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Complexity Reduction in Fixed-Lag Smoothing for
Hidden Markov Models

Louis Shue and Subhrakanti Dey, Member, IEEE

Abstract—In this paper, we investigate approximate smoothing
schemes for a class of hidden Markov models (HMMs), namely,
HMMs with underlying Markov chains that are nearly completely
decomposable. The objective is to obtain substantial computa-
tional savings. Our algorithm can not only be used to obtain
aggregate smoothed estimates but can be used also to obtain
systematically approximate full-order smoothed estimates with
computational savings and rigorous performance guarantees,
unlike many of the aggregation methods proposed earlier.

Index Terms—Hidden Markov model, nearly completely de-
composable, reduced-complexity, slow–fast decomposition, state
aggregation.

I. INTRODUCTION

H IDDEN Markov models (HMMs) are extremely useful for
modeling nonlinear physical phenomena. Although origi-

nally applied in speech recognition applications [1], signal pro-
cessing methods based on HMMs have been successfully ap-
plied in equalization of communication channels [2], time-se-
ries applications such as in econometrics and seismic studies
[3], biological signal processing, and many more areas. Most
of these methods heavily depend on generic signal processing
techniques such as state and parameter estimation algorithms.
It is well known that “filtering” and “smoothing” are the two
most important techniques for state estimation. In this paper,
we address the problem of smoothing for a class of HMMs with
underlying Markov chains that are “nearly completely decom-
posable.” The results presented in this paper are an extension of
the filtering results presented in [4].

Nearly completely decomposable Markov chains (NCDMCs)
are Markov chains with a readily identifiable hierarchical struc-
ture of two or more levels. Although, in various applications,
NCDMCs consist of a large number of states, the states of
NCDMCs can be easily grouped together in what we shall
term “super-states” [4], with strong interactions (i.e., high
probability of transition) within these super-states and weak
interactions between any two such super-states (i.e., small
probability of transition). In [5], applications of NCDMCs were
studied in queuing and computer systems. Further applications
can be found in production planning of manufacturing systems
[6], variable bit-rate video coding [7], multiple time-scale
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traffic modeling in communication networks [8], and many
other biological and physical systems where dynamics of
multiple rates are involved. Currently, investigations are un-
derway to develop image-enhanced tracking algorithms for
high-resolution radar applications with a large number of tar-
gets where NCDMCs are useful. While most previous work on
NCDMCs concentrated on fully observed systems, very little
work had been done (prior to [4]) on reduced-complexity state
estimation for partially observed NCDMCs (or in other words,
HMMs with underlying NCDMCs). Since, in many of the
above applications, the underlying NCDMCs are only observed
through noisy measurements, reduced-complexity filtering
and smoothing results for such partially observed NCDMCs
are indispensable. In this paper, we propose an approximate
smoothing algorithm for partially observed NCDMCs that
utilizes this hierarchical structure and provides estimates to
the conditional smoothed state probabilities but with a reduced
order of computations compared with if exact smoothing was
carried out.

NCDMCs have been extensively studied in [5], which consid-
ered NCDMCs (for a two-level hierarchy) with transition prob-
ability matrices of the form , where denotes
the total number of states, and is a small perturbation pa-
rameter. Here, is the identity matrix, and

...

where , , and 0 denotes zero
matrices of appropriate dimensions. Note that is also
row-stochastic, and rows of and sum to 0. We also make
the following assumption.

Assumption 1.1: and , are irreducible.
Typically, is much larger than , and thus, if ,

the chain decomposes into separate noninteracting Markov
chains. For small , the states can be clustered intogroups
such that there is strong interaction between the states in a given
group but weak interaction between the groups. Following [4],
we will term the groups the “super-states.” We denote the
state of the full Markov chain as , and the
th superstate is denoted by, . Without

loss of generality, let , and
, etc. Note that consequently, we have
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This weak coupling is crucial in obtaining computational sav-
ings in many estimation and control algorithms for Markovian
systems with underlying NCDMCs.

Previous research on NCDMCs has mostly concentrated on
obtaining approximations to the steady-state distributions of
these chains. Various approaches have been put forth to derive
from an aggregate version of smaller dimension, resulting
in schemes of [5] approximation or even the exact
distribution using stochastic complementation methods [9].
An iterative scheme to obtain approximations of (potentially)
arbitrary accuracy that avoids possible numerical ill-condi-
tioning was given in [10]. There have been several other studies
that contributed to the development of decomposition-aggre-
gation methods for obtaining reduced-order approximations
for uncontrolled [11], as well as controlled Markov chains
[12], [13]. A singular perturbation interpretation to Courtois’
aggregation is also given in [13]. The singular perturbation
approach to study aggregation of finite-state Markov chains has
also been studied in [14]–[16]. In [10], the aggregation method
developed is also used to obtain aggregation of the policy
iteration method in infinite-horizon optimal control of such
Markov chains. In summary, these works developed various
aggregation/decomposition schemes to obtain approximations
to steady-state distributions and hierarchical aggregation of
optimal control policies for such Markov chains. The problem
of the infinite horizon average cost control problem for such
Markov chains was also addressed in [17] and [18]. It was
shown that the optimal solution can be approximated by an
optimal solution to the so-calledlimit Markov control problem
for a sufficiently small . Algorithms were also provided to
achieve these control strategies.

Very few studies exist, however, on partially observed
NCDMCs. The state estimation of HMMs where the under-
lying Markov chain is an NCDMC was firstsystematically
investigated in [4], although some related studies can be found
in [19] and, more recently, in [20]. In [4], apart from the
structure inherent in NCDMCs, an additional assumption was
made on the observation probabilities. This assumption was
that the observation probabilities reflect the block structure
of the Markov states. That is, for a given observation symbol,
the state-to-observation transition probability is constant for
all states within the same super state. To state formally, let
the state-to-measurement mapping be given by the mea-
surement matrix , where ,

and , and denotes the
discrete observation at time. Following [4], we also make the
following assumption on to be used in this paper.

Assumption 1.2:
We make the following additional but standard assumption

on since otherwise, the measurements contain very little in-
formation of the Markov states.

Assumption 1.3:
The applicability of such block-structured observation

probability (as required by Assumption 1.2) matrices not only
lies in modeling of management systems (where top levels
of management are only interested in macro-behavior rather
than micro-behavior) but in real engineering applications like
distributed control environments, particularly with communi-

cation constraints, as well. For example, in an environment
where multiple sensors are sending information, it might not
be possible to send fine information due to bit-rate constraints,
and hence, it might just be practical to send coarser information
(e.g., information about the macro states). This may also be
of use in hierarchical control systems, where a controller
at one of the top levels of the hierarchy may not want fine
information since it may only want to control transitions from
one macro-state to another (e.g., the controller may want to
know that a failure has occurred and not what particular kind
of failure it is). It was demonstrated in [4] that substantial
computational savings can be obtained in calculating the
aggregate filtered estimates (approximate) via a decoupling
scheme for this class of HMMs. It was shown that one can
obtain approximation to the aggregate filtered estimates
with substantial savings. It was also seen that some aggregation
methods (including Courtois’ method) may be adapted to
obtain comparable results as far as aggregate filtered estimates
are concerned. However, the algorithm proposed in [4] can be
used to obtain approximation to the full-order filtered
state estimates, whereas none of the aggregation methods can
be adapted to achieve that. The computational savings in calcu-
lating approximate full-order estimates are also substantial if
the large-scale NCDMC has superstates with small individual
dimensions. All the results of [4] are also valid for a state-to-ob-
servation transition probability matrix that is a polynomial in
perturbation of the “slow” block-structured transition matrix.
However, obtaining reduced-order computations for the state
estimates for a general matrix is still an unsolved problem.

In this paper, we present reduced-complexity smoothing algo-
rithms for such partially observed NCDMCs. Following similar
techniques in [4], we do the following.

1) We provide a systematic method to obtain an
approximation to aggregate and full-order conditional
smoothed probabilities.

2) We show that using aggregation methods of [5] and [10],
one can obtain comparable approximations to the aggre-
gate estimates (in fact, Courtois’ method results in the
same approximation, as indicated originally for the
filtering results in [4]).

3) We perform comparative studies regarding computational
savings obtained in calculating full-order and aggregate
smoothed estimates.

The novelty of our contribution lies in the following.

1) Our method provides asystematicway to obtain
approximations to the full-order (not just aggregate)
smoothed estimates, whereas no aggregation method can
be adapted to achieve this.

2) Even though the aggregation methods of [5] and [10] can
be adapted to achieve comparable (and in some cases
better) approximations to the aggregate smoothed esti-
mates, they can becomead hocin certain cases, e.g., when
the state-to-observation transition probability matrix is a
small perturbation of the block-structured matrix (as dis-
cussed previously).

3) Unlike the filtering results of [4], the computational sav-
ings obtained in calculating the full-order approximate
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smoothed estimates are quite substantial compared with
exact calculations.

4) In a special case when the individual sub-Markov chains
identified by the super states (when ) are indepen-
dent and identically distributed (in this case, the state-to-
observation transition probability matrix has no restric-
tion on itself), one can obtain approximations to
the full-order and aggregate smoothed estimates. Notice
that no aggregation method can be adapted to achieve this.
This result is not explicitly included here but follows im-
mediately from similar filtering results in [4]. This obser-
vation is also a clear indication that our algorithm pro-
vides asystematicway of exploiting the system structure
in obtaining computational savings while providing rig-
orous performance bounds on the order of these approx-
imations.

In Section II, we describe the aggregate smoothing algorithm
followed by the approximate scheme in Section III. We illus-
trate the performance of the smoothing algorithm by some sim-
ulations and comparative studies in Section IV. Finally, some
concluding remarks are presented in Section V.

II. A GGREGATESMOOTHED ESTIMATES

A. Exact Smoothing Equations

To construct an HMM fixed-lag smoother, we proceed
similarly to [21] (which extends Kalman filtering results to
smoothing results) by constructing an augmented signal model,
consisting of the original Markov chain and a stateof which
the smoothed estimate is sought after. A filtered estimate of the
augmented model at time will then contain within it a
filtered estimate of the state as well as something equivalent
to a smoothed estimate of the original model at time.

Definition 2.1: For each , let
be an augmented state vector consisting of the

states of the original Markov chain at a fixed timeand a
variable time .

From Definition 2.1, it can be seen that can only assume
the values . It
follows (see [22] for details) then that the transition probability
matrix for such a Markov chain is , where denotes
Kronecker product. We will now argue that the output process

of the original HMM can also be regarded as the output
process of an HMM with state for . That is, suppose
that the output process associated withis the same as before
and, consequently, that ;
this means that the corresponding observation matrixfor the
augmented Markov chain is ,
where denotes a column vector of lengthwith all entries
equal to 1.

In the subsequent discussions, we will use the shorthand
to denote . Denote the filtered prob-
ability vector for as , with each component being

where . The recursion for this
probability vector is (see also [22])

(1)

where diag , where , and
. is a scalar

normalizing constant that ensures .
By definition, the th entry of the smoothed probability vector

at time with lag for the unaugmented HMM is just

Hence, the smoothed probability vector for the unaug-
mented HMM can be evaluated by summing appropriate terms
in the filtered probability vector for the augmented model

...

(2)

where is a normalizing constant, and

We have also used the property
.

Remark 2.1:Although (2) has been obtained from an
-state augmented system, by straightforward algebraic ma-

nipulations, we can rewrite it in a more compact form involving
products of matrices. That is, each component of the

can be written in terms of the corresponding filtered
estimate at time as

diag

B. Aggregate HMM Smoother

Let us consider, as in [10], the nonsingular transformation
such that , where
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and the th diagonal blocks in ,
, and are given as follows:

...
(3a)

(3b)

(3c)

(3d)

We note that the aggregate fixed-lag smoothed state estimates
can be represented as

(4)

where , and
.

We will now indicate the steps to obtain the aggre-
gate smoothed estimates using the transformation matrices
(3a)–(3d).

Step 1: Denote the product of with the th diagonal

block of as , with

and , where each is

We will now rewrite (1) in terms of and ,
. That is

or

(5)

Note that this recursion can also be written in two steps:

1)

(6)

where denote the unnormalized variables
for each .

2)

(7)

where it is easy to show that of (1) can be also
expressed as .

Step 2: At each , where denotes the smoothing
lag, the full-order smoothed probability vector is computed by
summing the contribution from each

(8)

where , and
.

Step 3: The aggregate smoothed probability vector is then
computed using (4). We then have

(9)

Remark 2.2:Similar to Remark 2.1, (6) and (7) can also be
written as

...

...

(10)

where

In [4], it has been shown that such calculations (for a fixed)
can be performed approximately by decoupling from .
The subsequent calculations (whether for aggregate or full-order
smoothed estimates) require a reduced number of computations
[as they only require recursive computations of

] and the estimates are of in approximation.
We will show a similar development in the next section.
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III. A PPROXIMATE AGGREGATESMOOTHER

In this section, we will adopt the decoupling transformation
technique as used in [4] to obtain approximate aggregate and
full-order smoothed state estimates.

As indicated in (10), for fixed and at each , the computa-
tion of involves only products of matrices.
We will now recall some results from [4] that are directly appli-
cable in the present situation. Denote the transformed variables
as given by

(11)

where it is trivial to demonstrate that

(12)

Here, is assumed to be (for the time being)
a sequence of uniformly bounded time-varying matrices to be
solved for. More rigorous statements will be made regarding the
uniform boundedness of later in this section.

Now, to simplify the notation, let us introduce the shorthand

(13)

where , ,
and , and the individual terms are

(14a)

(14b)

(14c)

(14d)

Using (11)–(13) [and writing only the-row of (10) for sim-
plicity], we have the following recursion:

(15)

where satisfies

(16)

Note that one can solve for recursively using (16), pro-
vided exists for all . However, this method
results in substantial computational requirements and defeats

the purpose of the original objective of this work. Under the
uniform boundedness assumption on, it is a common prac-
tice in singular perturbation literature [23] to expand as a
power series of : , where
is the solution to (16) when . One can iteratively compute

, etc., and truncate this power series at some finite
power of to obtain a desired order of accuracy for.

The first step in order to obtain recursive computations for
, etc., is to notice the following fact. Under As-

sumption 1.2, theth diagonal element in is if
and . Similarly, all the elements of theth diagonal block
in are scaled by if . Due to this simple
scaling property, can be written as a time-invariant
matrix . One can now rewrite (16) as

(17)

where .
As mentioned above, it is a usual practice in singular perturba-
tion literature to express the solution to (17) as

, where can again be written (under the uniform
boundedness assumption) as a power series in. It was shown
in [4] that satisfies the following recursion:

(18)

It was also shown in [4] that as , , where
(noting that is invertible

[10]). Since we are mainly interested in the solution to (17) as
, we can obtain an approximation to by re-

placing with . It was shown in [4] how one can
obtain reduced-complexity filtered state estimates using
this approximation to .

It would be appropriate here to make some comments about
the uniform boundedness of as a solution to (17). Denote
by the Frobenius norm for a matrix (note that this is a ma-
trix norm for a square matrix). Note that the uniform bound-
edness on demands that

, where , and
. It was shown that under some suffi-

cient conditions (which essentially indicate thatshould be suf-
ficiently small), one can guarantee that . For more de-
tails on these sufficient conditions and a rigorous proof of this
result, see [4].

One can similarly show from (17) (under the uniform bound-
edness assumption on ) that the recursion for is as fol-
lows:

(19)

where .
For a remark on the uniform boundedness of , see [4].

It will be clear presently that in order to reduce the number
of computations with an approximation to the smoothed
state estimates, we only need to consider solving for .
Higher order approximations to do not result in compu-
tational reductions. Later in this paper, we discuss how using

lets us obtain reduction in computations.
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TABLE I
COMPARISON OFNUMBER OF COMPUTATIONS FOREACH SMOOTHING SCHEME

First, however, notice that, from (15), one can rewrite the de-
coupled recursion for as

(20)

It is easy to show that under the following assumption (As-
sumption 3.1), as . For sufficient condi-
tions under which this assumption holds, see [4].

Assumption 3.1:The evolution
[namely, the recursion for in (15)], where
is exponentially stable.

The rate at which is determined by the fast eigen-
values of and how close they are to the origin.
It follows from Assumption 3.1 that there exists a large enough
but finite such that for , is of . Setting

for , consider the following
approximate recursions for :

(21)

It was shown in [4] how these recursions result in ap-
proximations to the exact recursions given by (7). Before we
summarize our results in the following theorem (Theorem 3.1),
we need to make one further assumption.

Assumption 3.2: is sufficiently small such that
uniformly in .

Remark 3.1:Note that Assumption 3.2 guarantees that the
normalization procedure does not alter the order of approxima-
tion of the unnormalized variables.

Without further ado, we present the main result of this paper
in the following theorem. The proof is not included here simply
because it is identical to that of a similar theorem (Theorem 1)
in [4]. It also follows easily from the previous discussions. Note
that in the statement of the theorem, it is implicitly assumed that
there is a uniformly bounded solution to (17), i.e., ,

is a sequence of uniformly bounded matrices. The sufficient
conditions for this uniform boundedness to hold are stated in
[4] and are not repeated here in the statement of the following
theorem.

Theorem 3.1:Consider a hidden Markov model with the
system matrices , as given in Section I. Suppose that
Assumptions 1.1, 1.2, 1.3, 3.1, and 3.2 hold. Consider the
exact smoothing recursions given by (6) and (7). Then, there

exists a large enough but finite such that , an
approximation to , is given by and ,

respectively, via (21) . Furthermore, for
, an approximation to the exact fixed-lag

smoothed estimate (which is denoted as ) is

given via (8) with , replaced by , ,
respectively, . Similarly, for , an

approximation to the exact aggregate smoothed estimate
is given by .

Finally, we note that the aggregate smoothed estimates can
also be obtained by using Courtois’ aggregate matrix and
the aggregate observation probability matrix of size . The
subsequent smoothed estimate can be obtained by substituting

(22a)

(22b)

for and , respectively, into (1) and (2) with other appropriate
changes in dimensions. Following [4], it can be shown that this
aggregation technique results in the same approximations
to the exact aggregate smoothed estimates. In fact, one can use
the aggregation technique of [10] to obtain aggregate smoothed
estimates, which happens to provide a slightly better approxi-
mation. It is also worth noting that the aggregate smoothed es-
timates obtained through using these aggregation techniques of
[5] or [10] require fewer computations than using the method
suggested in Theorem 3.1 (see also Table I).1

However, we emphasize the facts that 1) we cannot obtain
reduced-complexityfull-order smoothed estimates using any of
these aggregation techniques, and 2) we cannot easily extend
these aggregation ideas to the case where the state to observa-
tion transition probability matrix is a small perturbation of the
“block-structured” form, as specified by Assumption 1.2. In this
case, it was observed in [4] that some of the aggregation tech-
niques may becomead hoc. It is also worth noting that our algo-
rithm provides asystematicmethod of obtaining reduced-order
computations to aggregate as well as full-order smoothed es-
timates. It was shown in [4] that in a special case where the
sub-Markov chains given by are independent and
identically distributed (i.i.d.), our method can be used to obtain

approximations to the aggregate and full-order smoothed
estimates, whereas none of the aggregation techniques of [5] or
[10] can be adapted to achieve this.

We now indicate the savings in computations when the de-
coupling transformation is used with the assumption that the
matrices in (13) can be precomputed and stored in memory due

1We have only indicated the number of divisions required in principle for
normalization; in practice, more divisions are necessary to prevent numerical
underflows in the calculations.
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to the finite discrete nature of the observation process. The com-
parison of the savings in computations at eachfor a given
smoothing lag are given in Table I. Note that while for aggre-
gate smoothed estimates, an algorithm adapted from Courtois’
method require fewer computations, for full-order smoothed es-
timates, our algorithm provides a significant reduction in com-
putational requirements compared with exact calculations. The
aggregation methods (including Courtois’ method), of course,
cannot be adapted to compute full-order smoothed estimates.

In the next section, we provide a comparative simulation
study involving our algorithm and algorithms adapted from the
aggregation techniques in [5] and [10].

IV. SIMULATIONS

In this section, we will compare the exact full-order and
aggregate smoothed estimates with those obtained using our
decoupling scheme, as well as commenting on the results
obtainable from the aggregation schemes of [10] and [5]. The
results were obtained using 20 000 data points, averaged over
20 sets, with a fixed smoothing lag of 50. This smoothing
lag was chosen by noting that there was no significant im-
provement in smoothing performance when the lag exceeded
this value. The aim is to illustrate the claim of ap-
proximation that was made in Section III. The error criteria
used is (which is an estimate
of as ), where denotes the state
vector at time ; for the comparison of the various approxi-
mate schemes, is replaced by the approximate smoothed
probability vectors.

TABLE II
COMPARISON OF EXACT (FULL-ORDER) SMOOTHING

WITHDECOUPLINGSCHEME

We will use the same example as in [4], shown in
and at the bottom of the page.

The difference between exact and approximate smoothing
using our decoupling scheme is shown in Table II. A com-
parison of the approximate methods is tabulated in Table III.
It is seen that as far as aggregate smoothed estimates are
concerned, our decoupling method results in the same per-
formance as a method adapted from Courtois’ aggregation
procedure. The approximation can be clearly seen in
Fig. 1. However, the aggregation matrix of Aldhaheri/Khalil is
seen to consistently outperform our method by small amounts.
Nevertheless, we reiterate that our algorithm is asystematic
method for computing aggregate conditional densities with
reduced-order computations. While other aggregation methods
can be adapted to achieve comparable approximations to the
aggregate smoothed estimates, this fact, along with the order
of approximation achievable [ for an adapted version
of Courtois’ method] has not been established anywhere else.
Furthermore, our method offers the provision of computing the
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TABLE III
AVERAGE APPROXIMATION ERROR OFVARIOUS AGGREGATESMOOTHING

SCHEMESRELATIVE TO EXACT AGGREGATESMOOTHING

Fig. 1. Aggregate smoothing via decoupling relative to the exact aggregate
smoothing.

full-order estimates, whereas the aggregation methods cannot
be extended to achieve such full-order computations. It was
also shown in [4] that for a special class of these HMMs, when
the underlying NCDMC is i.i.d [i.e., has identical
rows for each ], then one can obtain to the aggregate
filtered estimates with large computational savings using our
method, whereas none of the aggregation methods discussed
here can be adapted to achieve such savings. Such results also
hold for smoothing. We do not include any simulation results
here, but for similar filtering results, see [4].

V. CONCLUSIONS

In this paper, we propose an algorithm for obtaining approx-
imate smoothed state estimates for a class of HMMs with (pos-
sibly large-scale) underlying NCDMCs. These approximations
are of order , and they result in substantial computational
savings.
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