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tivation behind formulating and solving such problems 
are given below. 

In this paper, we present a framework for a mixed es- 
timation scheme for hidden Markov models (HMM). A 
robust estimation scheme is first presented using the 
minimax method that minimizes a worst case cost for 
HMMs with bounded uncertainties. Then we present a 
mixed estimation scheme that minimizes a risk-neutral 
cost with a constraint on the worst-case cost. Some 
simulation results are also presented to compare these 
different estimation schemes in cases of uncertainties in 
the noise model. 

1 Introduction 

A hidden Markov model (HMM) is a stochastic pro- 
cess that usually consists of a state process that is a 
finite-state Markov chain and an observation or mea- 
surement process that is a function of the state process 
corrupted by noise. The observation process can be 
discrete-range or continuous-range. In this paper, we 
will be interested in discrete-time homogeneous Markov 
chains taking values in a finite-dimensional state space 
and observation processes that are continuous-range, 
i.e., they are observed in continuous-range noise. Pre- 
cise details about our signal model will be given in the 
next section. In short, we are interested in developing a 
robust estimation algorithm for a class of HMMs with 
unknown but bounded uncertainties and a “mixed” es- 
timation problem that minimizes a quadratic cost with 
a constraint on a worst-case cost for a class of HMMs 
with random disturbances. The background and mo- 
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HMMs are known to be good models of many random 
nonlinear physical processes and there are many ap- 
plications of HMM signal processing in diverse areas 
like speech recognition, communication systems, bio- 
logical signal processing, frequency tracking, fault de- 
tection etc. to name a few. In all these applications, 
the basic algorithm involves estimation of the state and 
the parameters of the Markov chain that describes the 
state process. State estimation of HMM is usually 
done by calculating the “forward variable” [l] which 
is essentially a conditional probability mass function of 
the state given the observations, which can be calcu- 
lated recursively given the initial state distribution, the 
transition probability matrix of the Markov chain, the 
knowledge of the statistics of the measurement noise 
and the observations. One can then define a suitable 
state estimate (e.g. the “MAP” estimate or the con- 
ditional mean estimate) based on this conditional dis- 
tribution of the state. This estimate is essentially a 
minimum-variance or a “risk-neutral” state estimate in 
the sense that it is not sensitive to uncertainties in the 
model. As opposed to this, a class of robust estima- 
tion algorithms, known as “risk-sensitive” estimation 
schemes, following the ideas of risk-sensitive control 
[2] [3] [4] [5] were developed in [SI (for linear Gaus- 
sian signal models) [7] (for a class of nonlinear signal 
models) and [8] (for hidden Markov models). Risk- 
sensitive estimation essentially minimizes an exponen- 
tial of a quadratic (or more general convex) cost and 
thus penalizes the higher order moments of the estima- 
tion error energy to provide robustness against model 
uncertainties. Recently, a more meaningful insight into 
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the robustness offered by risk-sensitive estimation has 
been given in [9]. 

However, the setting of risk-sensitive estimation 
schemes is stochastic in nature and in general, small 
noise limit results show that risk-sensitive estimation 
algorithms can be connected to a deterministic worst- 
case noise estimation problem given from a differen- 
tial dynamic game [lo] [5] [ll] (Ha estimation for 
linear Gaussian systems). Risk-sensitive output feed- 
back control problems for HMMs have been treated 
in [12] [13] [14] and relations have been drawn to ro- 
bust control for finite-state machines. In particular, in 
[12], a deterministic model for uncertainties is intro- 
duced leading to a dynamic game formulation of the 
robust control problem. A random perturbation of the 
deterministic system is treated as an HMM and the 
stochastic control problem for this HMM is shown to 
be related to the dynamic game problem for the de- 
terministic model using small noise limits. However, 
in the general framework of [12], no specific choices of 
the cost functions associated with the disturbances are 
given. In addition, depending on the nature of the dis- 
turbances (often a mixture of random and unknown 
but bounded disturbances [15]), it is often necessary 
to introduce a trade-off between the risk-neutral and 
risk-sensitive or robust estimation objectives. One way 
to do this is to introduce a “mixed” criterion where a 
risk-neutral cost is minimized subject to a constraint on 
the worst-case cost. A mixed risk-neutral and minimax 
control problem is solved for HMMs in [16]. 

In our paper, we formulate a robust estimation problem 
for a hidden Markov model with unknown but bounded 
uncertainties. Following ideas similar to [12], we set 
up a dynamic game problem for the robust estimation 
scheme with appropriate choices €or the cost functions 
associated with the disturbances in the state (reflected 
by bounded variations of the transition probability ma- 
trix) and the observation process (reflected by the addi- 
tive continuous-range independent bounded noise) and 
the initial distribution of the state. The objective of 
the robust estimation problem is to  obtain state esti- 
mates which minimize a worst-case cost over a finite 
horizon when the estimates are constrained to the vec- 
tor space of unit vectors. Next, we extend the ideas of 
[IS] to set up a “mixed” estimation problem that mini- 
mizes a risk-neutral or quadratic cost subject to a con- 
straint satisfied by the worst-case cost described before. 

Simulation results show that in the event of bounded 
disturbances being present, minimax estimation out- 
performs risk-neutral estimation and mixed estimation 
guarantees the worst case cost to be constrained where 
as risk-neutral estimation does not. We also compare 
the performance of minimax estimation with that of 
risk-sensitive estimation. 

2 Signal Model 

Consider a probability space (QF, P) where Xk is a 
discrete-time homogeneous Markov chain belonging to 
a finite-discrete set. Define E = {el, e2, . . . , e N }  where 
ei = (0 ,..., 0,1,0 ,..., 0)‘ E RN with 1 in the i-th 
position. Without loss of generality, we can assume 
that xk E E .  Denote the transition probability matrix 
as A = (aij)  where a,, = P(Xk+l = e i  I Xk = e j ) .  We 
assume that there exists an E > 0 such that a,j 2 e. 

Also, aij = 1, Vj .  

A 

We observe a process Y k  E Rp such that 

where Vk E E t p ,  k E IN is the disturbance in the 
measurement process that may be random with known 
statistical information or unknown but bounded in L2 
with probability one, depending on the nature of our 
estimation problem. Define { Y k }  =   yo,^^, . . . ,yk). In 
case the disturbances are purely random, one can de- 
fine {yk} to  be the complete filtration generated by 
cz{yo, 91,. . . , Yk}. In the following sections, we Will be 
using the notation {&} with their appropriate defini- 
tions relative to the context, without reiterating the 
definitions separately for each context. 

a 

Also, define TO E RN to be the initial probability dis- 
tribution of the Markov chain, such that P(X0 = ei) = 
xo(i) .  We assume that there exists a 6 > 0 such that 
n0(i) 2 6, Vi .  Obviously, ELl ~ ( i )  = 1. 

3 Minimax state estimation for bounded 
uncertainties 

In this section, we assume that vk , defined in the previ- 
ous section is unknown but bounded in L2 with prob- 
ability 1. Also, uncertainties in the A matrix and the 
initial probability distribution vector r0 are assumed 
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to  be such that the assumptions made earlier on the 
elements of A and TO still hold. 

Consider a specific state sequence Xo = ei,,XI = 
ei, ,  ..., Xk = ei, and an observation sequence 
{ y i } ,  1 = 0,1,. .., k .  Define z k  = Lxk, L E RNxN 
and our objective is to obtain an estimate & = Lxk 
(xk E E )  of z k  as a Bore1 measurable function of 
{yk}, k > 0 such that the following worst case cost 
is minimized: 

r k  

where 4 :  E x E  + IR, U : E x E  + R, P :  E + IR 
and V : IRp x E + R with the following proper- 
ties, +(ei, ,  Xl) > 0, ~ i l ,  VZ, 00 > P(ei,) > 0, vi0 E 

{1,2 ,..., N } ,  00 > U(ei , ,e i ,+,)  > 0 ,  Vil , i l+l ,  VZ and 
00 > 7 > V ( y ~ , e i , )  2 0,  Vi l ,  VZ. Also, p > 0. We also 
make the assumptions that the above mentioned cost 
functions are infinite valued if any of their arguments 
do not belong to their respective domain spaces. 

In other words, we find {&}-adapted xk ,  k 2 0 such 
that 

rk-I 

Remark 3.1 Note above that at each time k ,  we only 
obtain k k ,  and do not obtain new values for Xl, 1 < k .  
In other words, this is a strict filtering problem. 

Now, we make specific choices of the cost functions 
4(.,  .), p(.), U(.,  .) and V ( . ,  .). Denoting Q = L'L, we 
make the following choices: 

1 
4 ( ~ , 5 )  = -(z - ?)IQ(. - 2 

P(ej)  = - W . r r o ( d )  
U ( e i , e j )  = -Zn(aji) 

V ( y k , e j )  = ( IYk - H(ej)1l2 

Here 11.11 denotes the Eucledian distance 
vectors. Also, note that the above cost 
satisfy the assumptions we made earlier. 

2) 

(4) 

between two 
functions do 

With these specific choices, now we can define the fol- 
lowing information state: 

Definition 3.1 Define the information state 
Sk(j), k 2 1, j E {1,2 ,..., N }  as 

1 * I  sk(j) = Sk-l(i) + -(ei - Xk-1)  Q(ei - xk-1) s 2 
1 
c1 

- -(-ln(aji) + IIYk-1 - H(ei)Il2)] 

so(i) = Zn(no(i)), i E {1,2 ,..., N }  (5 )  

The minimax state estimate is given by the following 
theorem: 

Theorem 3.1 Consider the HMM signal model de- 
fined in Section 2 and the minimax dynamic game prob- 
lem defined b y  (3) and (4).  Then the minimax state 
estimate is given by  

X O  = ei. 

i* = argminmv[so(i) 
I '  

1 1 
P 

+T(ei - el)'Q(ei - el) - - 1 1 ~ 0  - H(edIl2] 

x k  = e j . 
j' = argminmy[Sk(i) 

I 

Proof: The proof is straightforward once we use 
the method of forward dynamic programming and the 
definition of the information state 3.1. Substituting 
this in (3), we can obtain (6). w 

Remark 3.2 Note that, in the case of minimax con- 
trol as in [16], one needs to use a backward dynamic 
programming and the concept of a value function, but 
the necessity of using such tools does not arise in the 
strict filtering problem mentioned above. 

4 Mixed estimation 

In this section, we formulate a mixed estimation prob- 
lem for the HMM defined in Section 2. We briefly re- 
capitulate the risk-neutral and the risk-sensitive state 
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estimation algorithms. Then we present a solution to 
the mixed estimation problem. 

For the purpose of this section, we return to the usual 
stochastic framework of the HMM observation model 
(1). We assume that { ~ k }  is a sequence of i.2.d. ran- 
dom variables. In this paper, we assume that Vk - 
N(O,C) ,  Vk.  Recall from [l] that the risk-neutral es- 
timate (which essentially is the conditional mean es- 
timate) for the state of the Markov chain is given by 
E[Xk I Yk]. This is obtained from the unnormalized 
measure (denoted by f f k  E IRN) which can be com- 
puted recursively as follows: 

N 

f f k ( j )  = E[<  X k , e j  >I Y ~ I  = b j ( ~ k )  C a j i ~ c - i ( i )  

f f o ( 4  = bi(Yo)7ro(i) (7) 
i=l  

Or, in matrix notation, 

Risk-sensitive estimation for HMMs 
The risk-sensitive state estimate Xlsof a hidden 
Markov model is discussed in detail in [8]. We quote 
the main results here. The risk-sensitive cost for an 
HMM described in Section 2 is given by 

n I k - 1  

XLs = - X/")'Q(Xl - X [ ' )  

Here, 8 > 0 plays a similar role as p in (2). 

One then defines a new measure p ,  under which { & }  
is a sequence of i.i.d. random variables with density 
N(0 ,  E). The corresponding Radon-Nikodym deriva- 
tive is given by 

A where g = N ( 0 ,  E). Denoting the expectation under P 
as E ,  and 

1 k - l  
\Eo,k = - x ( X i  - X;")'Q(Xi - X;') 

l=O 
2 

we can define the following unnormalized information 
state: 

q k ( j )  = E[Ak--l exp(o*o,k-d < Xk,e j  > I  Y k - 1 1  (11) 

It can be shown that the information state obeys the 
following recursion 

q k + l  = ADkB(Yk)qk (12) 

where 

-XLs)'Q(el  - X L s )  

and the optimal risk-sensitive state estimate 
by 

2;s = em* 
N 

m € { l , . . . , N }  j=1 g ( Y k )  
m* = argmin d Y k  - H ( e j ) )  

(13) 

is given 

With this brief recapitulation of risk-neutral and risk- 
sensitive estimation for HMMs, we now define the 
mixed estimation problem. 

The objective of the mixed estimation problem for the 
HMM described in Section 2. with Vk in (1) random as 
described in the beginning of this section, is to find 

Xriz = argminE[(Xk - q)'Q(Xk - q)  I &I, IC 20 
1)EE 

(15) 
such that the following constraint is satisfied by the 
worst case cost for k 2 0: 

In the next subsection, we present the solution to the 
mixed estimation problem. 
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Solution to the mixed estimation problem for 
HMMs 
Define &k 5 &, k 2 0 to be {em : 

0). where S k ( j )  is as defined in (5) and V ( . ,  .) is as 
defined in (4). 

m a j  [ s k ( j )  -k $(ej - em)'Q(ej - em) - i V ( y k , e j ) ]  5 

Then, the state estimate Xy for the mixed estimation 
problem is given by the following theorem: 

Theorem 4.1 Consider the HMM signal model de- 
fined in Section 2 and the mixed estimation objective 
defined by  (15), (16). Then the state estimate Xpz for 
the maxed estimation problem is given by  

N 

Proof: The proof is rather straightforward once we 
note that &k just denotes the admissible set for the state 
estimates such that the constraint on the worst case 
cost (16) is satisfied. One then applies (9) to obtain 
(17). 

5 Simulation results 

In this section, we present some simulation results 
to demonstrate the differences among these different 
estimation methods, i.e., minimax, risk-sensitive and 
mixed estimation methods for a given HMM. The 
HMM under investigation has 10 states with the fol- 
lowing A where aii = 0.19, aij = 0.09, Vi # j ,  i , j  E 

{1,2,. . . , lo}.  The observation model is scalar where 
V k  is Gaussian distributed. Note that when the mea- 
surement disturbance is bounded, it makes sense to use 
the robust estimation method in the minimax sense as 
presented in Section 3. Risk-sensitive or risk-neutral 
methods become suboptimal in that case. However, we 
ran some simulations with v k  being a truncated Gaus- 
sian noise such that lvkl 5 50, where (T is the standard 
deviation of the Gaussian distribution. The observed 
signal i.e., H ( Z k )  is H'Xk where H = (12345678910)'. 
The performance criterion is the average squared error + ~ ~ = ' = , ( x k  - Rk)'Q(Xk - 2,) where x k  represents 
the risk-neutral, risk-sensitive or the minimax state es- 
timate, as the case may be (with some abuse of nota- 
tion) and Q = HH'. 

-SI-- .., I 

Figure 1: Performance of the risk-sensitive filter 
bounded measurement noise 

I 
".a 

for 

Figure 2: Performance of the minimax robust filter for 
bounded measurement noise 

Figure 1 shows how the suboptimal risk-sensitive filter 
performs with different values of 8. Figure 2 shows the 
performance of the minimax robust estimate against 
various values of p. The risk-neutral average error was 
found to be 3.3555 over a run of T = 1000 time points. 

We also simulated the mixed estimation algorithm. 
Note that when Vk is purely random and the statisti- 
cal information about V k  is accurately known, the error 
performance achieved by the mixed algorithm is lower 
bounded by that of the risk-neutral estimation, since 
the mixed estimation optimizes over a constrained state 
space whereas the risk-neutral algorithm optimizes over 
the complete state space of which the constrained state 
space is only a subset. However, when V k  contains a 
mixture of random and unknown but bounded noise 
or the statistical information about the noise is not 
accurately known, we observed that the constraint on 
the worst case cost (16) is repeatedly violated by the 
risk-neutral estimation scheme whereas the mixed esti- 
mation scheme always satisfies the constraint. We also 
observed similar results when the noise was generated 
according to a uniform distribution but was assumed to  
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be Gaussian instead. Note that both the risk-neutral 
and the mixed estimation schemes become suboptimal 
for such uncertainties. However, the mixed estimation 
scheme guarantees an upper bound on the worst case 
cost whereas the risk-neutral estimation scheme fails to 
do so. We do not present any numerical results here 
for obvious reasons. 

6 Conclusions 

We addressed the problem of robust state estimation 
for hidden Markov models in this paper. We introduced 
a minimax robust estimation problem for HMMs with 
bounded uncertainties and presented a solution to this 
problem using the techniques of information states and 
forward dynamic programming methods. We also solve 
a mixed estimation problem that optimizes a quadratic 
cost with a constraint on the worst case cost. Some 
simulation results are presented that compare the per- 
formances of these different methods in case of uncer- 
tainties in the noise model. 
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