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Abstract  

In this paper, we consider the estimation of various 
Markov-modulated time-series. We obtain maximum like- 
lihood estimates of the time-series parameters including 
the Markov chain transition probabilities and the time- 
series coefficients using the EM (Expectation Maximiza- 
tion) algorithm. Also the recursive EM algorithm is used 
to obtain on-line parameter estimates. Simulation studies 
show that both algorithms yield satisfactory results. 

1 Introduction 

Signal Model: Let S k  denote a N,-state irreducible 
Markov chain with states {1,2,. . . , N,} with transition 
probability matrix n = (xm,,), T,, = P(sk+l = nlsk = 
m) and initial state probability x = (x,,,), ir, = P(ai  = 
m). Define the Markov-modulated polynomials as follows: 

,=I 
7 

c ( Z - l , s k )  = 1 + ct(sk)z-'  (1) 
t=l  

where 2 - l  denotes the delay operator and k denotes 
discrete-time. Let A(m) = (a, ( m )  . . . a.,,(m))', B(m) = 
(bl(m) . . . bp(m))',C(m) = (cl(m) , . .+(m)) ' .  In this 
paper, we consider estimation of any one of the fol- 
lowing second-order stationary Markov-modulated time- 
series models: 

A A 

A 

A R X  : A(z-',st)yk = B(z-l,sk)tbk 4- wk ( 2 )  
MAX : y t  = B(z-',sk)uk +C(z-',sk)wt ( 3 )  

A R M A  : A(t - ' )y t  = c(z - ' , sk)wk (4) 

where U&, yt are the measured input and output at time 
I C ,  Wk N white N ( O , a a )  is independent of S k  and 4 is the 
parameter vector consisting of polynomial coefficients and 
Markov chain parameters (e.g., Q = (A(m) ,  B(m) ,  II, U') 
for (2)). We assume ul: to  be persistently exciting 141. We 
also assume that A ( z - ' , s k ) ,  B(z - ' , sk)  and C ( t - ' , s k )  
are coprime to  each other for each m, m E { 1 , 2 , .  . . , Ns}. 
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NOtUttOnX Yk = (91 , .  . . 7 y L ) T ,  uk = (111 . . . z k  = 
( Y k ,  uk) denotes the observed "incomplete" data. S k  = 
(Si ... S L ) ~ ,  Y: = ( Y t . . . y k ) T  and = (Ut 

where superscript T denotes transpose. 

Estimation Objectives: We use the Expectation Max- 
imization (EM) algorithm [7] to  obtain maximum likeli- 
hood (ML) estimates of Q, given YT, UT (when appropri- 
ate) in Sec. 2. Also based on the recursive EM algorithm 
121, an on-line estimation scheme is presented in Sec. 3. 

In [5 ] ,  the EM algorithm and a recursive EM algorithm are 
used to  estimate Markov-modulated AR processes which 
is a special case of our model (2) with B = 0. The three 
models we consider in this paper can be regarded as an ex- 
tension of the work in [ 5 ] .  Applications of such estimation 
algorithms can be found in [SI, (51 and in the references 
therein. 
Remark 1: Models (2),  (3) or (4) are special cases of the 
Markov-modulated ARM AX model 

A ( Z - ' , S k ) y k  = B ( Z - ' , S k ) U k  + C ( Z - ' , s k ) W k  (5) 

However, unlike (2), (3) and (4), ML estimation of (5) is 
computationally prohibitive since it requires computing 
probability density functions over all NT realisations of a 
N. state T point Markov chain. For similar reasons, we 
forbid A(z- ' )  in (4) to be Markov-modulated. 
Remark 2: Deriving stationarity criteria for Markov- 
modulated time-series is a difficult problem. For exam- 
ple, two switching, separately second order AR station- 
ary processes can result in an unstable system - whereas 
two individually unstable AR processes can be stabilized 
when allowed to switch according to  a Markov regime. 
For sufficient conditions on the second-order stationarity 
of Markov-modulated time- series, see 151. 

2 M L  estimation via E M  algorithm 

Markov-modulated ARX estimation 
The EM algorithm is an iterative procedure; each itera- 
tion involves two steps, E-step and M-step. 
E Step: Following 131, the expectation of the log-likelihood 
function of a T-point "complete" data sequence M r  = 
(YT, UT, ST) defined as 

Q(P, 4) e E{ln f ( ~ r  14) I zT, +")I 
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k = l  m=l 

k = l  m=l n=l 

N. 

m=l 

A 
where <k(m,n) = f(8k = m,Sk+l = nlZT,4( ' ) )  and 

7k(m) f(Sk = ml~T,b ( ' ) ) .  yk(m) is computed via the 
"forward backward" procedure described in [l]. 4(') is 
the estimate of the parameter vector at the I-th iteration 
assuming the iteration procedure starts with an initial es- 
timate 4('). 
M Step: This step involves computing argmax.+Q(+('),d) 
to yield the estimates of am,,, 02, A(m),  B(m). For all 
the relevant details, see [6]. 
Markov-modula ted  M A X  estimation 
The MAX model (3) can be written in equivalent ARX 
form as 

A'(Z-l,Sk)yk = B'(Z-',Sk)Uk -k e k  (7) 

where the polynomial A'(z-', Sk) is "sufficiently" long 
enough to  ensure that ek is almost white (see (41, pg 291 
for details) and B'(Z-',Sk) = A'(z-l,sk)B(z-',sk). The 
EM algorithm described in the previous section yields the 
estimates of A'(m) and B'(m) and hence of B(n). C(m) 
in (3) can be estimated by solving a set of inverse Yule- 
Walker equations (see pg 291, [4]). Details can be found 
in [SI. 
Markov-modula ted  A R M A  es t ima t ion  
Since A in (4) is no longer Markov-modulated, i t  can be 
estimated via a set of Yule- Walker equations (see pp 289, 
[4]). Rewriting (4) as 

A(Z-')A'(Z-',sk)yk = ek (8) 

(where e k  and A'(t-l,sk) are as defined in the previous 
section), estimate of A(z-')A'(z-', sk) and hence C(m) 
can be obtained via EM. 

3 On-line Estimation via Recursive E M  
a lgor i thm 

An on-line estimation scheme can be implemented based 
on the recursive EM algorithm proposed in [2]. 

4 Simula t ion  studies 

We present simulation examples, with N .  = 2, rll = 
~ 2 2  = 0.9 for on-line recursive EM algorithm. Simulation 
results for the off-line EM algorithm can be found in [SI. 
On-l ine e s t ima t ion  via recursive E M  algor i thm 
Consider a jump time-varying 100000 point 

Markov-modulated MAX model with U' = 1 and 

B ( l )  = (0.8 0.3)', B(2) = (0.5 O.l)', C(1) = (0.5 0.3)', 
C(2) = (-0.4 0.2)' t 5 20000 

B ( l )  = (0.5 0.9)', B(2) = (-0.6 0.4)', C(1) = (0.7 0.5)', 
C(2) = (-0.2 0.5)' t > 20000 

Figure 1 shows the time evolution of the estimates when 
the estimation procedure starts with arbitrary initial es- 
timates. Results for a Markov-modulated ARMA model 
can be found in [6]. 

7 7 ,  

Figure 1: Time evolution of MAX parameters 
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