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a b s t r a c t

This paper considers a sensor network where single or multiple sensors amplify and forward their
measurements of a common linear dynamical system (analog uncoded transmission) to a remote fusion
center via noisy fading wireless channels. We show that the expected error covariance (with respect to
the fading process) of the time-varying Kalman filter is bounded and converges to a steady state value,
based on some earlier results on asymptotic stability of Kalman filters with random parameters. More
importantly, we provide explicit expressions for sequences which can be used as upper bounds on the
expected error covariance, for specific instances of fading distributions and scalar measurements (per
sensor). Numerical results illustrate the effectiveness of these bounds.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to a recent steady growth of activity in wireless sensor net-
works with a large number of nodes monitoring an environment/
object in various applications, multi-sensor based estimation of
random processes under limited resources and communication
constraints has led to new challenging filtering problems. In par-
ticular, estimation of dynamical systems based on observations re-
ceived from multiple sensors under these constraints is known to
be a potentially hard problem, especially in the case of data net-
works connecting the sensors to the remote fusion center (FC),
where the estimation algorithm is implemented. Delay and/or
communication outage (or measurement loss) in such networks
can give rise to instability in the average estimation error at the FC.
Instead of using a digital data network between a sensor and the FC,
an alternative approach is to use uncoded transmissionwhere each
sensor simply amplifies and forwards its measurement to the FC
using analog communication. It was shown in Gastpar and Vetterli
(2003) that, for a Gaussian sensor network, wheremultiple sensors
observe a Gaussian source, such an amplify and forward protocol
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combined with a perfectly synchronized simultaneous transmi-
ssion from the sensors (resulting in a coherent addition of tran-
smitted signals at the FC) leads to an asymptotically optimal
estimation (based on minimum mean square estimation) at the
FC, in that the estimation error at the FC decays as 1/M for a suf-
ficiently large M where M is the number of sensors, as opposed
to digital transmission (with separate source and channel coding)
where the estimation error decays as 1/ logM . Furthermore, an
uncoded analog transmission system is simple to implement and
results in little delay. Motivated by these results, we focus on a
similar amplify and forward strategy based sensor network esti-
mating a linear dynamical system. In this scenario, the sensors sim-
ply amplify and forward their measurements of the linear system
to a remote FC via randomly time-varying fading channels, where
they are received in noise. The optimal state estimation filter at
the fusion center (with perfect knowledge of the fading channel
gains at the FC) is still a (time-varying) Kalman filter where the er-
ror covariance is given by a Riccati difference equation, albeit with
random fading parameters. Studying the asymptotic stability prop-
erties of this random parameter Riccati equation in terms of the
average (over the fading process) error covariance is themain pur-
pose of this paper. In addition, we provide concrete results on how
to obtain deterministic and asymptotically convergent bounding
sequences on the average error covarianceswhich are hard to com-
pute analytically.
The topic of stability analysis of time-varying and random

parameter Riccati equations is not new. Early results on detectabil-
ity and stabilizability of time-varying systems include Anderson
and Moore (1981) and Jazwinski (1970), though strong uniformity
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conditions which are difficult to verify have to be satisfied. Less re-
strictive conditions are considered in Bougerol (1993, 1995), and
asymptotic properties studied. The results obtained include the al-
most sure exponential stability of the Kalman filter, and the exis-
tence of a unique stationary distribution for the error covariance.
A suboptimal linear filter using only channel statistics is derived
and analyzed in Rajasekaran, Satyanarayana, and Srinath (1971)
and Tugnait (1981) for the so-called linear systems with ‘‘multi-
plicative noise’’ (the system model in this paper is similar to this).
However, for unstable systems, the error covariance of this esti-
mator becomes unbounded. Studies of the stability of the Kalman
filter via expectation of the error covariance was done in Sinop-
oli et al. (2004) for measurement losses (over a single commu-
nication link) undergoing a Bernoulli process, and showed the
existence of a threshold such that, if the measurement arrival rate
lies below this threshold, then the expected error covariance be-
comes unbounded. These results were extended in various direc-
tions: to Markovian measurement loss processes in Huang and
Dey (2007) and Xie and Xie (2008), to a network of communi-
cation links in Dana, Gupta, Hespanha, Hassibi, andMurray (2007),
to communication links with controlled transmission schemes
in Xu and Hespanha (2005), and to multiple sensors sharing a
multi-access channel in Zhu, Sinopoli, Poolla, and Sastry (2007).
In all these papers, the results focus on finding the threshold (or
bounds thereof) on the measurement arrival probability, below
which the expected error covariance becomes unbounded. For
continuous fading distributions, an analysis of the average error
covariance for scalar systems and Rayleigh fading can be found
in Mostofi and Murray (2005), where it is found that the expected
error covariance is always bounded. Stability of random Riccati
equations was also studied in Yuan and Guo (1999) under a certain
stochastic observability condition, and some boundedness condi-
tions on the randommatrices in the system model.
In this paper, we study a linear system (in particular for unsta-

ble systems), the noisy observations (via single or multiple sen-
sors) of which are being sent over independent and identically
distributed block-fading channels to a remote FC. Using some
rather general asymptotic stability results for linear systems with
ergodic parameters from Bougerol (1995), we show that, under
somemild conditions, the expected (with respect to the fading pro-
cess) error covariancematrix of the Kalman filter remains bounded
and converges to a steady state matrix from arbitrary positive
semidefinitematrix initial conditions. This result is in contrastwith
the recent results in Sinopoli et al. (2004) which show that the
expected error covariance matrix for unstable systems in a sit-
uation where measurements can be lost with a non-zero proba-
bility can become unbounded if this loss probability exceeds a
certain threshold. While this observation may not be surprising
from the results and discussions in Bougerol (1995), Mostofi and
Murray (2005) and Yuan and Guo (1999), we believe that this ob-
servation needs to be made in a general sense. In addition, for
special cases of vector state and scalar measurements, and scalar
state and measurements (for both single sensor and multiple sen-
sor scenarios), and specific fading distributions, we provide ex-
plicit bounding matrix (or scalar) sequences that overbounds the
expected error covariance matrix and also converges to a steady
state value. These bounds provide a simple way to compute realis-
tic (and often quite tight) bounds on the expected error covariance,
and can be quite useful in situations when one wants to minimize
the expected error covariance for such sensor network based es-
timation problems to optimally allocate resources across multiple
sensors. When an exact recursive expression for the average error
covariance is not available, one can minimize its upper bound in-
stead, for which we provide exact recursive formulas. Problems of
this nature can be solved by dynamic programming techniques and
will be addressed elsewhere.
The rest of the paper is organized as follows. Section 2 presents

the various signal models treated in this paper and states the
assumptions under which we prove our results. Section 3 presents
the convergence results for the various signal models and the re-
sults on the bounding sequences, along with numerical illustra-
tions. Finally, Section 4 concludes the paper with some discussion
on future research. Proofs are relegated to theAppendix unless oth-
erwise stated.

2. Systemmodel

We consider a discrete-time linear time invariant system that
represents a phenomenon of interest (for example, the trajectory
of a moving object) given by

xk+1 = Axk + wk (1)

where xk ∈ Rn, wk ∈ Rn, A ∈ Rn×n. We assume that {wk} is
white1 and follows a Gaussian distribution with zero mean and
variance Σw > 0. Note here that a matrix V > 0 implies that V is
a positive definite matrix. Similarly, V ≥ 0 implies V is a positive
semidefinite matrix. We also assume that the initial distribution
of x0 is Gaussian with mean zero and covariance matrix P0 ≥ 0.
Note that, in thiswork,we allowA to be an unstablematrix. Indeed,
the results presented in this paper are interesting only when A is
unstable, as in Sinopoli et al. (2004).
This system is observed by a sensor or a number of sensors

which yield discrete-timemeasurements of the state of the system.
These measurements are then sent over a wireless medium to a
central processing unit called the Fusion Centre (FC). We assume
that the sensors use analog forwarding as in Gastpar and Vetterli
(2003) to send the measurements to the FC, i.e, they simply
amplify and forward their measurements to the FC. Due to the
randomly time-varying nature of thewirelessmedium, the FC then
receives faded versions of all the measurements in additive noise
either separately (orthogonal access) or as a sum of all received
measurements in noise (non-orthogonal access). We consider the
single sensor and multiple sensor cases separately.

2.1. Single sensor case

In this case, the linear time invariant system (1) is observed by
a single sensor which produces a discrete-time measurement yk
which is given by

yk = Cxk + vk (2)

where yk ∈ Rm, vk ∈ Rm, C ∈ Rm×n. We assume that {vk} is white
and Gaussian distributed with zero mean and variance Σv > 0.
Denoting the ith element of the measurement and measurement
noise vectors as yik and v

i
k respectively where i = 1, 2, . . . ,m,

we assume that the sensor transmitter amplifies the component
yik by a factor α

i
k and sends it to the FC over a fading channel

with channel gain hk,i. We assume that the channel undergoes
slow fading such that the phase of the complex channel can be
estimated and compensated for at the receiver, so that essentially
hk,i represents the real-valued envelope of the complex channel
gain. We also assume that the channel gain remains constant over
the time interval to send the ith component, i = 1, 2, . . . ,m
but one can have hk,i 6= hk,j for i 6= j and i, j ∈ {1, 2, . . . ,m}.
This assumption is valid when each measurement interval is
much larger than the coherence time of the fading channel,
which is likely to be the case in low bandwidth sensor network
applications. Denoting hk = (hk,1 hk,2 . . . hk,m), we also assume
that hk is independently and identically distributed according to a
continuous fading distribution f (h) such that P(hk,i > 0) = 1,
∀k, i.

1 We say that a discrete-time process {wk} is white ifwk andwl are independent
for k 6= l.
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The FC receives a scaled version of each component of the mea-
surement vector added with measurement noise, in additive noise
at the FC, which represents the channel noise in the communica-
tion channel between the sensor and the FC.We assume that all the
measurement components are sent separately to the FC via orthog-
onal channels within the measurement time interval. The received
signal vector at the FC then can be written as

zk = HkCxk + Hkvk + nk (3)

where Hk = diag(α1khk,1 α2khk,2 . . . α
m
k hk,m) and nk = (n1k n

2
k

. . . nmk )
′ represents the channel noise vector. For simplicity, we as-

sume that {nik}, {n
j
k} are mutually independent for i 6= j and n

i
k is

Gaussian distributed with zero mean and variance σ 2ni ,∀k. Thus,
nk is identically Gaussian distributed with zero mean and variance
Σn = diag(σ 2n1 σ

2
n2 . . . σ

2
nm). We also assume that {nk} is white and

x0, {hk}, {vk}, {wk} and {nk} are mutually independent.
For simplicity we will also assume that αik = 1 for all i =

1, 2, . . . ,m and for all k = 1, 2, . . .. Note that, when the state
space model (1) is stable, αik is usually chosen to satisfy the power
constraint at the sensor transmitter. However, for the unstable
case, this choicewillmakeαik → 0 as k→∞.We therefore choose
αik = 1,∀i, k although this will require the sensor transmitter to
transmit with exponentially increasing power. This is justified by
the fact that the expected error covariance matrix converges to
a bounded matrix (as seen later through numerical simulations)
reasonably fast, thus making the results derived in this paper
meaningful, even within a finite time horizon during which the
sensor transmitter powerwill remain bounded. In Bougerol (1995),
it was shown that the error covariance matrix, starting from
an arbitrary positive semidefinite matrix as the initial condition,
converges to a stationary process exponentially fast (see also
Lemma 3.2). However, an analytic computation of the rate of
convergence for these results will hinge on a Lyapunov exponent
analysis of products of random matrices and is beyond the scope
of this paper.
With the assumption that αik = 1,∀i, k, we now have Hk =

diag(hk,1 hk,2 . . . hk,m). The overall state-space model for this
system can now be written as

xk+1 = Axk + wk, zk = HkCxk + v̄k (4)

where v̄k = Hkvk+nk. SinceHk is a diagonalmatrix, it is easy to see
that v̄k is Gaussian distributed with zero mean and time-varying
covariance matrix Rk = HkΣvHk +Σn.

Assumption 2.1. We make the standard assumption that the pair

(A,Σ
1
2
w ) is stabilizable and the pair (A, C) is detectable.

For technical reasons, in order to use some results from Bougerol
(1995) later,2 we will also make the assumption:

Assumption 2.2. (i) A is invertible.
(ii) max(0, log ‖H0C‖) is integrable.
(iii) {Hk} is stationary and ergodic.

For discrete time systems which are obtained by discretizing a
continuous time system, Assumption 2.2(i) will be satisfied (see
e.g. Chan, Goodwin, & Sin, 1984). Assumption 2.2(ii) is also
satisfied by commonly used fading distributions such as Rayleigh

2 The model (4) does not quite correspond to the model of Bougerol (1995),
in that Σw is not the identity matrix and Rk is time-varying. But if we let x̆k =
Σ
−1/2
w xk , Ă = Σ

−1/2
w AΣ1/2w , w̆k = Σ

−1/2
w wk , C̆k = (HkΣvHk + Σn)−1/2HkCΣ

1/2
w ,

v̆k = (HkΣvHk +Σn)−1/2(Hkvk + nk), z̆k = (HkΣvHk +Σn)−1/2zk , we then end up
with the model x̆k+1 = Ăx̆k + w̆k , z̆k = C̆k x̆k + v̆k , with w̆k and v̆k both having unit
covariance.
or Nakagami. Assumption 2.2(iii) is automatically satisfied since
we assumed {Hk} to be i.i.d., though the results of Bougerol
(1995) can also hold in more general cases where the channel has
memory.
In what follows, we will also consider several special cases of

the above general model (4). In particular, we will consider the
following scalar state/scalar measurement model:

xk+1 = axk + wk, zk = hkxk + hkvk + nk (5)

where xk, zk, wk, vk, nk are all scalar random processes (withwk ∼
N(0, σ 2w), vk ∼ N(0, σ

2
v ), nk ∼ N(0, σ

2
n )). We have taken c = 1

without loss of any generality, as both sides can be scaled by c to
obtain the model described above. Just as before, we assume that
{hk} is a sequence of i.i.d random variables distributed according to
a continuous fading distribution f (h) such that P(hk > 0) = 1, ∀k.
In addition, wewill consider a vector state/scalar measurement

model for the single-sensor case given by

xk+1 = Axk + wk, zk = hkc̄xk + hkvk + nk (6)

where c̄ ∈ R1×n is given by c̄ = (c̄1, c̄2, . . . , c̄n) and vk, nk are
scalars, where xk, wk follow the same model as in (4), and nk, {hk}
are described by the same models as in (5).

2.2. Multisensor case

In the multisensor case, we assume that the dynamical process
(1) is observed byM sensors each producing a scalarmeasurement.
While the general results on convergence and bounds derived in
the next section for the single sensor case can be extended to the
multisensor case, for simplicity, we stick to a scalar state and scalar
measurement (per sensor) model. The sensors can then commu-
nicate their measurements to the FC via either a multi-access
channel (Gastpar & Vetterli, 2003) (where all sensors transmit si-
multaneously without the time/frequency division multiplexing)
or via orthogonal channels (Cui, Xiao, Goldsmith, Luo, & Poor,
2007).
In the multi-access scheme, we assume that the phase shift

in each channel is compensated by distributed transmit beamfor-
ming, so that themeasurements fromall sensors add up coherently
at the FC. Note that although this may be difficult to implement
in practice, especially for large sensor networks, it can still be
achieved by the distributed synchronization scheme described
inMudumbai, Barriac, andMadhow (2007). Additionally, in studies
such as Li and Dai (2007) it has been shown, in slightly different
contexts, that, for moderate amounts of phase error, much of the
potential performance gains can still be retained. Mathematically,
the signal model for the multisensor multi-access scheme is given
by

xk+1 = axk + wk, zk =
M∑
i=1

hk,i(cixk + vik)+ nk. (7)

We assume that vik ∼ N(0, σ 2vi), nk ∼ N(0, σ 2n ) and {v
i
k}, {v

j
k}

are mutually independent for i 6= j, i, j ∈ {1, 2, . . . ,M}.
Similarly, {hk,i}, {hk,j} are statistically independent for i 6=
j, i, j ∈ {1, 2, . . . ,M}. Note that hk,i may not be identically
distributed for all i. Due to the distributed transmit beamforming
assumption, note that hk,i,∀i denotes the non-negative channel
fading amplitude. We also assume here that ci > 0 for all sensors
without loss of generality. Note that if cl for sensor l is negative, one
can choose the amplification factor for this sensor as −1 instead
of 1. This assumption is there to ensure that the distributed
transmit beamforming scheme works effectively.
In the orthogonal access scheme, the FC simply receives a

vector consisting of the individual fadedmeasurements fromall the
sensors. We can write the signal model as

xk+1 = axk + wk, z ik = hk,icixk + hk,iv
i
k + n

i
k (8)
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for i = 1, . . . ,M , where z ik denotes the received signal (at the FC)
from the ith sensor and nik is the channel noise for the ith sensor’s
channel. In this case, the FC observation consists of the vector
(z1k , z

2
k , . . . , z

M
k )
′ and the other modelling assumptions regarding

{hk,i}, vik remain the same as in (7). n
i
k is independently and

identically distributed with N(0, σ 2ni) and {n
i
k}, {n

j
k} are mutually

independent for i 6= j. The mutual independence assumption
amongst x0 and the various noise processes remains the same as
before. Note that unlike (7) however, there is no need to assume
ci > 0,∀i in this case.

3. Convergence results and bounds on the expected error
covariance matrix

In this section, we present some convergence and boundedness
results on the average (over the channel fading distribution) error
covariance matrix for the optimal one step ahead predictor for
the vector state vector measurement system (4). Later, we will
specialize these results for the various cases given by (5), (6) for
the single sensor case and (7) and (8) for the multisensor case,
for specific fading distributions. Using the knowledge of these
distributions and inequalities involving some special functions, we
derive more specific bounds for these cases.
We assume that the FC has full knowledge of the system ma-

trices and noise covariances, including the time-varying channel
fading matrices Hk. The above state-space model (4) is a linear
time-varying system and the optimal predictor (filter) for this sys-
tem is a time-varying Kalman predictor (filter), that can be con-
structed at the FC. Denote Zk = (z0, z1, . . . , zk) and Hk = (H0,
H1, . . . ,Hk), and define the one step ahead optimal predictor and
its error covariance as

x̂k+1|k = E[xk+1|Zk,Hk]

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)′|Zk,Hk] (9)

where ′ denotes the transpose operation. In the following, we will
use the shorthand notation Pk+1 for Pk+1|k. Using the time-varying
Kalman filtering equations, one can easily derive that the predic-
tion error covariancematrix Pk satisfies the following discrete-time
time-varying Riccati equation:

Pk+1 = A[Pk − PkC ′Hk(HkCPkC ′Hk + Rk)−1HkCPk]A′ +Σw (10)

with Rk = HkΣvHk + Σn. It is straightforward to show that the
above equation can be rewritten as

Pk+1 = A[Pk − PkC ′(L−1k + CPkC
′
+Σv)

−1CPk]A′ +Σw (11)

where Lk = HkΣ−1n Hk. It can be easily shown that, starting with
any P0 ≥ 0, one retains the positive semidefinite nature for all Pk,
see e.g. Anderson and Moore (1979).

Remark 1. Note that herewemake the assumption that the fading
parameters Hk are perfectly known at the FC. This is a fairly
common assumption in the wireless communication community,
also known as channel state information at the receiver (CSIR). For
a slow fading channel, as assumed here, channel estimation can be
carried out at the FC by periodically sending powerful pilot signals
to the sensors which allow the sensors to compute the channel
gains and send them as overhead information to the FC. Note also
that, here, the channel from the FC to each sensor is assumed
to be identical to that from the sensor to the FC. This is known
as channel reciprocity, and holds for systems where information
is communicated between the transmitter and receiver using the
same frequency but at different time slots (known as time division
duplex (TDD) protocol).
It should be obvious that EHk [Pk+1] = EHk−1 [G(Pk)] where the
expectation is takenwith respect to the channel realization history
Hk = {H1,H2, . . . ,Hk}, and

G(Pk) = EHk
[
A[Pk − PkC ′(L−1k + CPkC

′
+Σv)

−1CPk]A′ +Σw|Pk
]

= A[Pk − PkC ′EHk [(L
−1
k + CPkC

′
+Σv)

−1
]CPk]A′ +Σw (12)

where the last line in the above equation follows due to the
fact that Pk is adapted to Hk−1 and {Hk} is a sequence of i.i.d
random matrices. Below, for notational simplicity, we will drop
the subscript from the expectation operator whenever the random
process over which the expectation is taken is obvious from the
context. Define the space of n×n positive semidefinite matrices as
Sn. Then we have the following property for G : Sn → Sn,

Lemma 3.1. The matrix-valued function G(X) is a concave non-
decreasing function of X ∈ Sn.

See Appendix A for the proof.
Now, given (A, C) is a detectable pair, it is easy to show that

so is (A,HkC) for Hk invertible, i.e. hk,i > 0,∀i. Then (A,HkC)
is an almost surely weakly detectable pair (for the definition of
almost sure weak detectability, see definition 2.4 of Bougerol,
1995). Thus, under Assumptions 2.1 and 2.2, all the conditions of
Theorem 5.6 of Bougerol (1995) are satisfied. It then follows that
the Kalman filter (the error covariance of which is defined by the
time-varying Riccati equation (10)) is almost surely exponentially
stable. This essentially implies that (starting from any P0 ∈ Sn),
if the gain matrix associated with (10) is denoted as K̄k =
APkC ′Hk(HkCPkC ′Hk + Rk)−1, then the sequence {M̄k = A −
K̄kHkC, k ∈ N} is almost surely exponentially stable. This definition
of almost sure exponential stability for a sequence of random
matrices defined on a probability space (Ω,F ,P ) is given by the
following property (see definition 1.1 of Bougerol, 1995): for any
ε > 0 and almost all ω ∈ Ω , there exists γ > 0 and J(ω) > 0 such
that

‖M̄k−1(ω)M̄k−2(ω) . . . M̄k−n(ω)‖ ≤ J(ω)e−nγ e(|k|+n)ε

for all k and ∀n ≥ 1.
Next we present a convergence result for E[Pk] as k→∞.

Lemma 3.2. Staring with any P0 ∈ Sn, E[Pk] converges to a bounded
matrix 0∗ ∈ Sn, where Pk satisfies the discrete-time Riccati equations
(11).

Proof. As stated above, we can easily verify that the notions
of weakly stabilizable and weakly detectable almost surely, in-
troduced in Bougerol (1995) are satisfied. Then by Theorem 5.1
of Bougerol (1995), we know that there exists a unique stationary
process {P̄k}, with E[P̄k] constant ∀k. That E[P̄k] ≡ 0∗ is bounded
follows from equation (9) of Bougerol (1995), by setting e.g. n = 0
to give a bound on P̄0.3 Furthermore, Theorem 5.3 of Bougerol
(1995) shows that {Pk} starting from any initial condition P0 is ex-
ponentially convergent to the stationary process {P̄k}. Hence E[Pk]
starting from any P0 will also converge to E[P̄k] = 0∗ as k → ∞.

�

In general, analytically evaluating E[Pk] is difficult. Furthermore,
even though E[Pk] will be bounded, it is not clear how one can
obtain explicit upper bounds for arbitrary fading distributions.
We now provide a result on a sequence of deterministic posi-
tive semidefinitematrices that overbounds E[Pk],∀k, and also con-
verges to a limit as k → ∞. Note that Pk+1 can be regarded as a
function of Pk and Hk, so we can write

E[Pk+1] = EHk [E[APkA
′
− APkC ′(L−1k + CPkC

′
+Σv)

−1

× CPkA′ +Σw|Hk]].

3 Boundedness of E[Pk] can also be shown by using Theorem 3.3.



S. Dey et al. / Automatica 45 (2009) 2223–2233 2227
Denote Vk = E[Pk]. Then, by concavity,

Vk+1 ≤ EHk [AVkA
′
− AVkC ′(L−1k + CVkC

′
+Σv)

−1

× CVkA′ +Σw]. (13)

We have:

Theorem 3.3. For the state space model (4), let {Zk} be defined by

Zk+1 = EHk [AZkA
′
− AZkC ′(L−1k + CZkC

′
+Σv)

−1

× CZkA′ +Σw] (14)

where Z0 = E[P0], Lk = HkΣ−1n Hk, and the components of the
diagonal matrix Hk are independent and identically distributed with
continuous distributions. Then E[Pk] = Vk ≤ Zk, and Zk → Z∗ as
k → ∞, where Z∗ is the unique fixed point of the recursion (14).
E[Pk] starting from E[P0] = V0 converges to a limiting value 0∗ such
that 0∗ ≤ Z∗.

See Appendix B for the proof.
The bounding matrix sequence {Zk} mentioned above is still

difficult to compute in general due to the difficulty of explicitly
evaluating the expectation (with respect to the fading gain matrix
Hk) of the nonlinear term in the right hand side of Eq. (14). In
the next few sections, we show how one can calculate (where
evaluating the above expectation is possible) precise bounds
for particular cases of systems (e.g, scalar systems, systems
with vector states and scalar measurements, and in the case of
multisensor systems—scalar state and scalar measurements) along
with given fading distribution(s) for the channel(s) connecting the
sensor(s) to the FC.

3.1. Single sensor: Scalar state and measurement

In this section, we consider the scalar state and measurement
model for a single sensor, given by (5). Specializing the error-
covariance notation Pk to pk for the scalar case, it is straightforward
to show that pk satisfies the following scalar discrete-time Riccati
equation:

pk+1 = σ 2w +
a2pk(h2kσ

2
v + σ

2
n )

h2k(pk + σ 2v )+ σ 2n
. (15)

Denoting h2k by r , where the time index k has been removed as {hk}
is a sequence of i.i.d. random variables, we have as a special case
of (13)

γk+1 ≤ σ
2
w + a

2Er

[
γk(rσ 2v + σ

2
n )

r(γk + σ 2v )+ σ 2n

]
(16)

where γk = E[pk]. In order to establish precise upper bounds on
E[pk] as k → ∞, we consider two specific fading distributions,
namely Rayleigh fading and Nakagami fading.

3.1.1. Rayleigh fading
In this case r is exponentially distributedwithmean 1

λ
such that

r ∼ λ exp(−λr). It can then be easily shown that

Er

[
γk(rσ 2v + σ

2
n )

r(γk + σ 2v )+ σ 2n

]
=

γkσ
2
v

γk + σ 2v
Er

 r + σ 2n
σ 2v

r + σ 2n
γk+σ

2
v


=

γk

γk + σ 2v

[
σ 2v +

λσ 2n γk

γk + σ 2v
emkE1(mk)

]
wheremk =

λσ 2n
γk+σ

2
v
and exE1(x) =

∫
∞

0
e−u
u+xdu, with E1(x) being the

exponential integral E1(x) =
∫
∞

x
e−t
t dt . Hence

γk+1 ≤ σ
2
w +

a2γk
γk + σ 2v

[
σ 2v +

λσ 2n γk

γk + σ 2v
emkE1(mk)

]
.

Using the inequality exE1(x) < ln
(
1+ 1

x

)
, one can then write

γk+1 ≤ σ
2
w +

a2γk
γk + σ 2v

[
σ 2v +

λσ 2n γk

γk + σ 2v
ln
(
1+

γk + σ
2
v

λσ 2n

)]
≤ σ 2w + a

2
[
σ 2v + λσ

2
n ln

(
1+

γk + σ
2
v

λσ 2n

)]
.

We will now define two new sequences {sk}, {qk} such that

sk+1 = σ 2w +
a2sk
sk + σ 2v

[
σ 2v +

λσ 2n sk
sk + σ 2v

exp
(

λσ 2n

sk + σ 2v

)
× E1

(
λσ 2n

sk + σ 2v

)]
(17)

qk+1 = σ 2w + a
2
[
σ 2v + λσ

2
n ln

(
1+

qk + σ 2v
λσ 2n

)]
(18)

with s0 = E[p0], q0 = E[p0]. It is obvious that sk ≤ qk, ∀k.
One can now provide bounds on E[pk] in terms of the limiting

values of the above sequences as follows:

Theorem 3.4. The sequences {sk}, {qk} defined above by (17), (18)
converge to their individual limiting values s∗ and q∗, respectively as
k→∞. It is also true that E[pk] ≤ sk ≤ qk,∀k. E[pk] starting from
E[p0] converges to a limiting value γ ∗ where γ ∗ ≤ s∗ ≤ q∗.

See Appendix C for the proof. Although convergence of {sk} follows
from Theorem 3.3 as a special case (same applies to Theorem 3.5),
we provide an alternative and slightly simpler proof for the scalar
case, of which the analysis will also be useful for the multisensor
situations later.
The sequence {sk} is obviously a tighter bound than {qk}. The

reason why we consider both sequences is that it is easier to prove
convergence by using the qk iterations. In Fig. 1, the average error
covariance computed via simulations by averaging over 50000
randomly generated sample paths of length 100 is plotted against
the various bounding sequences derived above.

3.1.2. Nakagami fading
It is well known that the Nakagami-m distribution provides

a very good model for land-mobile and indoor-mobile multipath
propagation (Simon & Alouini, 2000). In this case, the channel
power gain r is distributed according to the probability distribution
pR(r) = mmrm−1λm

0(m) exp(−λmr), where m ∈ [ 12 ,∞) is a parameter
depicting the severity of fading, 1

λ
is the mean channel power gain

and 0(.) denotes the gamma function. Note that Rayleigh fading
is a special case of Nakagami fading with m = 1. As m increases
beyond 1, the severity of fading decreases. Herewe considerm = 1

2
which denotes fading that is more severe than Rayleigh fading. In

this case, r ∼
√

λ
2πr exp(−

λr
2 ).

Denoting γk = E[pk] as before, we can show from (16) that

γk+1 ≤ σ
2
w +

a2γk
γk + σ 2v

(
σ 2v +

σ 2n γk

γk + σ 2v

√
λπ(σ 2v + γk)

2σ 2n

× exp(u2)erfc(u)

)

where u =
√

σ 2n λ

2(σ 2v+γk)
and π

2u exp(u
2)erfc(u) =

∫
∞

0
e−t
2

t2+u2
dt .

Here erfc(x) denotes the complementary error function de-
fined as 2

√
π

∫
∞

x exp(−t
2)dt . Noting that

√
π

2 exp(u
2)erfc(u) ≤

1

u+
√
u2+ 4π

(Abramowitz & Stegun, 1972), one can then easily show

that



2228 S. Dey et al. / Automatica 45 (2009) 2223–2233
0 20 40 60 80 100
250

300

350

400

450

500

550

600

time index (k)

av
er

ag
e 

er
ro

r 
co

va
ria

nc
e 

an
d 

bo
un

ds
γk

sk

qk

0 20 40 60 80 100
400

600

800

1000

1200

1400

1600

1800

time index (k)

av
er

ag
e 

er
ro

r 
co

va
ria

nc
e 

an
d 

bo
un

ds

γk

sk

qk

(a) σv = 2.0. (b) σv = 20.0.

Fig. 1. Average error covariance and bounds for Rayleigh fading with various σv values, with a = 1.25, c = 1.0, σw = 1.0, σn = 2.0, λ = 100.
γk+1 ≤ σ
2
w +

a2γk
γk + σ 2v

σ 2v + σn
√
2λγk√

γk + σ 2v

1

u+
√
u2 + 4

π

 .
We can now define two sequences {s̃k}, {q̃k} as follows:

s̃k+1 = σ 2w +
a2s̃k
s̃k + σ 2v

(
σ 2v +

σ 2n s̃k
s̃k + σ 2v

√
λπ(σ 2v + s̃k)
2σ 2n

× exp
(
ũ2
)
erfc

(
ũ
) )

(19)

q̃k+1 = σ 2w + a
2

σ 2v + σn
√
2λq̃k√

σ 2n λ
2 +

√
σ 2n λ
2 +

4
π
(q̃k + σ 2v )

 (20)

with s̃0 = E[p0], q̃0 = E[p0], and ũ =
√

σ 2n λ

2(σ 2v+s̃k)
. We can then

similarly have the following theorem which states:

Theorem 3.5. For the case of Nakagami( 12 ) fading, the sequences
{s̃k}, {q̃k} defined above by (19), (20) converge to their individual
limiting values s̃∗ and q̃∗, respectively as k → ∞. It is also true that
E[pk] ≤ s̃k ≤ q̃k, ∀k. E[pk] starting fromE[p0] converges to a limiting
value γ̃ ∗ where γ̃ ∗ ≤ s̃∗ ≤ q̃∗.

The proof is similar to that of Theorem 3.4 and is omitted.
Fig. 2 shows the simulated average error covariance for

Nakagami( 12 ) fading for the same set of parameter values as in
Fig. 1. The interpretation of the graphs is similar to that of Fig. 1.
Note that, as expected, the average error covariance performance
and the corresponding bounds are generally worse than those for
Rayleigh fading.

3.2. Single sensor: Vector state and scalar measurement

Considering now the vector state scalar measurement model
(6), it is easy to show that the corresponding time-varying discrete-
time Riccati equation is given by

Pk+1 = Σw + A
[
Pk −

Pkc̄ ′c̄Pk
c̄Pkc̄ ′ + σ 2v

r
r + βk

]
A′ (21)

where r = h2k and βk =
σ 2n

c̄Pk c̄′+σ 2v
. Note that c̄Pkc̄ ′ + σ 2v is clearly a

scalar quantity.
As a special case of (13), one can write (by using V̄k = E[Pk])

V̄k+1 ≤ Σw + AV̄kA′ −
AV̄kc̄ ′c̄V̄kA′

c̄V̄kc̄ ′ + σ 2v
Er

[
1−

β̄k

r + β̄k

]
where β̄k =

σ 2n
c̄V̄k c̄′+σ 2v

. In the case of the channel being Rayleigh

faded with mean 1
λ
, we can then derive (by evaluating the

expectation with respect to the channel power gain on the right
hand side of the above inequality) the following upper bounding
sequence of positive semidefinite matrices {Z̄k}:

Z̄k+1 = Σw + AZ̄kA′ −
AZ̄kc̄ ′c̄Z̄kA′

c̄Z̄kc̄ ′ + σ 2v
× [1− m̄k exp(m̄k)E1(m̄k)]

with Z̄0 = V0 and m̄k =
λσ 2n

c̄Z̄k c̄′+σ 2v
. Following Theorem 3.3, we can

now conclude that E[Pk] = V̄k ≤ Z̄k, and Z̄k → Z̄∗ as k→∞. Also,
E[Pk] starting from E[P0] = V̄0 converges to a limiting value 0̄∗
such that 0̄∗ ≤ Z̄∗. Note that similar results can be obtained for
other types of continuous fading distributions. However explicit
bounding sequences for these fading distributions are not provided
here to avoid repetition.

3.3. Multiple sensors

In this section, we consider the case of multiple sensors where
each sensor observes a scalar state process and makes a scalar
measurement. Both themulti-access (7) and the orthogonal access
(8) schemes will be considered. Although these results can be
extended to the vector state and scalar measurement (per sensor)
case in a similar manner to the previous section, we do not include
such results to maintain simplicity. We only consider the case of
Rayleigh fading.

3.3.1. Multi-access scheme
Recall the signal model (7). The error covariance pk satisfies the

recursion

pk+1 = σ 2w +
a2pk

(
M∑
i=1
h2k,iσ

2
i + σ

2
n

)
(
M∑
i=1
hk,ici

)2
pk +

M∑
i=1
h2k,iσ

2
i + σ

2
n

where for simplicity we call σ 2i = σ
2
vi
.

Denoting γk = E[pk] and letting ri = h2i (dropping the time
subscript k), it follows similar to before that
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(a) σv = 2.0. (b) σv = 20.0.

Fig. 2. Average error covariance and bounds for Nakagami( 12 ) fading with various σv values, with a = 1.25, c = 1.0, σw = 1.0, σn = 2.0, λ = 100.
γk+1 ≤ σ
2
w + Er


a2γk

(
M∑
i=1
riσ 2i + σ

2
n

)
(
M∑
i=1

√
rici

)2
γk +

M∑
i=1
riσ 2i + σ 2n



≤ σ 2w + Er


a2γk

(
M∑
i=1
riσ 2i + σ

2
n

)
M∑
i=1
ric2i γk +

M∑
i=1
riσ 2i + σ 2n


where r = (r1, . . . , rM), and the second inequality follows since
the ci’s are assumed to be positive. Since we are dealing with
Rayleigh fading, ri ∼ λi exp(λiri).
Now assume the sensors are ordered in descending order of

measurement quality such that

c21
σ 21
≥
c22
σ 22
≥ · · · ≥

c2M
σ 2M
. (22)

We have

Er


M∑
i=1
riσ 2i + σ

2
n

M∑
i=1
ric2i γk +

M∑
i=1
riσ 2i + σ 2n


=

σ 21

c21γk + σ
2
1
Er2,...,rM

[
1+ (A1 −B1)eB1E1(B1)

]
where

A1 =
λ1

σ 21

(
M∑
i=2

riσ 2i + σ
2
n

)
and

B1 =
λ1

c21γk + σ
2
1

(
M∑
i=2

ri(c2i γk + σ
2
i )+ σ

2
n

)
.

By assumption (22),A1 −B1 ≥ 0. Using the inequality exE1(x) <
ln(1+ 1

x )would result in very complicated expressions which are
difficult to work with forM > 2. For a simpler expression, we will
instead use the looser inequality exE1(x) < 1

x . Then

Er


M∑
i=1
riσ 2i + σ

2
n

M∑
i=1
ric2i γk +

M∑
i=1
riσ 2i + σ 2n


≤
σ 21

c21γk + σ
2
1
Er2,...,rM

[
1+

A1 −B1

B1

]
=

σ 21

c21γk + σ
2
1
Er2,...,rM

[
A1

B1

]

= Er2,...,rM


M∑
i=2
riσ 2i + σ

2
n

M∑
2=1
ri(c2i γk + σ

2
i )+ σ

2
n


=

σ 22

c22γk + σ
2
2
Er3,...,rM

[
1+ (A2 −B2)eB2E1(B2)

]
where

A2 =
λ2

σ 22

(
M∑
i=3

riσ 2i + σ
2
n

)
and

B2 =
λ2

c22γk + σ
2
2

(
M∑
i=3

ri(c2i γk + σ
2
i )+ σ

2
n

)
.

By assumption (22), we also have A2 − B2 ≥ 0. Continuing this
process, we eventually arrive at

Er


M∑
i=1
riσ 2i + σ

2
n

M∑
i=1
ric2i γk +

M∑
i=1
riσ 2i + σ 2n

 ≤ σ 2M

c2Mγk + σ
2
M

×
[
1+ (AM −BM)eBM E1(BM)

]
whereAM =

λM
σ 2M
σ 2n ,BM =

λM
c2Mγk+σ

2
M
σ 2n . Hence

γk+1 ≤ σ
2
w +

a2γkσ 2M
c2Mγk + σ

2
M

[
1+ (AM −BM)eBM E1(BM)

]
.

We can define the bounding sequence

sk+1 = σ 2w +
a2skσ 2M
c2Msk + σ

2
M

[
1+ (ÃM − B̃M)eB̃M E1(B̃M)

]
with ÃM =

λM
σ 2M
σ 2n , B̃M =

λM
c2M sk+σ

2
M
σ 2n , and convergence properties

of this sequence can be proved similar to Theorem 3.4. Recalling
the ordering (22), we thus see that we are bounded by the result
assuming just the ‘‘worst’’ sensor in terms of the sensor SNR c2i /σ

2
i .
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(a) λ1 = 100, λ2 = 20. (b) λ1 = 100, λ2 = 200.

Fig. 3. Average error covariance and bounds for multi-access scheme, with a = 1.25, c1 = 1.0, c2 = 1.0, σw = 1.0, σ1 = 1.0, σ2 = 2.0, σn = 2.0.
An alternative bound
Consider the following inequality for xi ≥ 0,

1
M∑
i=1
xi

≤
1
M2

M∑
i=1

1
xi

(23)

which is a consequence of the well-known result that the arith-
metic mean is greater than or equal to the harmonic mean. We
will use this inequality to derive an alternative bound. A more at-
tractive feature of this bound is that the parameters for all of the
sensors will appear in the expressions obtained. Applying the in-
equality (23), we have

Er


M∑
i=1
riσ 2i + σ

2
n

M∑
i=1
ri(c2i γk + σ

2
i )+ σ

2
n

 = Er


M∑
i=1
riσ 2i + σ

2
n

M∑
i=1
(ri(c2i γk + σ

2
i )+

σ 2n
M )



≤
1
M2
Er

 M∑
i=1

M∑
j=1
rjσ 2j + σ

2
n

ri(c2i γk + σ
2
i )+

σ 2n
M

 .
We can evaluate

Er


M∑
j=1
rjσ 2j + σ

2
n

ri(c2i γk + σ
2
i )+

σ 2n
M

 = Eri

riσ 2i +

∑
j6=i

σ 2j
λj
+ σ 2n

ri(c2i γk + σ
2
i )+

σ 2n
M


=

σ 2i

c2i γk + σ
2
i
[1+ (Ci −Di)eDiE1(Di)] (24)

with Ci =
λi
σ 2i

(∑
j6=i

σ 2j
λj
+ σ 2n

)
,Di =

λiσ
2
n

M(c2i γk+σ
2
i )
. Hence an alter-

native bounding sequence is

tk+1 = σ 2w +
a2tk
M2

M∑
i=1

σ 2i

c2i tk + σ
2
i

[
1+ (C̃i − D̃i)eD̃iE1(D̃i)

]
where C̃i =

λi
σ 2i

(∑
j6=i

σ 2j
λj
+ σ 2n

)
, D̃i =

λiσ
2
n

M(c2i tk+σ
2
i )
.

3.3.2. Orthogonal access scheme
Recalling the orthogonal accessmodel (8), it can be shownusing

the matrix inversion lemma that the error covariance satisfies

pk+1 = σ 2w +
a2pk

1+ pk
M∑
i=1

h2k,ic
2
i

h2k,iσ
2
i +σ

2
n

.

Letting γk = E[pk], ri = h2i , we have

γk+1 ≤ σ
2
w + Er

 a2γk

1+ γk
M∑
i=1

ric2i
riσ 2i +σ

2
n

 .
We can compute

Er

 1

1+ γk
M∑
i=1

ric2i
riσ 2i +σ

2
n



= Er

 r1σ 21 + σ
2
n

(r1σ 21 + σ 2n )
(
1+ γk

M∑
i=2

ric2i
riσ 2i +σ

2
n

)
+ r1c21γk


=

σ 21

σ 21

(
1+ γk

M∑
i=2

ric2i
riσ 2i +σ

2
n

)
+ c21γk

× Er2,...,rM
[
1+ (A1 −B1)eB1E1(B1)

]
where

A1 =
λ1σ

2
n

σ 21
, B1 =

λ1σ
2
n

(
1+ γk

M∑
i=2

ric2i
riσ 2i +σ

2
n

)
σ 21

(
1+ γk

M∑
i=2

ric2i
riσ 2i +σ

2
n

)
+ c21γk

.

We note that here

A1 −B1 =
λ1σ

2
n c
2
1γk

σ 21

[
σ 21

(
1+ γk

M∑
i=2

ric2i
riσ 2i +σ

2
n

)
+ c21γk

]
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is always positive, unlike the multi-access scheme where we
needed the extra assumption (22). Again using the inequality
exE1(x) < 1

x , we obtain

Er

 1

1+ γk
M∑
i=1

ric2i
riσ 2i +σ

2
n

 ≤ Er2,...,rM
 1

1+ γk
M∑
i=2

ric2i
riσ 2i +σ

2
n


≤ · · · ≤

σ 2M

c2Mγk + σ
2
M
[1+ (AM −BM)eBM E1(BM)]

where AM =
λMσ

2
n

σ 2M
,BM =

λMσ
2
n

σ 2M+c
2
Mγk
. Note, however, that since no

ordering of the sensors is assumed, we could have taken the expec-
tations over (r1, . . . , rM) in any order. Hence we have

γk+1 ≤ σ
2
w + min

i=1,...,M

a2γkσ 2i
c2i γk + σ

2
i

[
1+ (A′i −B ′i )e

B′i E1(B ′i )
]

where A′i =
λiσ

2
n

σ 2i
,B ′i =

λiσ
2
n

σ 2i +c
2
i γk
. We can thus define an upper

bounding sequence

sk+1 = σ 2w + min
i=1,...,M

a2skσ 2i
c2i sk + σ

2
i

[
1+ (Ãi − B̃i)eB̃iE1(B̃i)

]
with Ãi =

λiσ
2
n

σ 2i
, B̃i =

λiσ
2
n

σ 2i +c
2
i sk
. Convergence properties of the se-

quence can be proved similar to before.
An alternative bound
Similar to the multi-access case, we can derive an alternative

bound, again using the inequality (23). For the orthogonal scheme,
we get

Er

 1

1+ γk
M∑
i=1

ric2i
riσ 2i +σ

2
n

 = Er
 1
M∑
i=1
( 1M +

γkric2i
riσ 2i +σ

2
n
)


≤
1
M2
Er

 M∑
i=1

1
1
M +

γkric2i
riσ 2i +σ

2
n


=
1
M2

M∑
i=1

Mσ 2i
Mc2i γk + σ

2
i
[1+ (Ci −Di)eDiE1(Di)] (25)

where Ci =
λiσ

2
n

σ 2i
,Di =

λiσ
2
n

Mc2i γk+σ
2
i
. Thus an alternative bounding

sequence is

tk+1 = σ 2w +
a2tk
M2

M∑
i=1

Mσ 2i
[
1+ (C̃i − D̃i)eD̃iE1(D̃i)

]
Mc2i tk + σ

2
i

(26)

where C̃i =
λiσ

2
n

σ 2i
, D̃i =

λiσ
2
n

Mc2i tk+σ
2
i
.

Note also that the expectation in the second line of (25) can
be evaluated without requiring the independence of the channel
fading between sensors, so even for spatially correlated channel
gains the bound (26) is still valid.

3.3.3. Simulation results
In Fig. 3 we plot the simulated average error covariance for the

multi-access scheme with two sensors, for different values of λ1
and λ2. We also plot, on the same figure, the two bounds sk and tk.
We see that sometimes both skwill be better than tk, but sometimes
the alternative bound tkwill be better. In Fig. 4we similarly plot the
simulated average error covariance and the twodifferent bounds sk
and tk, for the orthogonal access scheme with two sensors. Similar
interpretations to Fig. 3 apply.
4. Conclusions and future work

In this paper, we considered a linear state estimation problem
when measurements from single or multiple sensors are received
via random fading channels at a remote fusion center. Under
some mild assumptions, we showed that the expected (with
respect to the fading process) estimation error covariance at the
fusion center remains bounded and converges to a steady state
value. While explicit expressions of the expected error covariance
are hard to compute exactly, we provided exact deterministic
bounding sequences on the average error covariance for the system
models with scalar measurements (per sensor) and specific fading
distributions. Numerical illustrations show that these bounds can
often be quite tight. Future research will focus on extension of
these results to correlated fading channels (both temporal and
spatial correlation), characterizing the asymptotic steady state
distribution of the error covariance matrix, and optimal resource
allocationproblems inwireless sensor networks carrying out linear
state estimation under resource and communication constraints
using the bounds derived here.

Appendix A. Proof of Lemma 3.1

Supposewehave a positive semidefinitematrixQk independent
ofHk such that Pk ≥ Qk. Note that sinceHk is independent of Pk, one
can write

G(Pk) = EHk

[
min
Kk

{
(A− KkC)Pk(A− KkC)′ +Σw

+ Kk(Σv + L−1k )K
′

k

} ]
= EHk

[{
(A− K ∗k C)Pk(A− K

∗

k C)
′
+Σw

+ K ∗k (Σv + L
−1
k )K

∗

k
′
}]

≥ EHk
[{
(A− K ∗k C)Qk(A− K

∗

k C)
′
+Σw

+ K ∗k (Σv + L
−1
k )K

∗

k
′
}]

≥ EHk

[
min
Kk

{
(A− KkC)Qk(A− KkC)′ +Σw

+ Kk(Σv + L−1k )K
′

k

} ]
= G(Qk)

where the first line follows from the fact that the Kalman filter
operates with the optimal time-varying gain K ∗k , and the third
line follows since Pk ≥ Qk. This completes the proof of the non-
decreasing property.
In order to prove that G(Pk) is a concave function of Pk, one

needs to show that

G(αP1k + (1− α)P
2
k ) ≥ αG(P

1
k )+ (1− α)G(P

2
k )

where P1k , P
2
k are both positive semidefinite and 0 < α < 1.

Suppose P̄k = αP1k+(1−α)P
2
k . Then, using the fact that the Kalman

filter operates with the optimal gain, we have

G(P̄k) = EHk

[
min
X
{(A− XC)(αP1k + (1− α)P

2
k )(A− XC)

′

+ Σw + X(Σv + L−1k )X
′
}

]
= EHk

[
min
X

(
αf (X, P1k )+ (1− α)f (X, P

2
k )
)]

where f (X, Pk) = (A−XC)Pk(A−XC)′+Σw+X(Σv+L−1k )X
′. Noting
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(a) λ1 = 100, λ2 = 20. (b) λ1 = 100, λ2 = 200.

Fig. 4. Average error covariance and bounds for orthogonal scheme, with a = 1.25, c1 = 1.0, c2 = 1.0, σw = 1.0, σ1 = 1.0, σ2 = 2.0, σn = 2.0.
that f (X, Pk) is an affine function in Pk, and pointwise minimum of
an affine function is a concave function, it is clear that

G(P̄k) ≥ Ehk

[
αmin

X
f (X, P1k )+ (1− α)minX

f (X, P2k )
]

= αG(P1k )+ (1− α)G(P
2
k )

which completes the proof of concavity.

Appendix B. Proof of Theorem 3.3

The fact that Vk ≤ Zk follows from the non-decreasing property
of Lemma 3.1 and induction.
Let us call

fH(X) = AXA′ − AXC ′(L−1 + CXC ′ +Σv)−1CXA′ +Σw

where L = HΣ−1n H . First we show that there exists a fixed point
Z∗ that satisfies

Z∗ = EH [fH(Z∗)].

The function fH(X) has the following properties:

(1) H1 ≤ H2 ⇒ fH1(X) ≥ fH2(X)
4

(2) X ≤ Y ⇒ fH(X) ≤ fH(Y ).

Property (1) canbe easily shownbyusingCorollary 7.7.4 (a) ofHorn
and Johnson (1985) and Property (2) is well-known.
Define T : Sn → Sn by

T (X) = EH [fH(X)].

Then by Theorem 7.A of Zeidler (1986), a fixed point (i.e. a solution
to the equation T (X) = X) will exist if the following five conditions
hold:

(i) T is monotone increasing, i.e. X ≤ Y ⇒ T (X) ≤ T (Y ),
(ii) T is a compact operator,
(iii) Sn is a normal order cone, i.e. ∃c > 0 and some norm ‖·‖ such

that 0 ≤ X ≤ Y ⇒ ‖X‖ ≤ c‖Y‖,∀X, Y ∈ Sn,
(iv) ∃uwith u ≤ Tu,
(v) ∃v with v ≥ Tv.

4 For diagonal matrices, H1 ≤ H2 is equivalent to all the diagonal entries of H1
being less than or equal to the corresponding diagonal entries of H2 .
Condition (i) follows from property (2) of the function fH(X). For
condition (ii), since Sn is a subset of a finite dimensional space,
T is continuous, and the semi-definite cone Sn is a closed set,
compactness of T follows by example 2.10 of Zeidler (1986). For
condition (iii), note that X ≤ Y implies λmax(X) ≤ λmax(Y ), where
λmax(X) is the largest (positive) eigenvalue of X . Since X and Y are
symmetric, the singular values are the same as the eigenvalues,
hence ‖X‖ ≤ ‖Y‖ in the spectral norm, and the condition for Sn
to be a normal order cone is satisfied for c = 1. For condition (iv),
u = 0 suffices, since T (0) = EH [fH(0)] = Σw ≥ 0. It remains
to show condition (v). Now for any invertible H , one can always
find an X such that fH(X) < X , by using e.g. the construction in the
proof of Theorem 1 of Bitmead, Gevers, Petersen, and Kaye (1985).
Let H∗ = diag(h∗, . . . , h∗), and let X∗ (dependent on H∗) satisfy
fH∗(X∗) < X∗. Let us write

EH [fH(X∗)] = EH [fH(X∗)|H ≥ H∗]P(H ≥ H∗)
+ EH [fH(X∗)|H 6≥ H∗]P(H 6≥ H∗).

Then we have EH [fH(X∗)|H ≥ H∗] < X∗ by property (1), and
P(H ≥ H∗) → 1 as h∗ → 0. We also have that the matrix
EH [fH(X∗)|H 6≥ H∗] is bounded above by Σw + AX∗A, and P(H 6≥
H∗) → 0 as h∗ → 0. Hence for sufficiently small h∗, there exists
an X∗ such that EH [fH(X∗)] ≤ X∗, and condition (v) is satisfied by
letting v be this X∗. Thus all the conditions for the existence of a
fixed point Z∗ such that Z∗ = EH [fH(Z∗)] are satisfied.
Finally, we show convergence of Zk to Z∗ starting from arbi-

trary initial conditions, thus proving uniqueness of the fixed point
Z∗. We will use Theorem 3.3 of Krasnosel’skii, Vainikko, Zabreiko,
Rutitskii, and Stetsenko (1972) (see also Theorem 46.1 of Kras-
nosel’skiı̆ & Zabreı̆ko, 1984), which gives conditions for a fixed
point to be unique, provided one actually exists. We need to show
that T is ‘‘u0-concave’’, i.e. there is some u0 ∈ Sn such that:

(i) For any nonzero X ∈ Sn, ∃α(X) > 0, β(X) > 0 such that

αu0 ≤ TX ≤ βu0.

(ii) For each X such that αu0 ≤ X ≤ βu0, and each t ∈ (0, 1),
∃η(X, t) > 0 such that

T (tX) ≥ (1+ η)tT (X).

Under the assumption that Σw > 0, we can easily verify that
taking u0 = I will satisfy these conditions. Since we have
previously shown that there does exist a fixed point Z∗, Theorem
3.3 of Krasnosel’skii et al. (1972) then shows that Zk converges to
Z∗ for arbitrary Z0 ∈ Sn.
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Appendix C. Proof of Theorem 3.4

Consider the Eqs. (17) and (18). Note that the right hand sides
of (17) and (18) are increasing functions of sk and qk respectively,
which implies that both {sk} and {qk} are monotonic sequences.
Given that γ0 = E[p0] = s0 = q0, it clearly follows that γ1 ≤
s1 ≤ q1. Using the increasing property mentioned above, one can
then prove by induction that γk ≤ sk ≤ qk, ∀k = 1, 2, . . .. We
know that as a special case of Lemma 3.2, γk = E[pk] converges to
a limit (say γ ∗) as k→∞.
We now show that qk also converges to a limit (denoted by q∗)

as k → ∞. In order to prove this, we rewrite (18) as qk+1 =
l(qk), where l(qk) represents the right hand side of (18). It is
straightforward to show that the mapping q = l(q) has a unique
fixed point. However, in order to prove the convergence of the
recursion qk+1 = l(qk) we use the standard function properties
of the function l(q) (Yates, 1995), namely positivity, monotonicity
(these two are obvious) and scalability. In order to show scalability,
wehave to show thatβl(q) > l(βq) forβ > 1. This follows because

ln
(
1+

βqk + σ 2v
λσ 2n

)
< ln

(
1+

β(qk + σ 2v )
λσ 2n

)
< β ln

(
1+

qk + σ 2v
λσ 2n

)
where the first inequality follows since β > 1 and the second
inequality follows since ln(1+βx) < β ln(1+x) for x > 0, β > 1.
Since l(q) is a standard function, the recursion qk+1 = l(qk) will
converge to the unique fixed point q∗.
Now {sk} is a monotonic sequence sandwiched between two

convergent sequences {qk} and {γk} (the limits of the two se-
quences are in general different). Hence {sk} can be bounded from
both above and below, so converges to a limit s∗. Since γk ≤ sk ≤
qk, ∀k = 1, 2, . . ., we have γ ∗ ≤ s∗ ≤ q∗.
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