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Reduced-Complexity Filtering for Partially Observed
Nearly Completely Decomposable Markov Chains

Subhrakanti Dey, Member, IEEE

Abstract—This paper provides a systematic method of ob-
taining reduced-complexity approximations to aggregate filters
for a class of partially observed nearly completely decompos-
able Markov chains. It is also shown why an aggregate filter
adapted from Courtois’ aggregation scheme has the same order
of approximation as achieved by the algorithm proposed in this
paper. This algorithm can also be used systematically to obtain
reduced-complexity approximations to the full-order filter as
opposed to algorithms adapted from other aggregation schemes.
However, the computational savings in computing the full-order
filters are substantial only when the large scale Markov chain
has a large number of weakly interacting blocks or “superstates”
with small individual dimensions. Some simulations are carried
out to compare the performance of our algorithm with algorithms
adapted from various other aggregation schemes on the basis
of an average approximation error criterion in aggregate (slow)
filtering. These studies indicate that the algorithms adapted from
other aggregation schemes may becomead hoc under certain
circumstances. The algorithm proposed in this paper however, al-
ways yields reduced-complexity filters with a guaranteed order of
approximation by appropriately exploiting the special structures
of the system matrices.

Index Terms—Hidden Markov models, queuing analysis,
reduced-order systems, singularly perturbed systems, state
estimation.

I. INTRODUCTION

NEARLY completely decomposable Markov chains were
first studied by Simon and Ando [1]. These Markov

chains are usually large scale, and show strong interactions
within groups and weak interactions between the groups. They
are known to have a transition probability matrix of the struc-
ture . Applications of such Markov chains to
queueing networks and computer systems have been reported
in [2] by Courtois who extensively studied these Markov
chains. There have been several other studies that contributed
to the development of decomposition-aggregation methods
for obtaining reduced-order approximations for uncontrolled
[3], as well as controlled Markov chains [4], [5]. Essentially,
these works were concerned with obtaining approximations
for the stationary distribution of the Markov chain. While in
[2], an aggregation method is developed that results in an
approximation of the exact stationary distribution, [6] gives a
singular perturbation interpretation to Courtois’ aggregation.
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In [7], stochastic complementation was used to develop an ag-
gregation procedure to obtain the exact stationary distribution.
The singular perturbation approach to study aggregation of
finite-state Markov chains has been also studied in [8]–[10].
A more recent work is [11] where a clever transformation
technique is used to develop an aggregation method that can be
used to obtain any arbitrary order of approximation to or even
the exact stationary distribution for the purpose of obtaining an
aggregation of the policy iteration method in infinite-horizon
optimal control of such Markov chains. The problem of the
infinite horizon average cost control problem for such Markov
chains was also addressed in [12], [13]. It was shown that the
optimal solution can be approximated by an optimal solution
to the so calledlimit Markov control problemfor a sufficiently
small . Algorithms were also provided for achieving these
control strategies.

In this paper, it is our objective to study a class of partially
observed nearly completely decomposable Markov chains
where the observations belong to a discrete set of finite car-
dinality. Note that partially observed Markov chains are also
known as hidden Markov models which have applications in
speech recognition [14], adaptive equalization of communi-
cation channels [15], biological signal processing, etc. To the
best of our knowledge, there has been no systematic way of
obtaining reduced-order approximations to conditional prob-
ability filters for hidden Markov models in the case when the
underlying Markov chain is nearly completely decomposable.
This approximation problem with the objective of reducing the
number of computations becomes particularly simple when the
state to output (observation) transition probability matrix has
a block structure in the sense that the state to output transition
probabilities are constant over all the states belonging to the
same “group” of the Markov chain. It is also easy to extend the
analysis to the case where this transition probability matrix is
a small perturbation of the block structure. The applicability
of such block-structured observation probability matrices not
only lies in modeling of management systems (where top
levels of management are only interested in macro-behavior
rather than micro-behavior) but also in real engineering appli-
cations like distributed control environments particularly with
communication constraints. For example, in an environment
where multiple sensors are sending information, it might not
be possible to send fine information due to bit-rate constraints,
and hence it might just be practical to send coarser information
(e.g., information about the macro-states). This may be of
use in hierarchical control systems also, where a controller
at one of the top levels of the hierarchy may not want fine
information since it may only want to control transitions from
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one macro-state to another (e.g., the controller may want to
know that a failure has occurred and not what particular kind of
failure it is). In the rest of the paper, we will only be interested
in these classes of partially observed Markov chains.

In this paper, we provide a systematic way of obtaining an
approximation to the aggregate (slow) filter and show

that one can adapt Courtois’ aggregation method to obtain the
same algorithm (which has not been reported in literature ei-
ther). However, our algorithm also provides a systematic way to
obtain an approximation for the full-order filter with re-
duced number of computations when there are a large number of
blocks in the underlying Markov chain with the individual block
sizes being small. It is not clear as to how to adapt Courtois’ ag-
gregation method (or for that matter any aggregation method,
e.g., the one in [11]) to obtain an approximation to the
full-order filter with reduced number of computations. In a spe-
cial case where the unperturbed Markov chain (that is the com-
pletely decomposable part of the Markov chain with a transi-
tion probability matrix ) has got individually independent
and identically distributed subchains, we show that one can ob-
tain (using our algorithm) approximation to the aggregate
filter with reduced number of computations, whereas the other
aggregation methods cannot be adapted to achieve that. Our
method essentially consists of the amalgamation of two known
techniques. First we decompose the full-order conditional prob-
ability filter into the slow (aggregate) and a mixed (mixture of
fast and slow) mode using the same transformation technique
as used in [11]. Then we decouple these two modes using a de-
coupling transformation as found in [6], [16] or for analyzing
stability of adaptive systems in [17]. It is shown that under cer-
tain assumptions (which are reasonable for a small enough)
holding our approximation schemes yield reduced order com-
putations. We compare the performances of our algorithm, and
algorithms adapted from Courtois’ aggregation method and the
aggregation method provided in [11] in all these different cases
on the basis of an average approximate error criterion for the ag-
gregate filter computed through simulation studies. Under cer-
tain circumstances, thead hoc nature of algorithms adapted
from these other aggregation methods becomes exposed. Also,
we re-iterate that under all these circumstances our algorithm
continues to have the edge over algorithms adapted from other
aggregation methods in that our algorithm provides a systematic
way of obtaining approximations to the full-order filter
with reduced number of computations.

In Section II, we describe the class of hidden nearly com-
pletely decomposable Markov chains we are interested in. In
Section III, we decompose the conditional probability filter into
the aggregate and a mixed mode. In Section IV, we use the de-
coupling technique and show under what circumstances one can
obtain approximate calculations with reduced order computa-
tions for the aggregate as well as the full-order filter. Section V
shows some simulation results. Finally we present some con-
cluding remarks in Section VI.

II. SIGNAL MODEL

In this section, we describe the particular classes of partially
observed nearly completely decomposable Markov chains that

we are interested in. A nearly completely decomposable Markov
chain in a complete probability space comprising
of states is characterized by a transition probability matrix

which has the following structure:

(1)

where is the identity matrix of order

where , , , is a small per-
turbation parameter, and . It is obvious that there
are blocks in the Markov chain within each of which the dy-
namics is fast and every so often, the chain leaves one block to
visit another. Since is small, the rate at which these inter-block
transitions occur is slow. For all, is row-stochastic,
and so is . Obviously, the row-sums of and are zero. We
make the following key assumption.

Assumption 2.1: and , are irreducible.
Traditionally, one is essentially interested in cases where
. If one is only interested in obtaining reduced complexity ap-

proximate computations for the aggregate filter, having
is sufficient. However, as we will see, the cases where one

can save in approximate computation of the full-order
filter involve smaller block sizes with a reasonable number of
blocks (where is still a lot less than , roughly speaking).
We also term these blocks as “superstates.” Note that the
probability (or conditional probability) of the Markov chain be-
longing to a particular superstate is the sum of probabilities
(or conditional probabilities) of the chain belonging to its con-
stituent states. We denote the state of the-state Markov chain
at time as , and the th superstate is
denoted by . Without loss of generality,

, ,
etc.

The states of the Markov chain are not directly observed,
rather observed in imperfect observations. In other words, as-
sociated with the state , there is a nondeterministic observa-
tion (or measurement) . For the purpose of this paper, we as-
sume that belongs to a discrete set of finite cardinality. More
specifically, and

, . Such a signal model
(irrespective of whether the underlying Markov chain is nearly
completely decomposable or not) is also known as a hidden
Markov model (HMM). Note also that , that
is, the observation probability matrix is column-sto-
chastic. In what follows, we will be interested in a special struc-
ture of , where the observations reflect the superstates only,
i.e., . We will show that this spe-
cial structure can let one obtain substantial savings in compu-
tations if one is interested in obtaining approximations to
the conditional probability estimates for the HMM. For the time
being, we make another key but standard assumption.

Assumption 2.2: .
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Remark 1: The above assumption obviously implies that
there exists a such that .

We will also analyze a case (of course, a very restrictive one)
where the Markov chains represented by the block-stochastic
matrices are independently and identically distributed
(i.i.d) (note that in this case, does not need to be “block” struc-
tured). This leads to an approximation to the aggregate
filter with reduced number of computations and further reduc-
tion in computations to approximation to the full-order
filter. However, these specialties need not be taken into consid-
eration for the analysis to follow in the next section which holds
for any of the structure given by (1) and any column-sto-
chastic that satisfies Assumption 2.2. We will remind the
reader of these special structures when we analyze approximate
reduced order computations.

III. A GGREGATEFILTERING OF HIDDEN MARKOV MODELS

It is well known that the conditional filtered state estimate for
a hidden Markov model is defined in the following way:

(2)

where is the complete filtration generated by the
algebra . Defining the row vector

, one can obtain the following
recursion [14]

(3)

where if and
is the normalization factor (with

being the -length column vector of all 1-s) and is the row
vector representing the initial distribution of .

As we are interested in the aggregate filtering, we note that

(4)

Obviously the row vector denotes
the aggregate filtered state estimates and can be represented by

(5)

where is given by

Now, following the same techniques as in [11], we choose
another matrix such that the transformation

is nonsingular. Let . Let also
where obviously and . The

particular choice of will be discussed later. One can now
rewrite (3) as

(6)

where , , ,
and they are given by the following equations:

(7)

It is not hard to see that (6) can be carried out in two steps
( ).

Step 1) Calculate the unnormalized quantities
according to the following recursion:

(8)

where , .
Step 2) Normalize by the normalization factor

.
Note also that

(9)

Now, if we were only interested in exact aggregate filtering, (i.e.,
only in computations of ) we still have to calculate
and the amount of computations involved in this can be evalu-
ated to be the following [assuming the matrices in (7) have been
pre-computed]:

• number of multiplications for each

• number of additions for each

However, we have not yet exploited the fact thatis a small
positive number and presumably, we should be able to utilize
that fact in obtaining approximate aggregate filtered estimates
with reduced order computations. In the next section, we discuss
how we can do that.

Before proceeding on to the next section, let us choosein
such a way that the computations of the matrices in (7) become
very simple. Again, we adopt the ideas in [11] and theth diag-
onal block in , namely ( ), is chosen to be

(10)

For this choice, theth diagonal blocks of turn out to be

(11)

Here, , .
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For the above choices of , one can easily
show that the matrices and are block diagonal
matrices for all , more specifically, is diagonal, is block
diagonal with the th block being a row vector of size ,

is block diagonal with theth block being a column vector
of size and is block diagonal with theth block being
a square matrix of size . We will later see
that for the special choice of a “block-structured” observation
probability matrix (as discussed in Section II), one can ob-
tain which will be useful for approximate calculations
with reduced number of computations.

Note also that, since the matrices and de-
pend only on which is finitely-valued, one can essentially
pre-compute the matrices and for each possible
value of and store them in a lookup table. During the fil-
tering operations, as and when we get a specific observation,
we can obtain the corresponding matrices by just looking up the
table.

IV. A PPROXIMATE ( ) REDUCED ORDER COMPUTATIONS

FOR THEAGGREGATEFILTER

In this section, we will be primarily concerned about ob-
taining approximations to the aggregate filtered estimatewith
reduced order computations. To do this, we need to introduce a
decoupling transformation following ideas in [6], [16] such that
the transformed variables are given by

(12)

This also implies that

(13)

Note that one can relate the unnormalized versions of ,
denoted by , respectively, by the same decoupling trans-
formation, provided the normalization factor is the same

(14)

Here is assumed to be a sequence of uni-
formly bounded time-varying matrices to be solved for. Using
this together with (6), one can obtain the following recursion in
the transformed variables

(15)

where satisfies the following recursive equation:

(16)

Note that one can recursively solve for from the above
equation provided is invertible for every . This
involves multiplications of matrices which are not necessarily
sparse at each and requires a large number of computations.
A well known technique [6] is to exploit the fact that is
a small positive number and truncate a power series expansion
of in at some finite power. One then solves iteratively for
the coefficients of the truncated power series. In order to reduce

computational complexity, one needs to truncate the series in
such a way that the coefficients to be solved for can be com-
puted recursively with reduced number of computations. This
of course will restrict the order of approximation. Note however
that this approximation is only valid if is uniformly bounded.
Notice also from [6], [16] that this method will work efficiently
if are such that or in other words,

. Note that in general, one cannot
find cases where such conditions will hold. However, with some
special choices of the observation probability matrixor the
transition probability matrices , one can obtain some
simple situations. In the following, we discuss such cases.

A. Observations Only Reflecting the Aggregate System

In this subsection, we consider athat has the special struc-
ture as discussed briefly in Section II such that

. In this case, one can easily work out that for the
particular choices of the matrices as discussed before.
Note also that for this special structure of, the th diagonal el-
ement in is if . Similarly all the elements of the
th diagonal block in are scaled by if . This

is going to be vital in analyzing the stability of (16) as outlined
below. For example, for this simple scaling property,
can be written as a time-invariant matrix .

One can now rewrite (16) as follows:

(17)

where

Let us now introduce the following notations. We denote by
the Euclidean vector norm, by the Frobenius norm for a

matrix (note that this is a matrix norm for a square matrix) and
by the maximum absolute row sum matrix norm. Note
also that when .

The solution to (17) can be written as
where is the solution to (17) when . In other words,
one can solve for from the following equation:

(18)

Due to the scaling property (mentioned in the beginning of
this section) of the individual blocks in the block diagonal
matrices (remembering that is actually
diagonal), it is easy to show that (18) has a steady-state
solution which only depends on the matrix. In fact,

(noting that is invert-
ible [11]). Since we are mainly interested in the solution
to (17) as , we can write . It
is usual to expand as a power series in and rewrite

and obtain approximation
to by truncating this infinite series at some finite power of.
However, one needs to establish a uniform bound onbefore
one can obtain a valid approximation. In what follows, we will
be looking for sufficient conditions such that belongs to a
compact set that is
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and

Since can only take finitely many values,
note that one can easily obtain the following over bounds

such that , ,
, , .

Writing , , and
, one can rewrite (17) as

(19)

Obviously, repeating this operation iteratively, one can express
as

(20)

where , and
. It is easy to see that if ,

then for every , where

Define the following matrices as follows.
Definition 4.1: For

(21)

With this definition, it is easy to show that if , then

(22)

and is also a block-diagonal matrix
consisting of subblock-diagonal matrices and theth diagonal
block of the th subblock-diagonal matrix [of order

] is given by

(23)
We now make the following assumptions in order to find suf-

ficient conditions for obtaining a bounded solution to (19).
Assumption 4.1:

(24)

Assumption 4.2:If exists and is evaluated
to be , then

(25)

Remark 2: Suppose Assumptions 2.1 and 2.2 hold. In this
case

where is the solution , such that
is the steady state distribution of the Markov chain. is the
th element of the vector. For how to obtain approximations or

even the exact value ofwithout numerical ill-conditioning for
nearly completely decomposable Markov chains, see [11].

Note that Assumption 4.2 implies that for every , there
exists a such that

(26)
A proof of this statement is given in the Appendix as a part of
the proof of the following Lemma.

Lemma 4.1:Suppose Assumptions 2.1, 2.2, 4.1, 4.2 hold.
Then there exists a bounded solution to (19) such that
for every if the following inequalities are satisfied:

(27)

(28)

where in (27), , ,
, and is a finite

number depending only on the system parameters .
Remark 3: Notice that Assumptions 2.1, 2.2, 4.1, and 4.2

can be readily verified for a given HMM. Finding that sat-
isfy (28) is straightforward as well. Verifying that these values
of satisfy (27) however, is not straightforward, since one
needs to evaluate and . We maintain though that this
can be done in principle. In the section on simulation studies,
we illustrate with an example (instead of finding the range of

) that there are choices of such that there is a bounded
solution to that does not tend to explode in finite time, thus
guaranteeing that our chosen set of assumptions does not lead
to a vacuous problem. Also, one can possibly obtain a set of
less restrictive inequalities (particularly for large values of)
involving if one treats each row of separately instead
of treating the entire matrix using the operation. However,
we refrain from such exercise in the interest of not introducing
unnecessary complications.

The boundedness of allows us to write as a power
series in as discussed before

(29)

Substituting this in (16) and equating the coefficients of, one
can obtain the recursion for as follows:

(30)

where
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Remark 4: Suppose Assumptions 2.1, 2.2, 4.1, and 4.2 hold.
Then the boundedness of as obtained from (30) follows
from the fact that the evolution is exponentially
stable (as discussed in the Appendix for the proof of Lemma 4.1)
and is bounded.

It will be clear presently that in order to save in number of
computations for obtaining approximation, we only need
to consider solving for . Higher order approximations to

do not result in computational reductions. Below, we discuss
how and let us obtain reduction in computation.

But first, notice that using (14) and (31), the decoupled fast
mode can now be recursively expressed as

(31)

where . We make the following additional
assumption.

Assumption 4.3:The evolution
where is exponentially stable.

Remark 5: Note that
. It is clear from (22), Assumption 2.2, and Assump-

tion 4.1 that the evolution is exponentially stable.
If and is small enough, then this property of ex-
ponential stability is likely to be preserved for the evolution

. In other words, one can obtain
a sufficient condition further restricting the range of[in addi-
tion to (27), (28)] with the following inequality:

(32)

This inequality in addition to (27) and (28) may appear to be
restrictive but we reiterate that they only provide a set of suf-
ficient (and not necessary) conditions. In the section on sim-
ulation studies, we illustrate with an example how the above
assumption is satisfied for the given choice of hidden Markov
model.

Note that Assumption 4.3 guarantees that asymptoti-
cally. The rate of this decay is determined by the fast eigenvalues
of and how close they are to the origin. Hence
there exists a large enough but finitesuch that for ,
is of . Set for . For , one
can use (15), (13) to obtain the following reduced-complexity

approximations to

(33)

where . Given that , notice that
has been replaced by in the recursion for , and has
been replaced by in the recursion for in
(33). Implicitly, we have assumed thatis small enough such
that the normalization procedure [division by in (33)]
does not affect the order of approximation of the unnormal-
ized quantity. It should be clear from above that

. This automatically implies that if
. By induction, one can then show

that provided
for . More formally, we make the following additional
assumption.

Assumption 4.4: is small enough such that
for .

Remark 6: It is worth pointing out that the above assumption
can be made more formal and rigorous by finding inequalities
involving and such that for .
However, we do not pursue this matter any further for the sake
of simplicity.

We now summarize the main results of this section in the
following theorem. The proof follows as a direct consequence
of the previous discussions and is omitted.

Theorem 1: Suppose Assumptions 2.1, 2.2, 4.1, 4.2, 4.3, and
4.4 hold. Also, suppose the inequalities (27), (28) hold. Then
there exists a large enough but finite such that for ,
an approximation for denoted by (and the un-
normalized version by ) can be obtained recursively by the
following two steps:

(34)

Similarly, an approximation for (for ) is given
by

(35)

Since can be pre-computed and stored
for all possible values of the observation, the number of mul-
tiplications involved to carry out (34) (for each) are (for
the vector–matrix multiplication) and for the normalization
whereas the number of additions are . This is consid-
erably less than the number of multiplications and additions to
carry out the exact computation ( and ,
respectively).

Note also that (34) is also the same recursion as one can obtain
by using Courtois’ aggregate matrix and the aggregate observa-
tion probability matrix of size which is given by

(36)

where

and

if

In other words, one can use Courtois’ aggregation method to
form an aggregate matrix to obtain an approximation to
the slow (aggregate) filter. However, if one is interested in ob-
taining an approximation to the full order filter, it is not clear as
to how one can adapt Courtois’ or any other aggregation method
(including Khalil’s method). This is where our algorithm has
the advantage, in the sense that it gives a systematic way of ob-
taining an approximate full order filter , with less number of
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computations [for approximation]. This will be clear as
we proceed.

Now, going back to (30), notice that can be pre-computed
for all possible values of the observation and stored. It
follows then that the number of multiplications and additions
needed to solve for for each are given by

and ,
respectively. Including the number of multiplications and addi-
tions to carry out this operation for eachand the recursion
given by (35), the total number of multiplications [to obtain
an approximation for the full-order filter ] stand at

and the total number
of additions stand at ,
respectively. Note that to save in computation in order to obtain

approximation for and hence the full order filter ,
the individual block sizes need to be small with a reasonable
number of blocks. We illustrate this with the following example
of a Markov chain with such that .
The total number of multiplications and additions for the exact
computations (for each) are 40 200 and 40 039. The number
of multiplications only to compute the approximate aggregate
filter is 1640, the number of additions being 1599. To compute
the approximate full order filter, the total number of multiplica-
tions is 40 200 and the total number of additions is 33 799. So,
the number of additions is less by 15.58%.

B. Independent and Identically Distributed Markov Subchains

If the individual Markov chains denoted by arei.i.d.,
then it can be easily shown that , . In this
case, the computation of is simplified even further
since it is easy to see from (30) that can now
be pre-computed for all possible values of the observation
and stored. This leads to further savings in computations for
obtaining approximations to the full-order filter. Note also that
in this case is given by , and one can obtain an

approximation to the slow (aggregate) filter (for some
large enough) computed by the following recursion:

(37)

The number of computations needed to carry out this recursion
remains the same as that of computing (34) since

can be pre-computed and stored for all
possible values of the pair .

Remark 7: Analyzing the stability of (16) is understandably
trivial in this case and in any case follows as a special case of
the previous subsection.

It is clear now that we can obtain an approximation to
the slow (aggregate) filter in the case when the individual ma-
trices representi.i.d Markov chains. The algorithm
adapted from Courtois’ aggregation method [as given by (36)]
cannot achieve that. In fact, we compare our algorithm with
methods adapted from Courtois’ and Khalil’s aggregation al-
gorithms in the next section on the basis of an average approx-

imation error for the slow (aggregate) filter and illustrate when
our algorithm can achieve better results.

Remark 8: It is easy to extend these results when the state to
output transition probability matrix is given by
where is of , represents the superstates only (
in the previous section), and has zero column sums. If one is
interested in comparing our algorithm with algorithms adapted
from other aggregation methods, it is not clear how one can
obtain an aggregate matrix to carry out the aggregate filtering
recursions in this case. One way to do this is to obtain

where , and is the sta-
tionary probability . We do not elaborate
on these observation probability matrices any more to avoid rep-
etition. We provide some brief comments based on simulation
studies in the next section.

V. EXAMPLES AND SIMULATION STUDIES

In this section, we look at two examples. The first is an 8-state
nearly completely decomposable Markov chain with the fol-
lowing specifications as shown in (38) at the bottom of the next
page. Obviously, for this example, . The obser-
vation probability matrix is chosen to be the following:

For this example, the matrices are the fol-
lowing:

for this example is given by the following matrix:

It is easy to verify that Assumptions 2.1, 2.2, 4.1, and 4.2
are satisfied in this case. Instead of finding choices for that
satisfy (27), (28), and (32), we illustrate with the following fig-
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ures that is bounded for over a simulation per-
formed over a sequence of 25 000 points (Fig. 1) while Fig. 2
illustrates the exponential stability of the evolution

is exponentially stable for a large enough
but finite [the plots are shown for and only
to avoid congestion]. Multiple trials result in similar observa-
tions. Also, we verify Assumption 4.4 in our algorithm before
carrying out the normalization procedure. The following simu-
lation results illustrate that there are choices offor which the
Assumption 4.4 is indeed satisfied. We present the following re-
sults obtained with simulations over a sequence of 25 000 points
of a computer generated Markov chain and a corresponding se-
quence of observations. All results are averaged over 20 simula-
tions. We compute the exact slow (aggregate) filter, and the
approximate [order of approximation being ] slow filter

[given by (34)]. Our performance measure is
which (from ergodicity assumptions) is estimated by the av-
erage approximation error .
We compare the performance of our algorithm with Courtois’
aggregation method and Khalil’s aggregation method as found
in [11]. We have already noted that our algorithm can be shown
to have the same performance as the algorithm adapted from
Courtois’ aggregation procedure in this case. As for Khalil’s ag-
gregation method, we use the aggregate matrix proposed for the
exact computation of the stationary distribution [11, eqs. (4.4)
and (4.5)]. It is seen from Table I that our algorithm (or the algo-
rithm using Courtois’ aggregate matrix) is outperformed by the
algorithm adapted from Khalil’s aggregation method as far as
the average approximation error of the aggregate filter is con-
cerned. However, we reiterate that there is no systematic way
to adapt any of these aggregation methods to obtain an
approximation to the full order filter whereas our proposed
algorithm provides a procedure for doing that with less number
of computations specially when there are many weakly inter-
acting superstates with small individual dimensions.

We now take another example of an 8-state Markov chain
with the following (all other specifications remain the same)
where the individual representi.i.d. Markov chains as

Fig. 1. Plot ofkL k versusk.

Fig. 2. Exponential stability of� .

(38)
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TABLE I
COMPARISON OFAVERAGE APPROXIMATION ERROR INAGGREGATEFILTERING

shown in (39) at the bottom of the page. Note that in this
case is given by the following matrix:

In this case, we compare algorithms using Courtois’ and
Khalil’s aggregation methods with our algorithm which com-
putes the slow filter that is an approximation to the exact
slow filter. Note that this approximate slow filter is given by
(37). Table II shows that our algorithm outperforms the algo-
rithms based on Courtois’ and Khalil’s aggregation methods.
We also compared our algorithm with adapted versions of
Courtois’ and Khalil’s aggregation methods in the case when

. While our algorithm and the adapted version
of Courtois’ aggregation method yield comparable results, the
adapted version of Khalil’s aggregation method results in very
high values of average approximation errors, thus exposing
thead hocnature of the algorithms obtained by adapting such
aggregation methods. In conclusion, it is fair to say that our
algorithm provides a systematic way of obtaining guaranteed
approximations to the aggregate or even the full order filters
by appropriately exploiting the structure of the system to
reduce computations, while adapting various other aggregation
methods may not always result in a better performance.

A. Numerical Issues

There are few key numerical issues that are worth pointing
out.

• Forgetting of initial conditions:
It is well known that the conditional probability filters

for the classes of HMM’s being discussed in this paper
forget initial conditions exponentially fast [18]. This of
course implies that if are “good” approximations
of , they should also forget initial conditions ex-
ponentially fast. It is not difficult to show from (34) that

forgets initial conditions exponentially fast for a small

TABLE II
COMPARISON OFAVERAGE APPROXIMATION ERROR INAGGREGATEFILTERING

enough . The matrix in (34) can
be rewritten as

It is easily seen that for a small enough,
is a stochastic matrix, since

has zero row-sums. Observing that are row-al-
lowable and column-allowable, respectively, with the
nonzero entries being 1, and all the entries in the diagonal
matrix are positive, the property of forgetting of
initial conditions follows immediately (by appealing to
the results established in [18]) for for a small enough.

• Non-negativity of :
The exact quantities are probability elements

and hence they are nonnegative. For small values of
, therefore are likely to be nonnegative. Note

that the nonnegativity of (as
discussed in the previous dot point) guarantees the
nonnegativity of . The nonnegativity of does not
follow easily from (35). However, one can certainly
obtain sufficient conditions involving inequalities in

such that are nonnegative , in addition
to (27), (28), and (32), thus unnecessarily restricting
the range of even further. We refrain from such
an exercise to reduce unnecessary complications but
just note that for a small enoughsuch nonnegativity
constraints are likely to be satisfied. However, it may
occasionally happen for an unfortunately large choice
of for a given HMM that some elements of
may assume small negative values. In such cases, a
practical solution is to reset these quantities to zero
and re-normalize the approximation to (given by

). One has to rely on the property of
forgetting of initial conditions to assume that the errors
introduced due to these artificial resetting of values of
certain quantities are not going to affect the long-term
performance.

(39)
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• How large an can one handle?:
Note that (27), (28), and (32) form a set of sufficient

(and not necessary) conditions on . One may be able to
apply this algorithm even when the value ofis larger than
permitted by these inequalities although this is not known
a priori. In such a case, a practical algorithm is one which
forces to evolve within a certain prescribed compact
region such that every time it goes outside this region, it is
forced back inside the region by resetting to zero.
Obviously this resetting destroys the approximation
property of . In this case, one can at best hope for
approximation for and hence in this case. Simula-
tion studies with such an algorithm were seen to preserve
the much needed stability in cases where the values of
were large enough to cause large variations in the values
of . However, this was achieved at the expense of a
higher approximation error.

VI. CONCLUSIONS

We address the problem of reduced-order filtering for a
class of partially observed nearly completely decomposable
Markov chains in this paper. We provide a systematic way to
obtain approximate [with order of approximation being ]
aggregate filtering with number of multiplications
where the order of the Markov chain . Surprisingly,
this method turns out to be identical with a method obtained by
adapting Courtois’ aggregation method, thus proving that one
can adapt Courtois’ algorithm to obtain a method for obtaining
an approximation to the aggregate filter computations
with reduced complexity for these classes of Markov chains.
However, our algorithm also provides a systematic way to
obtain approximation to the full-order filter with reduced
number of computations when there are large number of super-
states in the Markov chain with small individual dimensions.
In the special case where representsi.i.d Markov
chains, we can obtain approximation to the aggregate
filter and further savings in computations to the full-order filter
using our algorithm whereas algorithms adapted from some
other aggregation methods are incapable of achieving that. The
ad hocnature of algorithms adapted from other aggregation
methods becomes clear through various simulation examples
when the objective is to obtain reduce-order approximate filters
for such classes of hidden Markov models. Extensions of these
results to obtain reduced-order approximation to risk-sensitive
filters and controllers for hidden Markov models [also known
as partially observed Markov decision processes (POMDP)]
are under investigation.

APPENDIX

PROOF OFLEMMA 4.1

First, note that if , it is easy
to show that for some large enough but finite, .
From Assumption 4.1, it is immediate that

for any , for all
and for any . From limit theorems of sums

of chain dependent random processes [19], it is known that the
strong law of large numbers holds for , that is,

(40)

where is defined in Assumption 4.2. It follows from this and
Assumption 4.2 that there exists a large enough but finite
such that for

(41)

It is immediate from the above result that

for some

Choosing and , one can
write for any , and

(42)

Since a product of block-diagonal matrices is also block-di-
agonal with theth individual block in the product matrix being
the product of theth blocks in the individual matrices in the
product, one can write

(43)

where .
It follows from above that

for . Now consider (20).
From here onwards, the analysis is identical to a time-scale
decomposition and averaging analysis of an adaptive control
problem that can be found in [17, pp. 105–107].

Define on the operator

(44)

Noting that and letting
(which is bounded since

is finite and it is obvious that can only grow at most
exponentially at the worst case), one can show that is a
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well defined operator if satisfy (27). (28) guarantees that
it is a contraction operator and with the unique fixed point
that satisfies (20) by construction.
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