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Change Detection in Teletraffic Models
Rittwik Jana and Subhrakanti Dey

Abstract—In this paper, we propose a likelihood-based ratio
test to detect distributional changes in common teletraffic models.
These include traditional models like the Markov modulated
Poisson process and processes exhibiting long range dependency,
in particular, Gaussian fractional ARIMA processes. A practical
approach is also developed for the case where the parameter after
the change is unknown. It is noticed that the algorithm is robust
enough to detect slight perturbations of the parameter value after
the change. A comprehensive set of numerical results including
results for the mean detection delay is provided.

Index Terms—Autoregressive integrated moving average,
change detection, long memory processes, Markov modulated
Poisson process.

I. INTRODUCTION

CHANGE detection algorithms have been studied exten-
sively for the past 50 years [1], [2]. Adaptive identification

algorithms can track only slow fluctuations of the characteristic
parameters and are not suited for detection of abrupt changes in
general. Detection of abrupt changes, however, is necessary in
many applications like fault detection in navigational systems,
onset detection in seismic signal processing, segmentation of
speech signals and congestion control of wide area computer
networks, etc. We are interested in the problem of online detec-
tion of an abrupt change, with the minimum delay in detection
with a constraint on the mean time between false alarms. Most of
the signals treated in [2] are time-series models (linear or non-
linear). Following techniques similar to [3], an online change
detection algorithm was developed in [4] for Markov-modulated
time-series models based on the cumulative sum (CUSUM)-like
test derived from Page’s test and the sequential probability ratio
test (SPRT) [5]. In this paper, we develop online change de-
tection algorithms based on a CUSUM-like procedure for tele-
traffic models, ranging from traditional models like Markov-
modulated Poisson process (MMPP) to a class of current self-
similar models proposed for internet traffic, specifically long-
memory time series models.

It is known that the CUSUM test is optimal in the sense that
it optimizes the worst mean delay in detection when the mean
time between false alarms goes to infinity [2]. The CUSUM al-
gorithm also gives the infimum of the worst mean delay for a
class of stopping times with preassigned rate of false alarms
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[2]. Simulations in [6] illustrated via a comparative study of
five algorithms (for a change in the mean of a Gaussian dis-
tribution) that the CUSUM algorithm is more robust and effi-
cient than the others. Optimal properties for the CUSUM algo-
rithm are discussed in detail in [2]. Since the idea of the test
is based on calculating the logarithm of the ratio of the condi-
tional likelihood functions before and after the change, we can
extend the CUSUM algorithm to the case of dependent obser-
vations (although initially it was designed for independent ob-
servations), where calculations of such likelihood functions are
possible (e.g., hidden Markov models [3] and Markov-modu-
lated time series [4]).

In this paper, we develop on-line change detection algorithms
based on the CUSUM-like test for teletraffic models. The first
model we treat is a traditional model for traffic data in com-
munication networks known as the Markov modulated Poisson
process (MMPP). It has been extensively used for modeling pro-
cesses like overflow from a finite trunk group and superposi-
tion of packetized voice processes and packet data (see [7] and
references therein). Although this model can account for time-
varying arrival rates and captures some of the important correla-
tions between interarrival times, it cannot model long-range de-
pendence (or long memory with hyberbolically decaying auto-
correlation functions arising as a striking feature of the so-called
“self-similarity”). Starting with the seminal paper [8], it was
shown in many other works that self-similarity existed in ATM
traffic, compressed digital video streams, and web traffic be-
tween browsers and servers (e.g., see [9]). Although self-sim-
ilarity is measured by the so-called Hurst parameter (taking
values between 0.5 and 1.0), it has been shown that high de-
grees of self-similarity (Hurst parameter0.7) have a detri-
mental effect on network performance, including packet loss
and queueing delay (see [9] and references therein). In addition,
increasing load on the Ethernet increases the degree of self-sim-
ilarity. In the context of multimedia traffic such as video and
voice with their diverse quality of service (QoS) requirements,
it is important therefore that the effect of self-similarity on in-
terconnected issues like queueing delay, packet loss, and buffer
sizes is well understood. Hence, the issue of detecting changes
in the degree of self-similarity is quite important in such appli-
cations. In this paper, we address this issue by developing online
change detection algorithms for a class of long-range dependent
processes, namely, Gaussian fractional ARIMA (FARIMA) pro-
cesses.

It is to be remembered, however, that these algorithms are
optimal when the parameters before and after the change are
exactly known. In most realistic situations, that is not the case
(e.g, network traffic). Although we can extend such methods
to generalized likelihood ratio (GLR) tests (assuming that the
parameters before the change are known but not so after the
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change), we can also develop more suboptimal methods by sub-
stituting the parameters before the change by their estimated
values and running a bank of change detection algorithms with
different assumed values for the parameters after the change.
Although the closest value will result in a better performance,
such algorithms are obviously computationally quite expen-
sive, particularly when the number of parameters is large. Note
also that such detection algorithms can potentially be made
adaptive. For a comparative study of three such algorithms in
the context of time series segmentation, see [10]. There are
also other designs of detection algorithms, based on the effi-
cient score (gradient of the log-likelihood function with respect
to the parameter vector) or, more generally, on alternative es-
timating functions (see [11]–[14] for some related robustness
issues). Analytical or even approximate computations of the
mean delay in detection and mean time between false alarms
are quite difficult in the case when the sequence of the test
statistic is not independent and identically distributed and will
not be considered in this paper for our algorithms except for
some simulation results.

II. SIGNAL MODELS

A. Markov-Modulated Poisson Process (MMPP)

An MMPP is a doubly stochastic Poisson process where the
rate of the Poisson process is modulated by the state of a Markov
chain. Let denote a finite
state, discrete-time, homogeneous Markov chain with a transi-
tion probability matrix , where

and initial probability distribution given by such
that The number of arrivals (e.g., of data
packets) in theth time slot is modeled by a Poisson process
and is denoted by The rate of arrival during theth time
slot is given by , where essentially, is modulated by
Let , where if

Define diag ,
where Due to the Poisson na-
ture of the process , we obviously have

The complete parameter space
for the MMPP is then characterized by The
problem at hand is to detect a change from one parameter space

to another Note
that the superscriptused later with the notations above, e.g.,
in , will usually identify the parameter space before or
after the change for , respectively.

B. Long-Memory Processes

By generalizing the well-known ARIMA models of
Box-Jenkins [15], it is possible to relax the degree of differ-
encing to any real value to model long-term persistence. In
what follows, we consider stationary fractional ARIMA pro-
cesses with and Gaussian innovations.

1) Fractional ARIMA: We formally define a
FARIMA process to be discrete-time stochastic
process represented as

(1)

where the operator is defined by

(2)

where is defined
for any real , and is the backward shift operator defined
by is a sequence of independent identically
distributed (i.i.d.) random variables. In this paper, we assume
is Gaussian distributed with mean 0 and variance unity.

When , the FARIMA(0,0,0) process is a white noise
with a constant spectral density. For , the
FARIMA process is stationary with long memory (for
a proof, see [16]). The correlations are all positive and decay
monotonically and hyperbolically to zero as the lag increases.
For the purpose of this work, we assume
since for , the process is not stationary, at least not in
the usual sense, since in this case, the usual definition of the
spectral density results in a nonintegrable function (see [16]).
When , the FARIMA process has
short memory since it can be shown [16] that the sum of all
correlations is zero. Note that the Hurst parameter is related
to by Hurst parameter 1/2. For , the
covariance function of is

(3)

and the correlation function

(4)

A more general model of the ARIMA family, namely
FARIMA , can be defined by a stochastic process
represented as

(5)

where is the fractional differencing operator,
, , and is a

white noise process. The effect ofon distant observations de-
cays hyperbolically as the lag increases, whereas the effects of

and parameters decay exponentially. Thus,may be chosen
to describe correlation in a time series between distant observa-
tions, whereas and describe the short-term correlation.

In practice, it is expected that the FARIMA processes
are likely to be of most interest whenand are small [17].
We will consider the simplest of such processes, namely,
FARIMA and FARIMA These two time series
are given by

(6)

(7)

To ensure stationarity and invertibility of , we assume
The covariance functions of the

FARIMA and FARIMA processes can be found
in [17] and are given in the Appendix.

III. ONLINE CHANGE DETECTION

Consider a sequence of i.i.d. random variableswith a prob-
ability density depending on a parameter space character-
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ized by . Before the unknown change time , the parameter
space is given by , and after the change, it is
Assuming that the parameter space and are completely
knowna priori, the problem is then to detect and estimate this
change in parameter. A CUSUM algorithm that uses the loga-
rithm of likelihood ratios to detect such a change was devised by
Page [1] in 1954. The key statistical properties of this ratio can
be summarized as follows. A change in the parameter space
is reflected as a change in the sign of the mean of the log-likeli-
hood ratio. Let The
typical behavior of shows a negative drift before change and
a positive drift after change. Although this test was originally
designed for an independent sequence , a similar CUSUM
like test can be designed for dependent sequences ofas
well [2]. This is based on measuring the ratio of the conditional
likelihood functions before and after the change. Note from [2]
that such a sequential CUSUM-like procedure in a manner sim-
ilar to Page’s recursive test can be written as a recursion in the
test statistic in the following manner:

(8)

where

(9)

As far as the change is concerned, the relevant information lies
in : the difference between the log-likelihood functions con-
ditioned on the parameter spaces and , respectively. The
key property that allows detectability in a CUSUM-like proce-
dure is To detect a change
from to , usually, a threshold is set such that a change
is detected when There are two quantities associated
with the detection: the mean time between false alarms and the
mean delay in detection. The general nature of these quantities
are that the mean time between false alarms increases approx-
imately exponentially with increasing values of the threshold,
and mean delay in detection increases approximately linearly
with increasing values of the threshold. These two properties
make the CUSUM test quite useful. Computation of the exact
conditional log-likelihood functions is possible (as shown in the
next section) for the MMPP process but not for long-memory
processes. Therefore, we resort to approximate computations
for long-memory processes.

A. MMPP

Consider an MMPP defined in Section II-A. Note that here,
we replace by the observation sequence Define the

following forward variable , where
obviously, such that the following recursion in
holds:

(10)

Remark 1: Note that in the right-hand side of the first equa-
tion in (10), is normalized to avoid numerical problems.

It is easy to show that according to the above recursion
(see the Appendix for a proof), is equal to the quantity

Then, it
easily follows that is given by

It is clear that we can now
perform computations of the test statistic as given by (8) and
(9).

B. Gaussian FARIMA

In this section, we show how we can extend the online
change detection algorithm for long-memory time series,
specifically, Gaussian FARIMA FARIMA and
FARIMA

1) Gaussian FARIMA : Let
be a -length sequence of observations from a Gaussian
FARIMA process with satisfying (1). For
the FARIMA , the parameter subject to change isFor
FARIMA , the parameters concerned are and for
FARIMA , they are We assume that the parameters
before and after the change are completely known. In the next
section, where we present simulation results, we consider a
practical suboptimal scheme for the case where the parameter
( in that particular case) is unknown after change. Next, we
describe how we can go about performing a CUSUM-like test
for long memory time series like those given by (1) and (7).

It is well known [16] that an exact likelihood computation of
a long-memory time series, e.g., FARIMA , is compu-
tationally prohibitive due to the covariance matrix being high
dimensional (for long time series) and often numerically un-
stable for certain values ofsuch that inverting the matrix might
be a problem. There are several ways to compute an approxi-
mate likelihood function like (“Whittle’s approximate MLE;”
see [18]). We take an alternative approach as given in [16].
Consider [1]. Assuming that the long-memory time series has
a causal linear representation, we could writeas

(11)

where is a sequence of i.i.d. innovations, and asymptotic
properties of the AR coefficients can be found in [16]. If
we knew the infinite past of given by , we could recon-
struct the sequence of i.i.d. innovations Instead of the
infinite past, if only a finite number of past values is observed,
the innovations can be estimated by
Here, we would further truncate the memory such that we only
consider past samples. This is to prevent growing compu-
tational needs with increasing length of the time series. In that
case, we represent by

(12)

where is the best linear prediction of , given
the past samples. For a FARIMA series, the predictor
taps are given by

(13)
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denotes the prediction error at time, where the
dependence on is explicitly shown. An approximate log-like-
lihood function can be calculated by [where

] [16], [19]

(14)

where the mean squared prediction error is
given by [19]

(15)

An approximate CUSUM-like test can now be devised (we
call it approximate because of the approximate log-likelihood
function) by computing in (9) by the logarithm of the ratio
of and , where

are the respectivevalues before and after the change.
It is not hard to see that this is given by (due to Bayes’ Theorem)

(16)

2) Gaussian FARIMA and FARIMA : The
online change detection algorithm is essentially based on
the computation of the approximate log-likelihood function
for both FARIMA and FARIMA These ap-
proximations are based on the best linear prediction of the
time-series given finite number of past samples. Hence, we can
repeat the same procedure [as done in the previous subsection
for Gaussian FARIMA ] to obtain the predictor taps, the
prediction error covariance, and finally, equations similar to
(14) and (16). We will need to use the covariance formulae for
FARIMA and FARIMA (see the Appendix),
and to compute the predictor taps recursively, we can use the
Levinson-Durbin algorithm [20].

We can potentially consider a case where the long-memory
processes like Gaussian FARIMA for nonzero or
can have Markov modulated AR or MA parameters. This is an
analytically hard problem and will be considered elsewhere.

IV. SIMULATION

In our simulations, the MMPP has an underlying Markov
chain that takes values in a 4-D state space. We assume that
the process changes from a parameter spaceto after
the first 1000 points and then changes back toafter another
1000 points. Different transition probability matrices and

were used, along with two different sets of rate of arrivals
of packets and (details are given in the Appendix). All
simulation results presented in this section are averaged over 50
realizations.

Fig. 1 shows the plot of the test statistic clearly showing the
changes at and Fig. 2 shows the corre-

Fig. 1. Change detection for a MMPP process.

Fig. 2. Delay in detection for a MMPP process. Plot of average
delay-threshold.

sponding mean delay in detection (averaged over 50 realiza-
tions) versus the detection thresholdAs the threshold is in-
creased, the time required to detect a discernible change in-
creases approximately linearly.

Figs. 3–5 show the change detection for long-memory
processes. The data for the FARIMA process was
generated using a statistical software package SPW, and
FARIMA and FARIMA were generated by
passing a FARIMA process through appropriate filters.
Each process was subdivided into three equal segments of
length 1000 such that the process changes fromto at

and back to from at In these simu-
lations, the memory of the approximate AR representation
for the long-memory processes (see (12)) was chosen to be
60. It was noticed that increasing it further did not result in a
substantial improvement in the performance of the detection
algorithms. As seen in Figs. 3–5, the detection schemes clearly
pick up the changes. Fig. 6 shows the delay in detection (aver-
aged over 50 realizations) for the FARIMA process of
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Fig. 3. Change detection for FARIMA(0; d; 0) process,d = 0:1
(t = 0 � � � 999); d = 0:3 (t = 1000 � � � 1999) and d = 0:1
(t = 2000 � � � 2999):

Fig. 4. Change detection for FARIMA(1; d; 0) process,d = 0:1; � = 0:2
(t = 0 � � � 999); d = 0:3; � = 0:4 (t = 1000 � � � 1999); d = 0:1;
� = 0:2 (t = 2000 � � � 2999):

Fig. 3, and as expected, the delay is seen to be approximately
linear in the detection threshold.

Next, we show some results where the parameter after the
change is assumed to be unknown. A practical online ap-
proach would be to run several change detection algorithms in
parallel with guessed values for If , which is the param-
eter before the change, is not known, we can substituteby
some estimated value. In this case, the detection algorithm is ex-
pected to perform well when the estimation error is small. It is
also well known that estimation of parameters of long-memory
processes is computationally quite expensive. However, there
are estimation schemes using approximate likelihood functions
that achieve almost sure convergence to the true value of the
parameter (e.g., ) at a rate of ( being the length of
the long memory time series) under certain regularity condi-
tions holding for the spectral density for stationary Gaussian

Fig. 5. Change detection for FARIMA(0; d; 1) process,d = 0:1; � = 0:2
(t = 0 � � � 999); d = 0:3; � = 0:4 (t = 1000 � � � 1999); d = 0:1;
� = 0:2 (t = 2000 � � � 2999):

Fig. 6. Delay in detection for FARIMA(0; d; 0) process,d = 0:1; (t =
0 � � � 999); d = 0:3; � = 0:4 (t = 1000 � � � 1999); d = 0:1; � = 0:2
(t = 2000 � � � 2999):

processes. For a discussion on this and associated robustness
issues, see [16]. In the case of unknown parameters before the
change, we therefore assume that the estimated values are suffi-
ciently “close” to the true parameter values before they are sub-
stituted for in the proposed change detection algorithm.

In what follows, we only concentrate on the case whereis
unknown. The following figures (Figs. 7–11) show the plots (for

of the test statistic for various “guesses” for for
such an algorithm. We investigate the proposed detection algo-
rithm using a filter bank with the FARIMA process. The
3000-sample long data sequence was generated using
for the first 1000 samples, for the next 1000, and back
to in the final section. It is readily seen that for slight
changes in assumed , the test statistic is more “jittery” and
has no clean transition boundaries at the time of change. More
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Fig. 7. Change detection for FARIMA(0; d; 0) process. TesteddK = 0:20:
Actual dK = 0:3:

Fig. 8. Change detection for FARIMA(0; d; 0) process. TesteddK = 0:25:
Actual dK = 0:3:

Fig. 9. Change detection for FARIMA(0; d; 0) process, TesteddK = 0:3;.
Actual dK = 0:3:

Fig. 10. Change detection for FARIMA(0; d; 0) process, TesteddK = 0:35;
Actual dK = 0:3:

Fig. 11. Change detection for FARIMA(0; d; 0) process. TesteddK = 0:40:
Actual dK = 0:3:

importantly, the average rate of change in the test statistic de-
creases for a branch assuming an incorrectthat is farther
away from the true Fig. 9 shows the change for the cor-
rectly assumed value (i.e., ). Note that for the other
branches, plateaus at a lesser value. Therefore, a higher slope
of increase in the values of the test-statistic and cleaner transi-
tions with less jitter are indicative of a better guess. However,
these are only empirical guidelines, and the complexity of this
algorithm obviously increases exponentially with the number of
parameters.

V. CONCLUSIONS

In this paper, we investigated the performance of a
CUSUM-like algorithm for detecting changes in traditional
teletraffic models such as MMPP’s and models proposed
more recently, such as long-memory processes, in particular,
Gaussian FARIMA processes. Simulations illustrate that the
detection algorithms perform well when the parameters before
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and after the change are known. In the (realistic) case of
unknown parameters after the change, our proposed scheme
with a bank of parallel change detection algorithms shows
high sensitivity to small variations in the parameters (after
the change), thus indicating the potential of such a scheme
when the number of parameters involved is small. Simulation
results are also presented for mean delays in detection for
these schemes. Research is currently underway for developing
change detection algorithms for long-memory time series
models with heavy-tailed non-Gaussian innovations, which are
believed to be responsible for the self-similar nature in ATM
and web traffic.

APPENDIX

Proof of (10): Define
In addition, define

It follows that for

(17)

Now

(18)

In addition,
Substituting this and (18) back in (17) and writing in matrix
notation, we get

(19)

Proceeding in a similar fashion, we can show that for any

(20)

Here, Now, since by definition
,

we can use (20) to obtain

(21)

Writing it in the matrix notation, we get(10) for
1) Simulation Details:Here, we provide the details of

for the simulations done to detect changes in
a MMPP.

2) Covariance Formulae for FARIMA and
FARIMA : The covariance of the FARIMA
process given by (7) is shown in (22) at the bottom of
the page, where is given by (3), and is the
hypergeometric function given by [17]

(23)

Similarly, the covariance of the FARIMA process
given by (7) is

(24)
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