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Abstract — A computationally inexpensive subop-
timal blind equalization algorithm is presented for
noisy IIR channels. It is based on combining a recur-
sive Hidden Markov Model (HMM) estimator with a
relaxed SPR (strictly positive real) Extended Least
Squares (ELS) scheme. Simulation studies show that
the algorithm yields satisfactory results.

1. SieNAL MODEL

The observations yx, k¥ = 1,2,...,T are obtained as

=y twn we~ NO,0) &)
where w; is zero mean white Gaussian noise (WGN) with
variance 0,2,,.

C(z7') = 1= 37 c;z”* (where z7" is the delay operator)
denotes the unknown IIR channel. We assume that C(z™') is
stable, i.e., it has all its zeros outside the unit circle.
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si denotes a N-state discrete-time homogeneous first-order
Markov chain. Consequently, the state 3, at time k is one
of N known state levels ¢ = (g1 g2...gn). The transition
probability matrix is A = (ai;) where ai; = P(3¢41 = gjlse =
g:). Of course a;; > 0, Efl:l a:j = 1, for each i. We assume
that s, is irreducible.

II. ALGORITHM DESCRIPTION
Our algorithm is termed the HMM-ELS Blind Equalization
Algorithm. It combines a relaxed SPR ELS scheme (2] and
recursive HMM estimator [1] resulting in a suboptimal com-
putationally efficient recursive (on-line) scheme [3].
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Figure 1: HMM-ELS Blind Equalization Algorithm

As shown in Fig.1, the HMM-ELS algorithm combines
these two steps as follows:
1. At time k, the recursive HMM estimator yields estimate of
the state of s, noise variance o2 and transition probabilities
A.
2. The relaxed SPR ELS estimator gives on-line estimates of
the channel parameters ¢; and wi—;, i € {1,2,...,p}, denoted
by Ef” and wg.; respectively.

III. SIMULATION STUDIES
Extensive simulation studies show that HMM-ELS yields ex-
cellent estimates even in low SNR {3]. It has been also shown
in [3] that HMM-ELS performs better than Constant Modu-
lus Algorithm (CMA). Here, we consider a jump time varying
IIR(4) channel with coefficients
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The input the channel is a two state markov chain with a;; =
a; =09, q = —q2 = 1. Also 0y, = 0.6. Figure 2 shows how
the HMM-ELS algorithm tracks the channel coefficients with
a forgetting factor of A = 0.995.
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Figure 2: Equalization of “jump” time-varying channel
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