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Reduced-Complexity Filtering for Partially Observed
Nearly Completely Decomposable Markov Chains

Subhrakanti DeyMember, IEEE

Abstract—This paper provides a systematic method of ob- In [7], stochastic complementation was used to develop an ag-
taining reduced-complexity approximations to aggregate filters gregation procedure to obtain the exact stationary distribution.
for a class of partially observed nearly completely decompos- The singular perturbation approach to study aggregation of
able Markov chains. It is also shown why an aggregate filter . . . A
adapted from Courtois’ aggregation scheme has the same order finite-state Markov chgms has been also studied in [8]_[,10]'
of approximation as achieved by the algorithm proposed in this A more recent work is [11] where a clever transformation
paper. This algorithm can also be used systematically to obtain technique is used to develop an aggregation method that can be
reduced-complexity approximations to the full-order filter as ysed to obtain any arbitrary order of approximation to or even
opposed to algorithms adapted from other aggregation schemes. ye axact stationary distribution for the purpose of obtaining an
However, the computational savings in computing the full-order . L . e .
filters are substantial only when the large scale Markov chain agg_reganon of the policy iteration m_ethod in infinite-horizon
has a large number of weakly interacting blocks or “superstates” Optimal control of such Markov chains. The problem of the
with small individual dimensions. Some simulations are carried infinite horizon average cost control problem for such Markov
out to compare the performance of our algorithm with algorithms  chains was also addressed in [12], [13]. It was shown that the
adapted from various other aggregation schemes on the bas'soptimal solution can be approximated by an optimal solution

of an average approximation error criterion in aggregate (slow) - -
filtering. These studies indicate that the algorithms adapted from to the so calledimit Markov control problenfor a sufficiently

other aggregation schemes may becomad hoc under certain small e. Algonthms were also prOVided for aChieVing these
circumstances. The algorithm proposed in this paper however, al- control strategies.

ways yields reduced-complexity filters with a guaranteed order of  |n this paper, it is our objective to study a class of partially
approximation by appropriately exploiting the special structures observed nearly completely decomposable Markov chains
of the system matrices. ) . -
where the observations belong to a discrete set of finite car-
Index Terms—Hidden Markov models, queuing analysis, dinality. Note that partially observed Markov chains are also
reduced-order  systems, singularly perturbed  systems, state o as hidden Markov models which have applications in
estimation. " . o .
speech recognition [14], adaptive equalization of communi-
cation channels [15], biological signal processing, etc. To the
I. INTRODUCTION best of our knowledge, there has been no systematic way of

EARLY completely decomposable Markov chains werggﬁmﬂ? re(iuci(_iagrde;ﬂaplf roximiti(l)n_s t'?h conditionr? l p;ﬂb'
first studied by Simon and Ando [1]. These MarkoAo!Ity titers for hidden iarkov models in the case when the

chains are usually large scale, and show strong interacti erlying Mark_ov chain is ne_arly complett_ely decomppsable.
within groups and weak interactions between the groups. Th Is approximation problem with the objective of reducing the

are known to have a transition probability matrix of the strud mber of computations pecomes pgrncularly s'lrnple When the
ture P = I, + A + ¢B. Applications of such Markov chains 1o State to output (observation) transition probability matrix has

gueueing networks and computer systems have been repoﬁ&fek. .s'Fructure in the sense that the state to output. transition
in [2] by Courtois who extensively studied these Marko®'© aEnIltles :are constant over gll th.e states belonging to the
chains. There have been several other studies that contribtgg'® 9roupP of the Markov cham. It |§_also casy t.q extend_th_e
to the development of decomposition-aggregation methoﬁ@alys's to the case where this transition probability matrix is

for obtaining reduced-order approximations for uncontrolled small perturbation of the block _structure. '_I'_he appl_lcablhty
of such block-structured observation probability matrices not

[3], as well as controlled Markov chains [4], [5]. Essentially, v lies | deli ¢ ¢ I h ¢
these works were concerned with obtaining approximatio y lI€S In modeling of management Systems (where op
evels of management are only interested in macro-behavior

for the stationary distribution of the Markov chain. While i ) . : . . :
[2], an aggregation method is developed that results i®&n) rather than micro-behavior) but also in real engineering appli-
; ations like distributed control environments particularly with

approximation of the exact stationary distribution, [6] gives &

singular perturbation interpretation to Courtois’ aggregatio pmmunlca_non constraints. For _exar_nple, in an ?”"'F"”me”t
where multiple sensors are sending information, it might not

be possible to send fine information due to bit-rate constraints,
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one macro-state to another (e.g., the controller may wantwe are interested in. A nearly completely decomposable Markov
know that a failure has occurred and not what particular kind ohain in a complete probability spa¢€, F, P) comprising
failure it is). In the rest of the paper, we will only be interestedf n states is characterized by a transition probability matrix

in these classes of partially observed Markov chains. P € R™™ which has the following structure:
In this paper, we provide a systematic way of obtaining an
O(€?) approximation to the aggregate (slow) filter and show P=1,+A+¢B (1)

that one can adapt Courtois’ aggregation method to obtain the ) ) ) _
same algorithm (which has not been reported in literature &herel, is the identity matrix of orden x »

ther). However, our algorithm also provides a systematic way to Ay 0 o 0
obtain anO(<?) approximation for the full-order filter with re- 0 Ay 0

duced number of computations when there are a large number of A=1 o0 0.

blocks in the underlying Markov chain with the individual block S

sizes being small. It is not clear as to how to adapt Courtois’ ag- 0 . 0 Ann

gregation method (or for that matter any aggregation method,

e.g., the one in [11]) to obtain af(c?) approximation to the where A;; € R™*":, V4, >, n; =n, ¢ > 0is asmall per-
full-order filter with reduced number of computations. In a speurbation parameter, an# € R™<". It is obvious that there
cial case where the unperturbed Markov chain (that is the cogre vV blocks in the Markov chain within each of which the dy-
pletely decomposable part of the Markov chain with a transkamics is fast and every so often, the chain leaves one block to
tion probability matrix/,, +-A) has gotindividually independent yisit another. Sinceis small, the rate at which these inter-block
and identically distributed subchains, we show that one can qfansitions occur is slow. For all I.. + A,; is row-stochastic,
tain (using our algorithm)(®) approximation to the aggregateand so isP. Obviously, the row-sums ot and B are zero. We
filter with reduced number of computations, whereas the othgfake the following key assumption.

aggregation methods cannot be adapted to achieve that. Ousssumption 2.1:P andI,, + A, Vi are irreducible.

method essentially consists of the amalgamation of two knownTraditionally, one is essentially interested in cases whese
techniques. First we decompose the full-order conditional prof¥, If one is only interested in obtaining reduced complexity ap-
ability filter into the slow (aggregate) and a mixed (mixture oproximate computations for the aggregate filter, havings>

fast and slow) mode using the same transformation technigyeis sufficient. However, as we will see, the cases where one
as used in [11]. Then we decouple these two modes using a gign save inD(¢?) approximate computation of the full-order
coupling transformation as found in [6], [16] or for analyzingilter involve smaller block sizes with a reasonable number of
stability of adaptive systems in [17]. It is shown that under ceplocks (where is still a lot less tham, roughly speaking).
tain assumptions (which are reasonable for a small enejighwe also term thesév blocks as “superstates.” Note that the
holding our approximation schemes yield reduced order cofrobability (or conditional probability) of the Markov chain be-
putations. We compare the performances of our algorithm, alfging to a particular superstate is the sum of probabilities
algorithms adapted from Courtois’ aggregation method and t{t conditional probabilities) of the chain belonging to its con-
aggregation method provided in [11] in all these different casgfituent states. We denote the state ofsikstate Markov chain

on the basis of an average approximate error criterion for the ag-time & as X;, € {1, 2, ---, n}, and thelth superstate is
gregate filter computed through simulation studies. Under cefenoted byS;, I = 1, 2, ---, N. Without loss of generality,
tain circumstances, thad hocnature of algorithms adapteds;, = {1, 2, ---, n1}, Sy = {n1 4+ 1, n1 +2, -+, n1 + na},

from these other aggregation methods becomes exposed. Aige,

we re-iterate that under all these circumstances our algorithmThe states of the Markov chain are not directly observed,
continues to have the edge over algorithms adapted from otfgher observed in imperfect observations. In other words, as-
aggregation methods in that our algorithm provides a systemadisciated with the stat&,, there is a nondeterministic observa-
way of obtainingO(¢*) approximations to the full-order filter tion (or measurement},. For the purpose of this paper, we as-

with reduced number of computations. sume thal;, belongs to a discrete set of finite cardinality. More
In Section Il, we describe the class of hidden nearly congpecifically,Y;, € {1, 2, ---, M} andP(Yy = i|Xp = j) =
pletely decomposable Markov chains we are interested in.dg}, i=1,2 -, M, j =1, 27' .-+, n. Such a signal model

Section Ill, we decompose the conditional probability filter intgirrespective of whether the underlying Markov chain is nearly
the aggregate and a mixed mode. In Section IV, we use the dempletely decomposable or not) is also known as a hidden
coupling technique and show under what circumstances one §#srkov model (HMM). Note also tha} ", c;; = 1, V3, that
obtain approximate calculations with reduced order computg; the observation probability matriX = (c;;) is column-sto-
tions for the aggregate as well as the full-order filter. Section dhastic. In what follows, we will be interested in a special struc-
shows some simulation results. Finally we present some cagire of C, where the observations reflect the superstates only,
cluding remarks in Section VI. i.e.,c; = ¢y, Yj € S, Vi. We will show that this spe-
cial structure can let one obtain substantial savings in compu-
tations if one is interested in obtainiig¢?) approximations to
the conditional probability estimates for the HMM. For the time
In this section, we describe the particular classes of partialbging, we make another key but standard assumption.
observed nearly completely decomposable Markov chains thafAssumption 2.2:min;_, ¢;; > é > 0.

Il. SIGNAL MODEL
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Remark 1: The above assumption obviously implies thawhereAX, = Ak + eB¥, Ak, = Ak 4 eBk, Ak = C* + D,
there exists & such thainax; ; ¢;; < ¢ < 1. Ak, = OF + D} and they are given by the following equations:

We will also analyze a case (of course, a very restrictive one) -, .
where the Markov chains represented by the block—stochastiélf =Villn + A)C(Yip1)W1, B = ViBO(Yiy)W1
matricesl,,. + A;; are independently and identically distributed A’Q“ =Vi(I, + A)C(Yiy1)Wo, Bé = Vi BC(Yyq1)Wa
(i.i.d) (note that in this cas€&; does not need to be “block” struc- . .
tured). This leads to a®(e®) approximation to the aggregate €1 =Va2(In + A)C(Yir)W1, Dy = VaBC(Yi )W)
f!lter.wnh reduce.d number of computations and further reduc—ég =Vo(Lp + A)C(Yig1)Wa, DE = VaBO(Yipr)Wo.
tion in computations t@(e?) approximation to the full-order
filter. However, these specialties need not be taken into consid- Y
eration for the analysis to follow in the next section which holds |t is not hard to see that (6) can be carried out in two steps
for any P of the structure given by (1) and any column-stogy k).
chasticC' that satisfies Assumption 2.2. We will remind the giq
reader of these special structures when we analyze approximate
reduced order computations.

p1) Calculate the unnormalized quantitigs, 7;,
according to the following recursion:

Ay Ay
Gt il = e[ 3 5
A Al
WhereCo = oW1, no = apWo.
Step 2) Normalize(y, ;, n;,, by the normalization factor

Zk+1 = Ej\:1 C}lj-f-l(l)

(8)

I1l. A GGREGATEFILTERING OF HIDDEN MARKOV MODELS

Itis well known that the conditional filtered state estimate for
a hidden Markov model is defined in the following way:

o (i) = P(Xy = t| k) &) Note also that
where ), is the complete filtration generated by the
o alge%);?a o(Yo, Y1, ---,ka). Defining gthe row ve)étor e = GV + Ve ©)
ap 2 (ar(1) ar(2)---ax(n)), one can obtain the following Now, if we were only interested in exact aggregate filtering, (i.e.,
recursion [14] only in computations of;,) we still have to calculatg,, nx., V&
1 and the amount of computations involved in this can be evalu-
Cpt1 = TH ap PC(Yet1) ated to be the following [assuming the matrices in (7) have been
ao = moC/(Yp) 3) pre-computed]:

] ) » number of multiplications for each
where C(Yk+1) = dlag{cil CZ‘Q"'Cin} if Yk+1 = ¢ and

2 2 2 .
Ziy1 = apPC(Yiq1)1, is the normalization factor (with,, N°+2N(n=N)+(n—-N)"+n=n"+n;
being then-length column vector of all 1-s) and, is the row » number of additions for each
vector representing the initial distribution &f,.
As we are interested in the aggregate filtering, we note that (n=N-DN+ (N = 1N + (N = 1)(n = N)
+n—-N-1)(n—-N)+n+N-1

G()) = P(Xy € Sj|Ya) = D P(Xa = 1Ya).  (4) —n2 -4+ N1
ICs;
_ A However, we have not yet exploited the fact thét a small
Obviously the row vectoy. = (Cx(1) Gx(2) - - - G (V)) denotes  positive number and presumably, we should be able to utilize
the aggregate filtered state estimates and can be representeghBiyfact in obtaining approximate aggregate filtered estimates

Go = axWh (5) with reduced order computations. In the next section, we discuss
how we can do that.
whereW; € R™*" is given by Before proceeding on to the next section, let us chdBsén
l,, 0 0 0 such a way that the computations of the matrices in (7) become
(j 1n, . very simple. Again, we adopt the ideas in [11] anddtediag-
Wwi=| | 0o - 0 | onal block inW>,, namerWQ(Z) (e R~*m—1) is chosen to be
0 . S n 0---0
Now, following the same techniques as in [11], we choose We' = |:In7__1 } ’ (10)

another matrixi¥, € R (=N sych that the transformation

I = (W, Wali ingular. Let, Wo. Let alsol~1 For this choice, théth diagonal blocks ot/ , V5, turn out to be
= [W; W3] is nonsingular. Lety, = «,Wo. Let also =

[11] where obviously; € RY*" andV, € R"~™Mx" The Vi =[100-0]
particular choice ofi¥> will be discussed later. One can now _1
rewrite (3) as -1 -
‘/2(1) = . Ini—l . (11)

1 1%
(Ckt1 Met1] = Zrrt (Cr 7] [Vj PC(Yyq1)[W1 Wh]
Af AL ©) ‘ ‘ -1
Here,Vlz) c Rlxrm! VQ(Z) c R(ni—l)xm_
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For the above choices df;, V>, Wi, W5, one can easily computational complexity, one needs to truncate the series in
show that the matriced?, A%, C* andC¥% are block diagonal such a way that the coefficients to be solved for can be com-
matrices for alk, more specificaIIyA’f is diagonalA’g‘ is block puted recursively with reduced number of computations. This
diagonal with theith block being a row vector of size; — 1, of course will restrict the order of approximation. Note however
C¥ is block diagonal with théth block being a column vector that this approximation is only valid if, is uniformly bounded.
of sizen; — 1 andC¥ is block diagonal with théth block being Notice also from [6], [16] that this method will work efficiently
a square matrix of sizén; — 1) x (n; — 1). We will later see if A% , A%, are such tha€* = 0, C¥ = 0 or in other words,
that for the special choice of a “block-structured” observatiods, = ¢D¥, Ak, = eD%. Note that in general, one cannot
probability matrixC' (as discussed in Section II), one can obfind cases where such conditions will hold. However, with some
tain Of = 0 which will be useful for approximate calculationsspecial choices of the observation probability matior the
with reduced number of computations. transition probability matriceg,, + A;;, one can obtain some

Note also that, since the matriceld, A%, C* andC} de- simple situations. In the following, we discuss such cases.
pend only onY+1 which is finitely-valued, one can essentially ) .
pre-compute the matricet, A%, C* andC} for each possible A. Observations Only Reflecting the Aggregate System
value ofY}; and store them in a lookup table. During the fil- |n this subsection, we considetthat has the special struc-
tering operations, as and when we get a specific observatiqire as discussed briefly in Section Il such that= ;;, Vj €
we can obtain the corresponding matrices by just looking up tl¢, V. In this case, one can easily work out th4t = 0 for the
table. particular choices of the matricés, W, as discussed before.

Note also that for this special structure@ftheith diagonal el-
IV. APPROXIMATE (O(c?)) REDUCED ORDER COMPUTATIONS  ement inA¥ is¢;; if Yj,1 = j. Similarly all the elements of the
FOR THEAGGREGATEFILTER ith diagonal block i}, C5 are scaled by;; if Y;.41 = j. This

In this section, we will be primarily concerned about obiS 90ing to be vital in analyzing the stability of (16) as outlined

taining approximations to the aggregate filtered estirjateith  P€low. For example, for this simple scaling propefty; )t A3

- . A i ima-i i Nx(n—N
reduced order computations. To do this, we need to introduc&€! P& written as a time-invariant matri% ¢ R X,

decoupling transformation following ideas in [6], [16] such that ©ON€ can now rewrite (16) as follows:
the transformed variablds,, 77,] are given b TN ke
46 ;] are given by Ly = (Ai‘) LiCY — Go+ cGryr, Lo=0 (17)

-~ Iy Ly
[Ce ] =[G ] { } . (12)  where
0 In—N 1
This also implies that Grg1 = (A’l‘) (ka)’; — B¥Lpyy + Ly DY Ly — Bé) :
(G m] =[S 7] [Ié\ ;L’“ } . (13)  Let us now introduce the following notations. We denote by
n—N

| .| the Euclidean vector norm, Bly. || the Frobenius norm for a
Note that one can relate the unnormalized versiong,ofy,, matrix (note that this is a matrix norm for a square matrix) and
denoted byC,., 7%, respectively, by the same decoupling transy || . || the maximum absolute row sum matrix norm. Note
formation, provided the normalization factor is the same  also thativ| = ||M]|» whenv' = vec(M").
o w0 [In  —L The solution to (17) can be written ds, = L, (0) + L (¢)
(G ] = [Ck m} { 0 } (14)  whereL,(0) is the solution to (17) whea= 0. In other words,

N N one can solve foL;(0) from the following equation:
Here{L; € RV*(»~M1} is assumed to be a sequence of uni-

formly bounded time-varying matrices to be solved for. Using 1, ., (0) = (jllf) - Li(0)CF — Gy,  Lo(0)=0. (18)
this together with (6), one can obtain the following recursion in

Ian

the transformed variables Due to the scaling property (mentioned in the beginning of
_ B 1 - this section) of the individual blocks in the block diagonal
[Chr Tha] = Zirt (S ] matrices A%, Ck, A% (remembering thatA* is actually
AF, — LAk 0 diagonal), it is easy to show that (18) has a steady-state
. P T e 15 i i i
[ Ak A Liot + AF, (15)  solution L(0) which only depends on the matrix. In fact,

L(0) = VIAW,(V2AW,)~ ! (noting thatV, AW, is invert-
ible [11]). Since we are mainly interested in the solution
(A’fl — Lkﬁ’gl) Liy1 = Ly AL, — A, Lo=0. (16) Fo (17) ask — oo, we can writeL;, = L(O) + eLg(e). 'It

) is usual to expand.;(e) as a power series in and rewrite
Note that one can recursively solve fby, from the above Li = L(0) 4 ¢Ly(1)+ €2 Ly,(2) +- - - and obtain approximation
equation providediy; — LiA3, is invertible for everyk. This 14 1. by truncating this infinite series at some finite powee of
involves multiplications of matrices which are not necessarily,vever. one needs to establish a uniform bound.giefore
sparse at each and requires a large number of computationgne can obtain a valid approximation. In what follows, we will

A well known technique [6] is to exploit the fact that> 0 is  pg |goking for sufficient conditions such thag, belongs to a
a small positive number and truncate a power series expansg:%

Mpact seD 2 {L: ||L 1+el)||L that is
of Ly in ¢ at some finite power. One then solves iteratively fof > '+ ) {Z: ] ||2_< (I+ el Loll2}
the coefficients of the truncated power series. In order to reduce | Lx(e)||2z < eL||Lol|2

whereL;, satisfies the following recursive equation:
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and Remark 2: Suppose Assumptions 2.1 and 2.2 hold. In this
| Lill2 < (1 +€L) ||Loll2, VE. case

Since Yi41, Yk can only take finitely many values, E{ <cYk )} chﬂnln(Cﬂ) <Z W(T))

note that one can easily obtain the foIIowmg over bounds CYyi rCS,
al, bl, bg, dl, dg such that||(A") 1”2 < ap, ||Bf||2 < bl,

Ixn i _ —
||B2||2 < by, ||Dk||2 <di, ||D2||2 < dg, v k. yvhere7r eR IS thg S-0|Ut-IOI"I7r—7rP,7r1n = 1SFJCh .thafir
Writing 1, = vec(L}), g = vec(GY), andgl,(Ly_y, Ly) = IS the steady state distribution of the Markov chaity) is the
vec(G1), one can rewrite (17) as rth element of the vector: For how to thgln apprpxlmatlons or
. even the exact value afwithout numerical ill-conditioning for
Lt =1 <(fl’1“) & éé‘) ~ g0 nearly completely dec_omposa_lble Markov chains, see [11].
Note that Assumption 4.2 implies that for evdry:, there
+ egpy1(Ln, Lxt1), lo=0. (19) exists at;; > 0 such that
Obviously, repeating this operation iteratively, one can express i
los1 @S H M,E+i) p < exp(—pAy;), for somep > ty;.
g=p—1 0o
(26)
liv1 =1(0) +¢ ng-l—l—p(Lk—pa Lit1-p) A proof of this statement is given in the Appendix as a part of
P—O the proof of the following Lemma.
Lemma 4.1: Suppose Assumptions 2.1, 2.2, 4.1, 4.2 hold.
H Miyi—q|,  lo=0 (20) Then there exists a bounded solution to (19) suchthat D
g=p—1

for everyk if the following inequalities are satisfied:

where [(0) = vec(L(0)), Miy1 = (AW~ @ C% and eXp t*+1)6*) _
Hq_ \ Mit1—g = Inw(nony. Itis easy to see that &, € D, ple, L) |S+ VN <|IL(0)||2L

— exp(—6*)
then for everyk, |gi+1(Lx, Lx+1)| < p(e, L) where 27)
p(e, L) =a1 [(1+ <L) [|L(0)]|2 ey [dy + b1 +2 (1+eL) di]|L(0)]]2] <1 (28)
: (82 +51 + (1 + 63) ||L(O)||281) +52:| : where in (27),t* = mMax; il ty, 0F = min(ﬁ*,_)\*), 0 <
Define the following matrices as follows. A < ming In(1/||Mi]loo), X* = ming, 1,40 Ai; and$'is afinite
Definition 4.1: Fori = 1. 2. ---. N number depending only on the system parameter§'.
o N ’ ‘ Remark 3: Notice that Assumptions 2.1, 2.2, 4.1, and 4.2
M; = VQ(”)(I,“ + Aii)WQZ). (21) can be readily verified for a given HMM. Finding L that sat-

isfy (28) is straightforward as well. Verifying that these values
of ¢, L satisfy (27) however, is not straightforward, since one
Elel 0 .. 0 needs to evaluat&, §* and S. We maintain though that this

0 = L 0 can be done in principle. In the section on simulation studies,
. Jz2 we illustrate with an example (instead of finding the range of
s = 0 - - - : (22) ¢, T) that there are choices ef L such that there is a bounded
solution toL;. that does not tend to explode in finite time, thus
guaranteeing that our chosen set of assumptions does not lead
to a vacuous problem. Also, one can possibly obtain a set of
andM. € RN(—N)xN(n—N) is also a block- -diagonal matrix less restrictive inequalities (particularly for large values:pf
consisting ofV subblock-diagonal matrices and tilediagonal involving e, L if one treats each row af,, separately instead
block of theith subblock-diagonal matrix [of ordén; — 1) x  Of treating the entire matrix using thec operation. However,

With this definition, it is easy to show that¥,+1 = j, then

0 . o - EjNMN

(n; — 1)] is given by we refrain from such exercise in the interest of not introducing
= unnecessary complications.
M,E’Jr? = _”Ml, i=1,2,--- N, 1=1,2,---, N. The boundedness df, allows us to writeL; as a power
Cji 23) series ine as discussed before
_ We now mgke the foIIov_vi_ng assumptions in o_rder to find suf- Ly = L(0) 4+ €Ly (1) + - - - (29)
ficient conditions for obtaining a bounded solution to (19).
Assumption 4.1: Substituting this in (16) and equating the coefficients,afne
. can obtain the recursion fd; (1) as follows:
|| <1 i=rzw (24) B
> L1 (1) = (AY)  Ly(1)C 4 Qy (30)
Assumption 4.2:If E[ln(cy, /¢y, )] exists and is evaluated +1() ( 1) 1
to be~;, then where
- o\ —1 -~ -~ ~ ~
ol 3n) <-ni<o izt @) Qu=(A4) (LO)DE+LODIL©) - BIL©) - BY).
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Remark 4: Suppose Assumptions 2.1, 2.2, 4.1, and 4.2 holthat |, — (| = O(e2) provided(1/Z;,) = (1/Zx) + O(€?)
Then the boundedness 6f.(1) as obtained from (30) follows for & > k¢. More formally, we make the following additional
from the fact that the evolutioh 1 = I M1 is exponentially assumption.
stable (as discussed in the Appendix for the proof of Lemma 4. 1)Assumpt|on 4.4:¢ is small enough such thatl/Z;) =
and @), is bounded. (1/Z3) + O(e2) for k > k.

It will be clear presently that in order to save in number of Remark 6: It is worth pointing out that the above assumption
computations for obtainin@(e?) approximation, we only need can be made more formal and rigorous by finding inequalities
to consider solving fo;(1). Higher order approximations toinvolving ¢, L andJ > 0 such that(, — §k| < EJfork > k.

L, do notresultin computational reductions. Below, we discustowever, we do not pursue this matter any further for the sake
how L(0) and L (1) let us obtain reduction in computation. of simplicity.

But first, notice that using (14) and (31), the decoupled fast We now summarize the main results of this section in the

mode can now be recursively expressed as following theorem. The proof follows as a direct consequence
1 } } of the previous discussions and is omitted.
Tl = Zort Mk (A’Q“lLkH + A’Q“Q) (31) Theorem 1: Suppose Assumptions 2.1, 2.2,4.1, 4.2, 4.3, and

4.4 hold. Also, suppose the inequalities (27), (28) hold. Then
whereZy1 = > (i, (4). We make the following additional there exists a large enough but finkg such that fork > ko,

assumption. ’ ’ anO(e?) approximation for,1 denoted byi11 (and the un-
Assumption 4.3:The evolutionz,; | = 2 (A% L1 + AL) normqhzed version b\jHl) can be obtained recursively by the
wherez, € R*~V is exponentially stable. following two steps:

Remark 5: Note that A% Ly, + A%, = CF + (Db + . . . . y
D¥Li4y). Itis clear from (22), Assumption 2.2, and Assump- Crey1 =Gk [A’{ +e (Bf - L(O)D’f)} v Co—1 = Cro—1
tion 4.1 that the evolutiop;4+1 = 7k02 is exponentially stable. 5 . 1 f“ (34)
If Ly € D ande is small enough, then this property of ex- >t~ |:Cu 1 } kL
ponential stability is likely to be preserved for the evolution FALEN

zi41 = (A5 L1 + Af,). In other words, one can obtainsimilarly, anO(e2) approximation oy (for k > ko) is given
a sufficient condition further restricting the rangeedfn addi-  py

tion to (27), (28)] with the following inequality: .
e = —Ce (L(0) + €Li(1)) s Tiko—1 = Mho—1- (35)

¢ ( i ‘ oo) Since[A¥ + ¢(B¥ — LyD¥)] can be pre-computed and stored
+ € [do + (L + €L) || L(0)[|2d1] < 1. (32) forall possible values of the observatibp, the number of mul-
tiplications involved to carry out (34) (for eadl) are N2 (for
This inequality in addition to (27) and (28) may appear to bge vector-matrix multiplication) and/ for the normalization
restrictive but we reiterate that they only provide a set of sufyhereas the number of additions aw — 1. This is consid-
ficient (and not necessary) conditions. In the section on simrably less than the number of multiplications and additions to
ulation studies, we illustrate with an example how the abowirry out the exact computation{+» andn? —n + N — 1,
assumption is satisfied for the given choice of hidden Markgéspectively).
model. Note also that (34) is also the same recursion as one can obtain
Note that Assumption 4.3 guarantees tiyat— 0 asymptoti- by using Courtois’ aggregate matrix and the aggregate observa-

cally. The rate of this decay is determined by the fast eigenvalugsn probability matrix of sizeV x N which is given by
of A, Li41 + A%, and how close they are to the origin. Hence

g —

there exists a large enough but finfigsuch that fok > ko, [7; Gty = GPeourtCag (Y1)
is of O(€?). Setly, = (i, 7 = mi for k < ko. Fork > ko, one Cors = 1 & (36)
can use (15), (13) to obtain the following reduced-complexity + |:Ck X } k+l
O(€?) approximations t@y., ns +
where
s sl L
Cet1 = ~k+1 Cr (Au L(O)A21) Prourt =In 4 €[Vi — VL AW, (Vo AWL) 1V, BV,
i1 = = Qe (L(0) + eLiga (1)) (33) and

= x . bt ~ . Coo(Yi =diag{Gi1 Cio-- - Gin if Yie1 =1.
whereZ. 11 = (11 Given thatd, = ¢ D¥, notice thatLy, o1 g {ei iz N} ket

has been replaced ly(0) in the recursion fo¢, andL; has In other words, one can use Courtois’ aggregation method to
been replaced by(0) + ¢L1(1) in the recursion for,1; in  form an aggregate matrix to obtain érfe2) approximation to
(33). Implicitly, we have assumed thais small enough such the slow (aggregate) filter. However, if one is interested in ob-
that the normalization procedure [division I, in (33)] taining an approximation to the full order filter, it is not clear as
does not affect the order of approximation of the unnormat how one can adapt Courtois’ or any other aggregation method
ized quantity. It should be clear from above tha = Zko + (including Khalil's method). This is where our algorithm has
O(¢?). This automatically implies thaty, — (i, | = O(¢?) if  the advantage, in the sense that it gives a systematic way of ob-
(1/Z,) = (1/Z,) + O(€%). By induction, one can then showtaining an approximate full order filtery,, with less number of
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computations [foilO(€?) approximation]. This will be clear as imation error for the slow (aggregate) filter and illustrate when
we proceed. our algorithm can achieve better results.

Now, going back to (30), notice thél;, can be pre-computed Remark 8: Itis easy to extend these results when the state to
for all possible values of the observatiéfy;; and stored. It output transition probability matri&' is given byC' = C;+~C'¢
follows then that the number of multiplications and additionahere~ > 0 is of O(¢), C, represents the superstates ordy (
needed to solve fak, (1) for eachk are given byV Ef\;l(m — inthe previous section), artd; has zero column sums. If one is
)2+ N(n — N)andN Zl’\;l(m —2)(n; — 1)+ N(n — N), interested in comparing our algorithm with algorithms adapted
respectively. Including the number of multiplications and addfrom other aggregation methods, it is not clear how one can
tions to carry out this operation for eaghand the recursion obtain an aggregaté matrix to carry out the aggregate filtering
given by (35), the total number of multiplications [to obtairfecursions in this case. One way to do this is to obtain
an O(¢?) approximation for the full-order filtery;] stand at 1
N> (ng —1)2 + (n — N)(2N + 1) and the total number ~ P(Yi = m| Xy € S;) = —ag > P =m| Xy = i)m
of additions stand aV 3" | (n; — 2)(n; — 1) 4 (n — N)2N, Loies
respectively. Note that to save in computation in order to Obtaﬂj\ﬂwerew;’g _ EieSl mil = 1,2, ---, N and is the sta-

0(62_) approximation forp, and hence the full order filtetx,  tionary probabilitylimy,_... P(X) = ). We do not elaborate
the individual block sizes need to be small with a reasonali@ these observation probability matrices any more to avoid rep-

number of blocks. We illustrate this with the following exampl&yition. We provide some brief comments based on simulation
of aMarkov chain with = 200, N = 40suchthaty; = 5, VI.  gydies in the next section.

The total number of multiplications and additions for the exact
computations (for each) are 40200 and 40 039. The number

of multiplications only to compute the approximate aggregate
filter is 1640, the number of additions being 1599. To compute N this section, we look at two examples. The firstis an 8-state
the approximate full order filter, the total number of multiplicah€a@rly completely decomposable Markov chain with the fol-
tions is 40 200 and the total number of additions is 33 799. 9ewing specifications as shown in (38) at the bottom of the next

the number of additions is less by 15.58%. page. Obviously, for this examplé&] = 3, n = 8. The obser-
vation probability matrix is chosen to be the following:

V. EXAMPLES AND SIMULATION STUDIES

B. Independent and Identically Distributed Markov Subchains 025 025 025 04 04 0.57 0.57 0.57

If the individual Markov chains denoted By, + A;; arei.i.d., ¢= 032 032 032 05 05 016 0.16 0.16
then it can be easily shown th&¥* = 0, C5 = 0, Vk. In this 0.43 043 043 0.1 0.1 027 0.27 027
case, the computation d@f,.(1), V& is simplified even further For this example, the matricdd’;, W, Vi, V» are the fol-
since it is easy to see from (30) that(1) = Q1 can NOwW |owing:
be pre-computed for all possible values of the observakipn

and stored. This leads to further savings in computations for 1007 [0 00 0 07
obtaining approximations to the full-order filter. Note also that 100 10000
in this caseL(0) is given by—V; AW>, and one can obtain an 100 0 1000
O(€®) approximation to the slow (aggregate) filter (for some Wy = 0 10 , Wy = 00000
k > 0 large enough) computed by the following recursion: 010 00 100
0 0 1 0 0 0 0 O
. . . 00 1 00010
Gips =G [Ab + ¢ (BE = (L(0) + eLu(1)) D} ) | 0 0 1l 0000 1l
Char = ; ~)5'+1~ (37) [1 0 00 00 0O
[C}:’le\f} Vi=|[0 0010000
|10 60 00 100
The number of computations needed to carry out this recursion ——1 1 0 0 0 0 0 0
remains the same as that of computing (34) sitker (BF — 1 0 1 00 00 0
(L(0) + €Ly (1))D¥) can be pre-computed and stored for all Va=| 000 -1 1 00 0
possible values of the pa(ts, Yiq1). 000 00 -1 1 0
Remark 7: Analyzing the stability of (16) is understandably Lo o0 00 -1 0 1

trivial in this case and in any case follows as a special case of
the previous subsection. L(0) for this example is given by the following matrix:

Itis clear now that we can obtain @ ¢*) approximation to

. . S —-0.25 —-0.25 0 0 0
the slow (aggregate) filter in the case when the individual ma- (0) = OO OO _05 0 0
trices,,; + A;; represent.i.d Markov chains. The algorithm 0 0 0 —04048 —02121

adapted from Courtois’ aggregation method [as given by (36)]

cannot achieve that. In fact, we compare our algorithm with It is easy to verify that Assumptions 2.1, 2.2, 4.1, and 4.2
methods adapted from Courtois’ and Khalil's aggregation adre satisfied in this case. Instead of finding choices fdr that
gorithms in the next section on the basis of an average appreatisfy (27), (28), and (32), we illustrate with the following fig-
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ures thatl; is bounded forr = 0.05 over a simulation per-
formed over a sequence of 25000 points (Fig. 1) while Fig.
illustrates the exponential stability of the evolutigp,, =

7 (A5, Liy1 + Ab,) is exponentially stable for a large enougt
but finite & [the plots are shown faf,, (1), 7, (2) and7,,(3) only

to avoid congestion]. Multiple trials result in similar observa

tions. Also, we verify Assumption 4.4 in our algorithm beforem,,

carrying out the normalization procedure. The following simu
lation results illustrate that there are choices &r which the
Assumption 4.4 is indeed satisfied. We present the following r
sults obtained with simulations over a sequence of 25 000 poil
of a computer generated Markov chain and a corresponding
quence of observations. All results are averaged over 20 simu
tions. We compute the exact slow (aggregate) fifigrand the
approximate [order of approximation beidy?)] slow filter

(i [given by (34)]. Our performance measurefg|¢i — Cx||?]

3341

0.9}

0.7F

06

05|

which (from ergodicity assumptions) is estimated by the av-

erage approximation errdimy ... (1/7) 31—, |G — Gl

We compare the performance of our algorithm with Courtois’

aggregation method and Khalil's aggregation method as found

in [11]. We have already noted that our algorithm can be shown

to have the same performance as the algorithm adapted fr
Courtois’ aggregation procedure in this case. As for Khalil's a¢
gregation method, we use the aggregate matrix proposed for
exact computation of the stationary distribution [11, egs. (4.
and (4.5)]. Itis seen from Table | that our algorithm (or the algc
rithm using Courtois’ aggregate matrix) is outperformed by th
algorithm adapted from Khalil's aggregation method as far ¢ ¢
the average approximation error of the aggregate filter is co
cerned. However, we reiterate that there is no systematic w
to adapt any of these aggregation methods to obtai@@R)
approximation to the full order filtetv;, whereas our proposed
algorithm provides a procedure for doing that with less numb
of computations specially when there are many weakly inte
acting superstates with small individual dimensions.

L
05 25

x10*

Fig. 1. Plot of|| L[|z versusk.
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We now take another example of an 8-state Markov cha ° o 9 7° 1
with the following A (all other specifications remain the same)
where the individual,,. + A;; representi.d. Markov chains as Fig. 2. Exponential stability of, .
r—0.35 0.25 0.10 0 0 0 0 0 7
0.15 —-0.65 0.50 0 0 0 0 0
0.55 0.15 -0.70 0 0 0 0 0
A— 0 0 0 —-0.3 0.3 0 0 0
0 0 0 0.3 —-0.3 0 0 0
0 0 0 0 0 -040 0.25 0.15
0 0 0 0 0 0.30 —-0.42 0.12
L O 0 0 0 0 0.15 0.35 —0.504
ro.l 015 -—-1.0 0.6 0.05 0.0 0.05 0.05 7
0 0.1 —-0.9 0.5 0.05 0.05 0.1 0.1
0.01 0.01 —-04 0.2 0.05 0.05 0.04 0.04
B— 0.02 042 0.01 0.01 -0.61 0.025 0.1 0.025 (38)
0.45 0.01 04 —-1.0 0.01 0.1 0.01 0.02
0.01 0.0 0.01 0.01 0.05 0.01 —-0.15 0.01
0.03 0.01 0.03 0.04 0.01 0.01 0.01 -0.14
L0.01 0.05 0.01 0.01 0.05 -0.16 0.01 0.02 |

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 04,2021 at 15:36:48 UTC from IEEE Xplore. Restrictions apply.



3342

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 12, DECEMBER 2000

TABLE | TABLE I
COMPARISON OFAVERAGE APPROXIMATION ERROR INAGGREGATEFILTERING COMPARISON OFAVERAGE APPROXIMATION ERROR IN AGGREGATEFILTERING
. Average approximation error . Average approximation error

Qur algorithm (Adapted Courtois’ method) | Adapted Khalil’s method Adapted Courtois’ method | Adapted Khalil’s method | Our algorithm

0.005 3.1854 x 108 1.0489 x 1073 0.005 1.2623 x 1078 1.7858 x 1079 7.9708 x 10~13
0.01 1.1678 x 10~ 5.8685 x 10~% 0.01 1.912 x 1077 1.779 x 1078 3.4247 x 10711
0.05 1.199 x 10~° 4.1207 x 10~° 0.05 1.4682 x 10~° 91341 x 10~7 4.5697 x 10-8
0.08 4.2599 x 1075 1.0989 x 10~° 0.08 5.1109 x 107° 2.7550 x 1078 3.4967 x 10~7
0.1 9.2947 x 107° 1.8427 x 10~° 0.1 9.6890 x 107> 4.1106 x 107 9.6539 x 1077

shown in (39) at the bottom of the page. Note thé&d) in this
case is given by the following matrix:

025 —010 0 0 0
L(0) = 0 0 —03 0 0
0 0 0 —025 —0.15

In this case, we compare algorithms using Courtois’ and
Khalil's aggregation methods with our algorithm which com-
putes the slow filter that is af(¢*) approximation to the exact
slow filter. Note that this approximate slow filter is given by
(37). Table Il shows that our algorithm outperforms the algo-
rithms based on Courtois’ and Khalil's aggregation methods.
We also compared our algorithm with adapted versions of ,
Courtois’ and Khalil's aggregation methods in the case when
C = C; + «Cy. While our algorithm and the adapted version
of Courtois’ aggregation method yield comparable results, the
adapted version of Khalil's aggregation method results in very
high values of average approximation errors, thus exposing
thead hocnature of the algorithms obtained by adapting such
aggregation methods. In conclusion, it is fair to say that our
algorithm provides a systematic way of obtaining guaranteed
approximations to the aggregate or even the full order filters
by appropriately exploiting the structure of the system to
reduce computations, while adapting various other aggregation
methods may not always result in a better performance.

A. Numerical Issues

There are few key numerical issues that are worth pointing
out.
* Forgetting of initial conditions
It is well known that the conditional probability filters

for the classes of HMM'’s being discussed in this paper
forget initial conditions exponentially fast [18]. This of
course implies that if;,, 7 are “good” approximations
of (&, mx, they should also forget initial conditions ex-
ponentially fast. It is not difficult to show from (34) that
¢ forgets initial conditions exponentially fast for a small

enoughe. The matrixA¥ + ¢(B¥ — L(0)D¥) in (34) can
be rewritten as

Vi [P — e AW, (V2 AW,) "1 V3 B] O(Yiq1) Wi

It is easily seen that for a small enough P —
eAW, (Vo AW,) " VoB is a stochastic matrix, since
B has zero row-sums. Observing that 1 are row-al-
lowable and column-allowable, respectively, with the
nonzero entries being 1, and all the entries in the diagonal
matrix C'(Yy41) are positive, the property of forgetting of
initial conditions follows immediately (by appealing to
the results established in [18]) fd¢ for a small enough.
Non-negativity ofy, 7j:

The exact quantitiegy, m. are probability elements
and hence they are nonnegative. For small values of
e, (. T therefore are likely to be nonnegative. Note
that the nonnegativity ofd* + «(B¥ — L(0)D¥) (as
discussed in the previous dot point) guarantees the
nonnegativity of(;,. The nonnegativity ofj; does not
follow easily from (35). However, one can certainly
obtain sufficient conditions involving inequalities in
e, L such thaty, 7. are nonnegativey k, in addition
to (27), (28), and (32), thus unnecessarily restricting
the range ofe, L even further. We refrain from such
an exercise to reduce unnecessary complications but
just note that for a small enoughsuch nonnegativity
constraints are likely to be satisfied. However, it may
occasionally happen for an unfortunately large choice
of ¢ for a given HMM that some elements of;
may assume small negative values. In such cases, a
practical solution is to reset these quantities to zero
and re-normalize the approximation te, (given by
Vi + 7V2). One has to rely on the property of
forgetting of initial conditions to assume that the errors
introduced due to these artificial resetting of values of
certain quantities are not going to affect the long-term
performance.

r—0.35 0.25 0.10 0

0.65 —0.75 0.10 0

0.65 0.25 —-0.90 0
A= 0 0 0 -0.30 0
0 0 0 0.70 -0

0 0 0 0

0 0 0 0

L 0 0 0 0

0 0 0 0 7

0 0 0 0

0 0 0 0

.30 0 0 0

.70 0 0 0 (39)
0 040 0.25 0.15

0 0.60 —-0.75 0.15

0 0.60 0.25 —-0.85]
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» How large ane can one handle? of chain dependent random processes [19], it is known that the
Note that (27), (28), and (32) form a set of sufficienstrong law of large numbers holds for(¢y, /¢y, ), that is,

(and not necessary) conditions@r. One may be able to L
apply this algorithm even when the value:a$ larger than . vl _
permitted by these inequalities although this is not known thj{}o t ’;ln <EYH‘> = wp-1 (40)
a priori. In such a case, a practical algorithm is one which . o . ]
forcesLy (1) to evolve within a certain prescribed compaciherey;; is defined in Assumption 4.2. It follows from this and
region such that every time it goes outside this region, it fssumption 4.2 that there exists a large enough but fihjte
forced back inside the region by resettifg(1) to zero. Such that fort > #;
Obviously this resetting destroys tt&e?) approximation t
property of,. In this case, one can at best hope@qk) exp <Z In fY l HMIH D < exp(—thn). (41)
approximation form, and hencey, in this case. Simula- b1 LY &
tion studies with such an algorithm were seen to preserve
the much needed stability in cases where the values of
were large enough to cause large variations in the values
of L;(1). However, this was achieved at the expense of a
higher approximation error.

e

It is immediate from the above result that

HO (.0
i1
A4ﬁ+l—q

g=p—1

< exp(—p\;) forsomep > t;.

oo

Choosingt* = INAaX; { il ti; and A\t = lnilliJ’i#l Au, OnNe can

write for any¢, l = 1,2, ---, N, andp > ¢*
VI. CONCLUSIONS
0
We address the problem of reduced-order filtering for a H M,Eijr?_q < exp(—pA™). (42)
class of partially observed nearly completely decomposable g=p—1

oo

Markov chains in this paper. We provide a systematic way to
obtain approximate [with order of approximation beife?)]
aggregate filtering withV? + N number of multiplications
where the order of the Markov chain > N. Surprisingly,
this method turns out to be identical with a method obtained
adapting Courtois’ aggregation method, thus proving that or%e 0

Since a product of block-diagonal matrices is also block-di-
agonal with theth individual block in the product matrix being
the product of theth blocks in the individual matrices in the
l}JJ)goduct, one can write

can adapt Courtois’ algorithm to obtain a method for obtaini Mi11-4

an O(e?) approximation to the aggregate filter computationge=r—1

with reduced complexity for these classes of Markov chains. 0 0

However, our algorithm also provides a systematic way t0 = max H M| H Mlgj’r?_q

obtainO(e?) approximation to the full-order filter with reduced % \[[,;=5=1 || ll4=p-1 -

number of computations when there are large number of super- o o

states in the Markov chain with small |nd|V|dqu dimensions. _ .| max H M|, max H M}Eii)_

In the special case whefg, + A;;, Vi representsi.d Markov | Pl . pbigl || 7 1 .

chains, we can obtaif(¢*) approximation to the aggregate . .
filter and further savings in computations to the full-order filter < mmax (exz(_pﬁ ) eXp(_]i)‘ ))
using our algorithm whereas algorithms adapted from some< exp(—pd®), forp>t (43)
2d hocnature o agoritims.adapied fiom other ageregaiioh €S = MIk(F", 1)

0
methods becomes clear through various simulation exampleIt follows from above that || H’Izp—l Mipi—qll2 <

when the objective is to obtain reduce-order approximate filtep4 Y (n — V) exp(—pd®) for p > ¢*. Now consider (20).

for such classes of hidden Markov models. Extensions of the!&ré)m here onwards, the analysis is identical to a time-scale

results to obtain reduced-order approximation to risk-sensiti gecomposition and averaging analysis of an adaptive control
filters and controllers for hidden Markov models [also knoerOblefm that can be found in [17, pp. 105-107].

as partially observed Markov decision processes (POMDP)]Deflne onD the operator

are under investigation.

Ti(L) =10) + € | Y grg1—p(Ln—p, Lis1-p)

p=0
APPENDIX 0
PROOF OFLEMMA 4.1 11 Mk+1q] (44)
g=p—1

First, note that ilimy o (3;_; sx/T) = b < a, itis easy B
to show that for some large enough but firite}";_, s, < Ta. Noting that |git1(Lk, Lr+1)] < p(e, L) and letting
From Assumption 4.1, it is immediate thgpf[2—) Mill. < S = S oo H2=p_1 |My11—4ll2 (Which is bounded since
exp(—F*p) for any0 < * < min; ln(1/||M||ec), foralll = ¢* is finite and it is obvious thatS’ can only grow at most
1,2, ---, N and for anyp > 1. From limit theorems of sums exponentially at the worst case), one can show That.) is a
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well defined operator it, L satisfy (27). (28) guarantees that [12] M. Abbad, J. Filar, and T. R. Bielecki, “Algorithms for singularly per-

it is a contraction operator and with the unique fixed pbmll turbed limiting average markov control problem$EEE Trans. Au-
h isfi 20) b . tomat. Contr, vol. 37, pp. 1421-1425, Sept. 1992.
that satisfies ( ) y construction. [13] M. Abbadand J. Filar, “Perturbation and stability theory for markov con-
trol problems,”IEEE Trans. Automat. Contrvol. 37, pp. 1415-1420,
Sept. 1992.
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