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Change Detection in Teletraffic Models

Rittwik Jana and Subhrakanti Dey

Abstract—in this paper, we propose a likelihood-based ratio [2]. Simulations in [6] illustrated via a comparative study of
test to detect distributional changes in common teletraffic models. five algorithms (for a change in the mean of a Gaussian dis-
These include traditional models like the Markov modulated tribution) that the CUSUM algorithm is more robust and effi-

Poisson process and processes exhibiting long range dependency,. - .
in particular, Gaussian fractional ARIMA processes. A practical cient than the others. Optimal properties for the CUSUM algo-

approach is also developed for the case where the parameter after [ithm are discussed in detail in [2]. Since the idea of the test
the change is unknown. It is noticed that the algorithm is robust is based on calculating the logarithm of the ratio of the condi-

enough to detect slight perturbations of the parameter value after tional likelihood functions before and after the change, we can
the change. A comprehensive set of numerical results including gytend the CUSUM algorithm to the case of dependent obser-
results for the mean detection delay is provided. . L . . -
vations (although initially it was designed for independent ob-
Index Terms—Autoregressive integrated moving average, servations), where calculations of such likelihood functions are
change detection, long memory processes, Markov modulated possible (e.g., hidden Markov models [3] and Markov-modu-
Poisson process. lated time series [4]).
In this paper, we develop on-line change detection algorithms
I. INTRODUCTION based on the CUSUM-like test for teletraffic models. The first

HANGE detection algorithms have been studied eX,[eﬁjodel we treat is a traditional model for traffic data in com-
' sively for the past 50 years [1], [2]. Adaptive identificatior{numcat'on networks known as the Markov modulated Poisson

algorithms can track only slow fluctuations of the c:haracteristR:mcessl.(ll(vlMPP)];I I h?s e f(_é)gient5|veliy used for gwodelmg pro-
parameters and are not suited for detection of abrupt changeg Ses like overfiow from a finite trunk group and SUperposi-

R ) :
general. Detection of abrupt changes, however, is necessary ?ﬁ of packetlzeq VOICE processes and packet data (see [7] and
many applications like fault detection in navigational systems; erences therein). Although this model can gccount for time-

onset detection in seismic signal processing, segmentation\{gfymg arrival rates and captures some of the important correla-

speech signals and congestion control of wide area compdfgps between interarrival times, it cannot model long-range de-

networks, etc. We are interested in the problem of online detePce-nden.Ce (or '°T‘9 memory with hy_bgrbollcally decaying auto-
orrelation functions arising as a striking feature of the so-called

tion of an abrupt change, with the minimum delay in detectiq% if-similarity™. Starti ith th inal 81 it

with a constraint on the mean time between false alarms. MOS%?? -Simiarity )- h arting kWIth i N Is%erplr?Ia .;t)ape'r t[ ]d ! VAV'I?I?/I

the signals treated in [2] are time-series models (linear or no 10Wn In many other works that sefi-similarity existed in 7
gaﬁlc, compressed digital video streams, and web traffic be-

linear). Following techniques similar to [3], an online chang b d 91). Althouah self-si
detection algorithm was developed in [4] for Markov-modulate; een Drowsers and Servers (e.g., see [3)). ough sefi-sim-
arity is measured by the so-called Hurst parameter (taking

time-series models based on the cumulative sum (CUSUM)-li ) :
test derived from Page’s test and the sequential probability ra\(l%lues between 0.5 and 1.0), it has been shown that high de-

test (SPRT) [5]. In this paper, we develop online change qdrees of self-similarity (Hurst parameter0.7) have a detri-

tection algorithms based on a CUSUM-like procedure for telg]ental effect on network performance, including packet |oss

traffic models, ranging from traditional models like Markov—.and queueing delay (see [9] and references therein). In addition,

modulated Poisson process (MMPP) to a class of current s(1}rﬂ‘(_:reasing load on the Ethernet increases the degree of self-sim-

similar models proposed for internet traffic, specifically Iong'—la.my' lr.‘ the context of mulymedla trgfflc such as V|.deo and
memory time series models. voice with their diverse quality of service (QoS)_ r(_equ_lreme_nts,

It is known that the CUSUM test is optimal in the sense thilt'S |mportant_therefo_re that the_ effect of self-similarity on in-
it optimizes the worst mean delay in detection when the megﬂcor!nected issues like queueing de_Iay, packet Ios_s, and buffer
time between false alarms goes to infinity [2]. The CUSUM apbizesis well understood. Hence, the issue of detecting changes

gorithm also gives the infimum of the worst mean delay for Iy the degree of self-similarity is quite important in such appli-

class of stopping times with preassigned rate of false alarﬁﬁtions' In this paper, we address this issue by developing online

change detection algorithms for a class of long-range dependent
processes, namely, Gaussian fractional ARIMA (FARIMA) pro-
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change), we can also develop more suboptimal methods by swhere the operatan? is defined by

stituting the parameters before the change by their estimated > /d
values and running a bank of change detection algorithms with At=(1-B)=>" <k> (-1)*B* (2
different assumed values for the parameters after the change. k=0

Although the closest value will result in a better performanceshere (¢) = (I'(d + 1)/I'(k + 1)I'(d — k + 1) is defined
such algorithms are obviously computationally quite expefer any reald, and B is the backward shift operator defined
sive, particularly when the number of parameters is large. N&#¢ Bz, = x,_;. {¢;} is a sequence of independent identically
also that such detection algorithms can potentially be madwtributed (i.i.d.) random variables. In this paper, we assgme
adaptive. For a comparative study of three such algorithmsigGaussian distributed with mean 0 and variance unity.

the context of time series segmentation, see [10]. There aréVhend = 0, the FARIMA(0,0,0) process is a white noise
also other designs of detection algorithms, based on the effith a constant spectral density. For < d < 1/2, the
cient score (gradient of the log-likelihood function with respe®ARIMA (0, d, 0) process is stationary with long memory (for
to the parameter vector) or, more generally, on alternative esproof, see [16]). The correlations are all positive and decay
timating functions (see [11]-[14] for some related robustneasonotonically and hyperbolically to zero as the lag increases.
issues). Analytical or even approximate computations of tifr the purpose of this work, we assule< d < 1/2,
mean delay in detection and mean time between false alarsisce ford > 1/2, the process is not stationary, at least not in
are quite difficult in the case when the sequence of the telt usual sense, since in this case, the usual definition of the
statistic is not independent and identically distributed and wibectral density results in a nonintegrable function (see [16]).
not be considered in this paper for our algorithms except fovhen —1/2 < d < 0, the FARIMA(0, d,0) process has

some simulation results. short memory since it can be shown [16] that the sum of all
correlations is zero. Note that the Hurst parameter is related
Il. SIGNAL MODELS to d by d = Hurst parameter-1/2. For0 < d < 1/2, the

A. Markov-Modulated Poisson Process (MMPP) covariance function ofz, } is

(=D (1 — 2d)

An MMPP is a doubly stochastic Poisson process where the vy = E{zzs 1} = Th—dt+ DT —Fk—d) (€))
rate of the Poisson process is modulated by the state of a Markov ) i
chain. Lets, € S = {1,2,---,N},t € NT denote a finite and the correlation function
state, discrete-time, homogeneous Markov chain with a transi- L= P = d)l(k+d) 4)

tion probability matrix4A = (a;;), wherea;; = P(si41 = (AT (k +1—d) )
ils; = j) and initial probability distribution given byt such _ A more general model of the ARIMA family, namely
that P(so = ) = (). The number of arrivals (e.g., of datalFARIMA(p, d, ¢), can be defined by a stochastic procéss}
packets) in theth time slot is modeled by a Poisson proces&Presented as
and is denoted by:;. The rate of arrival during théth time

slot is given byyu,, where essentially,; is modulated bys;,.

A N s
Let e € p = 1), 1(2), -, ()}, wherep, = pu(0) it \yhereA is the fractional differencing operata#(B) = 1 —

H(B)AYy, = 6(B)e, (5)

s = t. Define B(ny) = diag{blb(nt), ba(ng),- -, b]-\f(nt)}, ¢pB—---—¢,BP,6(B)=1—6,B—---—0,B%, ande, is a
whereb;(n) = P(n, = n|s; = ¢). Due to the Poisson na-white noise process. The effectébn distant observations de-
ture of the process., we obviously haveP(n, = n[s; = cays hyperbolically as the lag increases, whereas the effects of

i) = (u(i)"/n!) exp(—p(é)). The complete parameter space, andg parameters decay exponentially. Thiispay be chosen

for the MMPP is then characterized By = (A, 7, n). The to describe correlation in a time series between distant observa-
problem at hand is to detect a change from one parameter sp@sies, whereas andé describe the short-term correlation.

A 2 (A", 7M7) to anotherhx 2 (AKX, 7%, 1), Note In practice, it is expected that the FARIMA d, ¢) processes
that the superscrigtused later with the notations above, e.gare likely to be of most interest whgnand g are small [17].

in B(ny)!, will usually identify the parameter space before oWe will consider the simplest of such processes, namely,

after the change far= H, K, respectively. FARIMA(1,d,0) and FARIMA(0, d, 1). These two time series
are given by
B. Long-Memory Processes (1- (/)B)Adyt =¢ (6)
By generalizing the well-known ARIM&, d, ¢) models of Ay, =(1 — 6B)e @)

Box_—Jenkms [15], it is possible to relax the degreg of d'ﬁerT'o ensure stationarity and invertibility ¢ }, we assumé <
encingd to any real value to model long-term persistence. |

q < $.1¢l < 1,1]6] < 1. The covariance functions of the

what follq\tll\;)s, WZ conlslczier S(,jtzglonary frgctlonat! ARIMA prO'FARIMA(l, d,0) and FARIMA(0, d, 1) processes can be found
cesses witl) < d < 1/2 and Gaussian innovations. R in [17] and are given in the Appendix.

1) Fractional ARIMA: We  formally  define
FARIMA(0,d,0) process to be discrete-time stochastic Il ONLINE CHANGE DETECTION
process{z; } represented as :

Consider a sequence of i.i.d. random variallesith a prob-

Alz, = ¢, (1) ability densityf(-) depending on a parameter space character-
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ized by \. Before the unknown change timg,, the parameter It is easy to show that according to the above recursion
space is given byx = A\, and after the change, it ’s= \x. (see the Appendix for a proofy! () is equal to the quantity

Assuming that the parameter spage and A\ are completely fi, (n¢,ne—1,- -, 70,8 = J)/fa(ne—1,---,n0). Then, it
knowna priori, the problem is then to detect and estimate thisasily follows thatfy, (n¢|ni—1,-- -, n0),{ = H, K is given by
change in parameter. A CUSUM algorithm that uses the 10gx, (n¢|ni—1,- -+, n0) = X; ok(4). Itis clear that we can now

rithm of likelihood ratios to detect such a change was devised pgrform computations of the test statistic as given by (8) and
Page [1] in 1954. The key statistical properties of this ratio c4f).

be summarized as follows. A change in the parameter space

is reflected as a change in the sign of the mean of the log-likel- Gaussian FARIMA

hood ratio. LetS, = XI_; s;, s = log(fa, (41)/ fan(%))- The | this section, we show how we can extend the online
typical behavior of5; shows a negative drift before change anghange detection algorithm for long-memory time series,
a positive drift after change. Although this test was originallypecifically, Gaussian FARIM®, d, 0), FARIMA (1, d, 0) and
designed for an independent sequefigg, a similar CUSUM FARIMA (0, d, 1).

like test can be designed for dependent sequencég;dfas 1) Gaussian FARIM,d,0): Let X = {xo,---,z7_1}

well [2]. This is based on measuring the ratio of the conditiongk z 7-length sequence of observations from a Gaussian
likelihood functions before and after the change. Note from [ZlARIMA (0, d, 0) process wit) < d < L satisfying (1). For
that such a sequential CUSUM-like procedure in a manner sifde FARIMA(0, d, 0), the parameter subject to change isor

ilar to Page’s recursive test can be written as a recursion in 8&RIMA (1, 4, 0), the parameters concerned ake) and for
test statisticS; in the following manner: FARIMA (0, d, 1), they ared, 6. We assume that the parameters
before and after the change are completely known. In the next

S =max{0, i1 + (1)} ®) section, where we present simulation results, we consider a
where practical suboptimal scheme for the case where the parameter
(d in that particular case) is unknown after change. Next, we
g(t) = log <fA’((yt|yt_l’ — "y0)> . (9) describe how we can go about performing a CUSUM-like test
Pxa@elye—15-+ 5 90) for long memory time series like those given by (1) and (7).

As far as the change is concerned, the relevant information liedt is well known [16] that an exact likelihood computation of

in g(t): the difference between the log-likelihood functions corft long-memory time series, e.g., FARIN& d, 0), is compu-
ditioned on the parameter spaces and .\, respectively. The tationally prohibitive due to the covariance matrix being high
key property that allows detectability in a CUSUM-like procedimensional (for long time series) and often numerically un-
dureisE(g(t)|Ag) < 0,E(g(t)|Ax) > 0. To detect a change stable for certain values dfsuch that inverting the matrix might
from A to A, usually, a threshold is set such that a changePe a problem. There are several ways to compute an approxi-
is detected whes, > h. There are two quantities associatednate likelihood function like (“Whittle's approximate MLE;"
with the detection: the mean time between false alarms and #&€ [18]). We take an alternative approach as given in [16].
mean delay in detection. The general nature of these quantiiensider [1]. Assuming that the long-memory time series has
are that the mean time between false alarms increases appfogausal linear representation, we could writes

imately exponentially with increasing values of the threshold, oo

and mean delay in detection increases approximately linearly Ty = Z b()xe 1 + & (11)

with increasing values of the threshold. These two properties =1

make the CUSUM test quite useful. Computation of the exac

" - . : . . wﬁwere ¢} is a sequence of i.i.d. innovations, and asymptotic
conditional log-likelihood functions is possible (as shown in th {e} 9 ymp

next section) for the MMPP process but not for Iong-memmﬁromrtles of the AR coefficients(-) can be found in [16]. If

. .We knew the infinite past aof, given byz,, s, we could recon-
processes. Therefore, we resort to approximate COMPUAtfD ot the sequence of i.i.d. innovatiohss < t. Instead of the
for long-memory processes. M

infinite past, if only a finite number of past values is observed,
A. MMPP the innovations can be estimated fy= x; — 23;11 b(Dxy—y-
) ) ) ) Here, we would further truncate the memory such that we only
Consider an MMPP defined in Section II-A. Note.that hergyonsideras past samples. This is to prevent growing compu-
we replace{y, } by the observation sequenge; }. Define the (a(ional needs with increasing length of the time series. In that

following forward variablea? 2 (al(1),---,al(N)), where case, we represent by
obviously,e! € R, such that the following recursion in! y
holds:
l 2= P i+ eld) (12)
of = B(ny) Al — =t
Z o1 (2) whereXM ., Bunw. g is the best linear prediction of;, given
l L @ the past\/ samples. Fora FARIMQ), d, 0) series, the predictor
ag =B(no)'r’, 1=HK. (10) tapspBan are given by
Remark 1: Note that in the right-hand side of the first equa- 3. MANT({-dI(M—-d-1+1) 13
tion in (10),a!_, is normalized to avoid numerical problems. Prar=—1{" D(—d)['(M —d+1) (13)
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er(d) denotes the prediction error at timg where the

dependence od is explicitly shown. An approximate log-like-
lihood function L;(X;,d) can be calculated by [where
Xy = (@, 24—1, -+, 21)] [16], [19] 2000
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where the mean squared prediction ewd(d) 2 E[e2(d)] is
given by [19] % 500 1000 1500 2000 2500 3000

o (d) =TIt — 2d)/(L'(t — d)?). (15) e

Fig. 1. Change detection for a MMPP process.
An approximate CUSUM-like test can now be devised (we
call it approximate because of the approximate log-likelihoc ¢ ' ' ; - - ' ' -
function) by computing;(¢) in (9) by the logarithm of the ratio
of de(xt|xt—17 ) xl) and de(xt|xt—17 T ,.1‘1), where 45
dy,dy are the respectivé values before and after the change
Itis not hard to see that this is given by (due to Bayes’ Theorer

9(t) = (Ly( Xy, di) — Ly—1(Xy—1,dk))
— (Le( Xy dy) — L1 (Xo—1,dn)). (16)

AVERAGE DELAY
@
@0

W

2) Gaussian FARIMAL, d,0) and FARIMAQO,d,1): The
online change detection algorithm is essentially based
the computation of the approximate log-likelihood functiol =s
for both FARIMA(1,d,0) and FARIMA(0,d,1). These ap-
proximations are based on the best linear prediction of t ,
time-series given finite number of past samples. Hence, we ¢
repeat the same procedure [as done in the previous subsec
for Gaussian FARIMAQO, d, 0)] to obtain the predictor taps, the 2 8 4 resroon 8 ® 1
prediction error covariance, and finally, equations similar to
(14) and (16). We will need to use the covariance formulae fbig. 2. Delay in detection for a MMPP process. Plot of average
FARIMA(1,d,0) and FARIMA(0,d,1) (see the Appendix), de!ay-threshold.

and to compute the predictor taps recursively, we can use the ) ) )
Levinson-Durbin algorithm [20]. sponding mean delay in detection (averaged over 50 realiza-

processes like Gaussian FARINMA d, ¢) for nonzerop or ¢ Cfeased, the time required to detect a discernible change in-
can have Markov modulated AR or MA parameters. This is &#€ases approximately linearly.

analytically hard problem and will be considered elsewhere. ~Figs. 3-5 show the change detection for long-memory
processes. The data for the FARINMIAJ,0) process was

generated using a statistical software package SPW, and
FARIMA(1,d,0) and FARIMA(O,d,1) were generated by

In our simulations, the MMPP has an underlying Markopassing a FARIMAQO, d,0) process through appropriate filters.
chain that takes values in a 4-D state space. We assume f&th process was subdivided into three equal segments of
the process changes from a parameter spagdo Ax after length 1000 such that the process changes fignto Ax at
the first 1000 points and then changes back goafter another ¢ = 1000 and back to\y from Ax at¢ = 2000. In these simu-
1000 points. Different transition probability matricds; and lations, the memoni/ of the approximate AR representation
Agx were used, along with two different sets of rate of arrival®r the long-memory processes (see (12)) was chosen to be
of packetsuy andyu i (details are given in the Appendix). All 60. It was noticed that increasing it further did not result in a
simulation results presented in this section are averaged ovesbfstantial improvement in the performance of the detection
realizations. algorithms. As seen in Figs. 3-5, the detection schemes clearly

Fig. 1 shows the plot of the test statistic clearly showing thgick up the changes. Fig. 6 shows the delay in detection (aver-
changes at = 1000 and¢ = 2000. Fig. 2 shows the corre- aged over 50 realizations) for the FARIM® d, 0) process of

IV. SIMULATION
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Fig. 3. Change detection for FARIMA,d,0) process,dyz = 0.1 Fig.5. Change detection for FARIMA, d, 1) processdx = 0.1, 6 = 0.2
(t = 0---999). dic = 03 (t = 1000---1999) anddsr = 0.1 (1 = 0..-000); dye = 0.3, 8 = 0.4 ( = 1000---1090): dps = 0.1,
(t = 2000- - - 2999). § = 0.2 (t = 2000- - - 2999).
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Fig. 4. Change detection for FARIMA, d,0) processdy = 0.1, ¢ = 0.2

(t =0---999); dx = 0.3, ¢ = 0.4 (t = 1000---1999); dy = 0.1, Fig. 6. Delay in detection for FARIM, d,0) processdxz = 0.1, (t =

¢ = 0.2 (¢ = 2000---2999). 0---999);dx = 0.3,6 = 0.4 (¢t = 1000---1999);dy = 0.1,0 = 0.2
(t = 2000---2999).

Fig. 3, and as expected, the delay is seen to be approximately

linear in the detection threshold. processes. For a discussion on this and associated robustness
Next, we show some results where the parameter after ihsues, see [16]. In the case of unknown parameters before the

changedy is assumed to be unknown. A practical online apzhange, we therefore assume that the estimated values are suffi-

proach would be to run several change detection algorithmsdiently “close” to the true parameter values before they are sub-

parallel with guessed values fdf . If dg, which is the param- stituted forA g in the proposed change detection algorithm.

eter before the change, is not known, we can substitytdy In what follows, we only concentrate on the case whkgds

some estimated value. In this case, the detection algorithm is arknown. The following figures (Figs. 7—11) show the plots (for

pected to perform well when the estimation error is small. It is> 1000) of the test statistic for various “guesses” ¢ for

also well known that estimation of parameters of long-memosguch an algorithm. We investigate the proposed detection algo-

processes is computationally quite expensive. However, theitam using a filter bank with the FARIMAO, d, 0) process. The

are estimation schemes using approximate likelihood functioB800-sample long data sequence was generated digirg 0.1

that achieve almost sure convergence to the true value of fbethe first 1000 sampledy = 0.3 for the next 1000, and back

parameter (e.gdy) at a rate ofa=1/2 (n being the length of tody = 0.1 in the final section. It is readily seen that for slight

the long memory time series) under certain regularity condihanges in assumedj, the test statistic is more “jittery” and

tions holding for the spectral density for stationary Gaussidras no clean transition boundaries at the time of change. More
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Fig. 7. Change detection for FARIMA, d, 0) process. Tested/X = 0.20.
Actual dK = 0.3.
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Fig. 8. Change detection for FARIMA, d,0) process. TestedRk = 0.25.
ActualdK* = 0.3.
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Fig. 9. Change detection for FARIMA, d, 0) process, TestedK = 0.3,.
Actual dK = 0.3.
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Fig. 10. Change detection for FARIMA, d, 0) process, TestedX' = 0.35,
ActualdiK = 0.3.
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Fig. 11. Change detection for FARIMA, d, 0) process. TestedX' = 0.40.
ActualdK = 0.3.

importantly, the average rate of change in the test statistic de-
creases for a branch assuming an incorrggtthat is farther
away from the truel;.. Fig. 9 shows the change for the cor-
rectly assumedj value (i.e.dx = 0.3). Note that for the other
branchessS,, plateaus at a lesser value. Therefore, a higher slope
of increase in the values of the test-statistic and cleaner transi-
tions with less jitter are indicative of a better guess. However,
these are only empirical guidelines, and the complexity of this
algorithm obviously increases exponentially with the number of
parameters.

V. CONCLUSIONS

In this paper, we investigated the performance of a
CUSUM-like algorithm for detecting changes in traditional
teletraffic models such as MMPP’s and models proposed
more recently, such as long-memory processes, in particular,
Gaussian FARIMA processes. Simulations illustrate that the
detection algorithms perform well when the parameters before
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and after the change are known. In the (realistic) case ofHere,t}(n;) = fx (ne|s: = j). Now, since by definition
unknown parameters after the change, our proposed schethe, (i) = (f,(nt_1, " 10, 5e—1 = ©)/fx, (Re—2, -+, 710)),
with a bank of parallel change detection algorithms showge can use (20) to obtain

high sensitivity to small variations in the parameters (after

the change), thus indicating the potential of such a scheme
when the number of parameters involved is small. Simulation

results are also presented for mean delays in detection for
these schemes. Research is currently underway for developin
change detection algorithms for long-memory time series
models with heavy-tailed non-Gaussian innovations, which are;
believed to be responsible for the self-similar nature in ATI\‘/LI1

ol (i
o) = tm) 3 27()0 (21)

%

g\lriting it in the matrix notation, we get(10) far > 1.
1) Simulation Details:Here, we provide the details of
, AR uH 5 for the simulations done to detect changes in

and web traffic. a MMPP.
r 0.8 0.07 0.05 0.0017
APPENDIX AH — 0.15 0.75 0.14 0.089
] 0.04 0.12 0.8 0.11
Proof of (10): Define o} (j) = (fa, (4,141, -, 0o, 51 = L0.01 006 01 08 |
D/ Ix(ne-1, -+ ng)), I = H, K, vt > 1. In addition, define r04 027 035 0.1117
aé = B(no)lm. It follows that fort = 1 K 025 045 0.14 0.119
Fa (1m0, 51 = 5) T 1015 022 04 023
ol () = 2 ? EZ ; ‘ (17) L 0.2 006 011 0.54
AT P =1 2 5 8= 6 12 13].
Now
2) Covariance Formulae for FARIMA,d,0) and
I (nino,s1=7) = fa(nis1=4) 1 (s1=4,n0) FARIMA(0,d,1): The covariancey; of the FARIMA(1,d,0)
N process{y:} given by (7) is shown in (22) at the bottom of
=b§»(n1)2f,\l(31=j, s0=1,M0) the page, where is given by (3), andF(a, b;c; z) is the
i=1 hypergeometric function given by [17]
N
:bj(nl) Z aé»ifxl(nobo =)P(sg = 1) Fla,bsc;2) = 1+ a_bz I a(a+ 1)b(b + 1)22 INVX)
i=1 c-1 e{le+1)-1-2
N
= bj (ny) Z aéibﬁ(no)m Sim?larly, the cqvarianca’,ﬁ of the FARIMA(0, d, 1) process
im1 {y:} given by (7) is
N
_y Lo (i), 18) oy (1= 6K — (1= d){(1 — d)(1+6%) —20d}
J(nl);anOCO(L) ( ) fy"lj =V S (]_—d)2 .
. . . (24)
In addltlon,f)\l(ﬂo) = 3 f)\z (710,80 = 'L) = 3 Oéo('L).
Substituting this and (18) back in (17) and writing in matrix
notation, we get REFERENCES

of = B(my)'A' <20 — (19)

Proceeding in a similar fashion, we can show that for any 4]

t>1

f)\z(ntantflv co, o, St :j)
= bé’(nt)f)\z (St =J, M1, 7”0)

=ti(n) D abifn(nioa, - eino, s =), (20)
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