty by weighting the index of  the exponential by a risk-sensitive parameter. 

The risk-sensitive filtering problem has been addressed for linear Gauss-Markov signal models in [14]. In 
a companion paper [6] to the present one, the problem has been solved for a general class of  discrete-time 
nonlinear state-space signal models via the so-called reference probability method and the linear Gauss-Markov 
signal model has been treated as a special case. It has been seen that risk-sensitive filters are closely related 
to H ~  filters [11]. Also, related risk-sensitive control problems are abundant in literature [1, 3, 8, 15]. 

The problem of  extracting finite-state homogeneous Markov chains hidden in white Gaussian noise has been 
studied as an off-line estimation problem using the well-known Expectation Maximisation (EM) 
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algorithm [2, 5, 12]. On-line estimation schemes for Hidden Markov Models (HMM) have been given in 
[4, 9, 10]. In all these estimation schemes, the so-called "forward variable" [12] is the true filtered estimate 
which is also a conditional expectation of the state at a certain point of time given the observations up 
and until that point. The smoothed estimate of the state is obtained as a maximum-likelihood estimate based 
on a fixed set of observations. These filtering schemes are essentially related to risk-neutral filtering for 
HMMs. 

In this paper, we address the problem of risk-sensitive filtering and smoothing for discrete-time Hidden 
Markov Models with finite-discrete states. We derive information-state filters which are linear and finite- 
dimensional. The optimising state estimate is given as the minimising argument of  a finite-dimensional sum. 
Also, the backward filters and unnormalised smoothed conditional probability measures are derived. The 
derivation techniques are based on a reference probability method which has been developed in [7] and used 
in [1, 3, 6]. 

In Section 2, we describe the Hidden Markov Model, formally define the risk-sensitive filtering problem, 
and then deal with the change of measure and reformulation of the problem in the new probability measure 
to achieve the filtering and smoothing results. In Section 3, we establish the connection between risk-sensitive 
and risk-neutral filtering and Section 4 presents some concluding remarks. 

2. Hidden Markov models 

2.1. State space model 

Let f k  be a discrete-time homogeneous, first-order Markov process belonging to a finite-discrete set. Define 
~= {el, e2 . . . . .  eN} where e i = ( 0  . . . . .  0,  1, 0 . . . . .  0)' C ~N with 1 in the ith position. Without loss of 

generality, we can assume that Xk E g [13]. We consider this process to be defined on the probability space 
(g2,ff ,~ ' )  with ~ 0  __ a{X0 . . . . .  ~k} and complete filtration {~k}.  The state-space model is then defined 
by 

' ~k+ l  : At~'k -~- '~ ' °k+l ,  y,  = C(~k)  + vk, (1) 

where ~t¢/'k,k E N is a sequence of ~k-martingale increments and hence E[~Wk+ll~k] = 0. Also Yk is 
continuous valued belonging to R p and vk E ~P,k  E ~ is i.i.d with a strictly positive density function ~bk. 

Due to the Markov nature of Wk, we can write 

E [ f , + l  Io~,] = E[~ ,+I  tXk] = A'°J'K, (2) 

N 
where the entries {aii} are defined as P(Sfk+l = ej[Y'k = ei). Obviously, aij > O, Vi, j and ~-]j=laij = l,Vi. 
We also assume that 5fo or its distribution is known. 

2.2. Problem definition 

Our problem objective is to find an estimate ~k of ~k, where ~k E g, such that the following criteria is 
satisfied: 

~ ,  = argminJ,(~), Jk(~) = E[O exp(07t0,k(~))l~k], Vk = 0, 1 . . . . .  (3) 

where O( > O) is the risk-sensitive parameter, {~k} is the complete filtration generated by a{yo , . . . ,  yk} and 

1 ~ ~Po.k(~) = ~bo.,-I + ~(Y'k - ~) 'Qk(fk -- ~), Qk/>0 Vk, (4) 
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where 

~ m ~ "  1__~ m ' -~- "2t'= ( ~ i  --  ~( ' i ) tQi(~[ ' i  --  ~ i ) "  

Remark 2.1. The assumption that 5~k E 8 is to make the search space for ~k  finite-dimensional. But this is 
not an absolute necessity and all the subsequent results can be obtained with 5~k E R s .  

Remark 2.2. Note that (3) holds Vk = 0, 1 . . . .  which means that at the kth time instant, only ~k  is determined 
and ~ , ,  Vi = 0, 1 . . . . .  k - 1 are unaffected. Therefore, 5~k is a true filtered estimate of  ~k  and is not 
subsequently smoothed. 

2.3. Chanoe o f  measure and reformulated cost index 

We define a new measure /5 where {Yk}, k C ~ is a sequence of  i.i.d random variable having density 
function as ~bk. Define 

k 
,Tk = 4'k(Yk- c(~k))  Ak = H,~t. 

C~k(yk ) ' 1=0 

I f  we set the Radon-Nikodym derivative dP/dP [~k = ilk, then under P, the random variables vk, k E ~ are 
i.i.d with density functions q~k. Here, {(~k} is the complete filtration generated by Y'], ~ (Y'0 . . . . .  ~Yk) and 
Yk-I ~ (Yo . . . . .  Yk-1 ) (see [7]). Using a version of  Bayes '  Theorem, we have 

E[ ~lkO exp( O~o.k( ~ ) )l°3t k ] (5) 
E[Oexp(O~o,k(~))l~/k] = ~ [ ~ k  ]0~k ] 

Hence, we work under /5  where the modified problem objective is to determine ~ k ( E  g )  such that 

~k  = argmin/~[Ak0 exp(0~0,k(~))l~k].  (6) 

Remark 2.3. In our HMM above, we have taken the measurement noise vk to be distributed independently 
o f  the state. It is possible to have a model where the observation is expressed as 

Yk = C(J['k ) + O'(~k )Vk, 

where a ( f k )  = ( a , ~ k )  since ~rk is a unit vector and a = (al . . . . .  aN)' .  Such a case can be handled by 
defining 2k = ~)k(Vk)/(~,~['k)q~k(Yk). For details, see [7]. 

2.4. Recurs/re estimates 

Definition 2.1. Define the measure Otk(ej) to be the unnormalised information state such that 

Otk( e/ ) = J~[hk-10 exp(0 ~PO, k- l )( YCk, ej) lq~t k-1], 

where (x, y) denotes the inner product of  two vectors x, y. 

(7) 

Remark 2.4. Note that o~k(ej) can be interpreted as an information state of  an augmented plant where the 
state includes the actual state o f  the system and part of  the risk-sensitive cost. For details, see [11]. 

L e m m a  2.1. The information state ~k = (~k(el) . . . . .  ~k(eN)) t obeys the follow~n9 recurs/on: 

I l ! 
0Ck+l = A ~k.~k~k, (8) 
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where 

{ (gk(Yk -- C(el ) ' (Pk(Yk -- C(eN ) ) } 
MI, = diag ~ - ~ )  . . . . .  ~bk-(-y~ ' 

~k:diag {exp (~(el -- fC,)'Qk(el -- ~ , ) )  ..... exp 

Proof. 

~k+l(ei) = P~[71kO exp(O~o,k )(~5fk+l, ei)I~k] 

= E [ ~gk(Yk -- C(°~k )) L ~-y~ exp 

= ~ [~bk(Yk - C(ej)) 
j : ,  L ~Yyk )- exp 

(using (2) and Definition 2.1). 
Writing in the matrix notation completes the proof. [] 
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(~(eN--~k) 'Qk(eN--#k))} .  

( ~( J~k -- ~k )'Qk(~'k -- ~]k)) ~lk-lOexp( O~l o, k-l )J['tkAeil~/k] 

( ~(e/ -- ~k )tQk(ej - ~k )) aliO~k(ej )] 

Remark 2.5. Note here that the information state filter is linear and finite-dimensional. 

Theorem 2.1. The optimizing estimate .#k is given by 

~k = era*, m* = argmin ~ ~k(Yk - C(ej)) 0 m i=' ~ - Y ~ )  exp ~(e j  -- em)'Qk(ej - em) ~k(ej), 

mE {1,2 . . . . .  N}. 

ProoL 

~'[ak 0 exp(0~0,k(~))l~k] 

[ ~k(Yk) 

N c~k(yk--C(ej)) ( 0 )) 
= ~ exp ~)'Qk(ei ~k(ej) j=l ~bk(Yk) ~(ej-- --~ 

(using Definition 2.1 ). Using (6), the proof is completed. [] 

exp(0~P0.k- i )lJoak] 

(9) 

(lO) 

(11) 

In this section, we present the fixed-interval smoothing results for the Hidden Markov Model. We will 
find that the unnormalised smoothed conditional probability ?k,r(ej) can be expressed as a product of the 
information state ctk(ej) and the backward recursive measure flk, r(ej), Vj C {1,2 . . . . .  N}. In fact, this is 
similar to the result obtained in [12] for risk-neutral HMM filtering where the smoothed estimate is obtained 
by the "forward-backward" procedure. We define ?k.r(ey) and ilk, r(ej) below. 

2.5. Smooth/n9 

Remark 2.6. Risk-sensitive filtering for HMMs with discrete measurements can also be carried out in a similar 
fashion but with a different definition of ~k instead of the one introduced in Section 2.3. For details, see 
Ch. 2 of [7]. 
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Definition 2.2. 

~,,r(ey) = /~ [A, , r  exp(0qJ,,r)l~C, = ey, °~r] , 

yk, r (e j )=P . [71r0exp(0q%,r ) (3fk ,e j ) lq l r ] ,  Vj ~ {1,2 . . . . .  N}, 

where Am n n - = X - I , : .  2.,. 

We state the following lemma and theorem without proof. 

L e m m a  2.2. The backward recursive measure fl,. r(ej) obeys the followiny backward recursion: 

rh,(yk _ C ( e J ) ) e x p  ( 0 ) N rhk(y,) ~(ej - ~k) 'Qk(ej  - ~ , )  ~aji~k+~.r(ei), (12) 
i=l 

flr.r(e/) = cPr(yr - C(eJ)) exp ( 0 ) 
49r(yr) ~(ej - ~;r)'Qr(ej - ~Tr) , Vj E {1,2 . . . . .  N}. 

Theorem 2.2. The unnormalised smoothed conditional probability ~)k,T(ej) can be expressed as 

7k.r(ej) = ~,(ej)3k.r(ej), Vj E {1,2 . . . . .  N}. (13) 

3. Limiting results 

In this section, we consider the case when the risk-sensitive parameter 0 approaches 0. It is known that for 
linear and nonlinear state-space signal models with continuous-range states, the risk-neutral (or L2) filtering 
problem is recovered as a special case of  risk-sensitive filtering when 0 --+ 0 [6]. Since, in the case o f  L2 
filtering, we know that the conditional mean estimate is the minimum variance estimate, we can define the 
unnormalised information state 0¢k(ej) as 

• k(ej) = E[/lk0 exp(0q*0.k_ l ) (~k,  ej)I°~k] 

instead of  using Definition 2.1. It is not difficult to show that with this definition, ~k(ej) will obey the 
following recursion: 

(ak+l(yk+l -- C(eJ)) exp ( 0 ) N 
~k+l(e/) = ~bk+l(yk+l) ~ ( e j  -- ~Tk)'Qk(e j - ~fk) ~~aijo~k(ei). 

i=1 

It follows immediately that as 0 ---+ 0, we have 

~bk+l(yk+l -- C(ey)) u , , 
~ ,+ , (e j )  = chk+,-----(y,--+l) iM=l aij~ktei)' 

which is the well-known risk-neutral recursive filter for HMMs. A variation of  this recursion in the so-called 
forward variable (analogous to ~, (e j )  here) appears in [12]. The MAP estimate is defined as X ,  = em., m* = 
argmax m oq(em). This implies that the standard filtering equations for HMMs can be obtained as a special 
case of  the risk-sensitive filtering equations when 0 ~ 0. 

4. Conclusion 

The problem of  discrete-time filtering and smoothing for Hidden Markov Models with finite-discrete states 
with an exponential o f  quadratic cost criteria, termed risk-sensitive filtering in [6] is addressed in this paper 



366 S. Dev. J.B. MooreISystems & Control Letters 25 (1995) 361~66 

using the reference probability method. A new probability measure is defined where observations are i.Ld 
and the reformulated cost-criteria is minimised to give filtering and smoothing results for HMMs. Finite- 
dimensional linear recursions are obtained in the information state. Closed-form results for the optimising state 
estimate and unnormalised smoothed conditional probability measure are given and connection between risk- 
sensitive filtering and risk-neutral filtering for HMMs has been obtained as a limit result when 0 approaches 
0. Simulation studies (not reported here due to lack of space) have confirmed that risk-sensitive filters are 
more robust to uncertain noise environments, specially to coloured and occasionally high noise. They show 
that there is a certain range of 0 where the risk-sensitive filter outperforms the L2 or risk-neutral filter in 
terms of desirable robustness properties, but increasing 0 beyond this range actually degrades the performance 
of the risk-sensitive filter. 
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