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Abstract 
This paper considers the problem of quantisation from the 
perspective of minimising filtering error when quantised in- 
stead of continuous measurements are used as inputs to the 
nonlinear filter, specialising to a discrete-time 2-state hid- 
den Markov model (HMM) with continuous output. 

1 Introduction 

In communication systems, a fundamental problem is the 
question of how much degradation in performance a re- 
ceiver suffers when incoming data are quantised. In this 
brief note we will consider the effects of quantisation on 
the performance of a nonlinear filter, with the signal source 
assuming the form Yk = h(Xk) + Vk. Here Xk is a 2-state 
Markov chain, with h(Xk)  E { -1,1} and vk is independent 
and identically distributed (i.i.d.) noise. The function of the 
filter is to estimate Xk given quantised versions of Yk. 

Much of previous work dealing with quantisation aims to 
reduce the distortion between the original and quantised 
signals under some minimum mean-squared-error criteria 
[2, 3,6]. In contrast, the primary focus here is to minimise 
the probability of error of a nonlinear filter with quantised 
observations as inputs. Some of the questions we address 
are: (1) Is there an optimal strategy for choosing the quan- 
tisation levels which minimises the filtering error? (2) How 
does filtering error vary with noise for different number of 
quantisation levels M? 

At this stage we have only partial answers to both questions. 
For the first question, we provide two quantisation schemes, 
based on the maximisation of the mutual information and 
Kullback-Leibler (KL) divergence measures respectively. A 
comparison of these schemes will be made by simulations. 
We also provide an analysis for computing the maximum a 
posteriori (MAP) error as a function of signal-to-noise ratio 
(SNR), for a 2-state discrete-time HMM with continuous- 
range output (this is a discrete-time version of a continuous- 
time result obtained by Wonham [SI). 

2 Signal Model 
Consider a first order, homogeneous discrete-time 2-state 
Markov chain Xk E {1,2}, the subscript k denoting time. 
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The actual state levels are denoted as h(Xk) E {-I, 1). At 
each k, a corresponding signal Yk E IR is observed. The asso- 
ciated quantised observations obtained via an M-level quan- 
tiser will be denoted as Y l  E { 1,2,. . . , M}. The recursive 
filtering equations using Y: can be found in e.g. [4]. 

The evolution of the Markov chain is governed by the 
state transition probability matrix A = (ai,), where ai, = 
Pr(Xk+l = ilXk = j ) .  We will further assume that A is 
symmetric (or doubly stochastic) and has the form A = 

[’ “U] where 0 < a < 1. The observation pro- 

cess Yk is defined as yk = h(xk) + vk where vk is i.i.d. and 
N(0, 02). Consequently, Yk is conditionally distributed as 
!V(xkl 02), given the state xk at time k. 

The objective of quantisation is to partition the observations 
Yk into M distinct levels. The quantised outputs are then 
related to the Markov states by the measurement matrix C = 
(Cmj) ,  such that cmi = R ( Y f  = mlXk = i): 

where em-l and e,  are the limits of the m-th quantisation 
level, with the terminating levels eo = -- and e M  = -. 

3 Filtering Performance 
3.1 Continuous Measurements 
In this section we will derive the filtering error for a 
discrete-time and 2-state HMM with continuous-range ob- 
servations as a function of SNR by considering the joint 

ability vector at time k. Denoting the stationary densities’ 

we have (since h(&) = - sign(qk)) 
as n*(d dq = W ( X k )  = f 1 , q k  E (q,q+dq)), -1 i q 5 1, 

1 0 
Pr(Fi1terError) = I  n + ( q ) d q + l l x - ( q ) d q .  (2) 

It can be shown that the densities n* (q) are the steady-state 
solutions to the following integral equation: 

& ~ ( X k + l  = i ,q )dq=R(Xk+l  = i , q k + l  E (4 ,4+&))  

We omit here the proof of the existence and uniqueness of solution due 
to page constraints 
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where 

In this paper, we will solve (3) numerically. 

3.2 Filtering Using Quantised Observations 
We will now propose schemes for determining the quantisa- 
tion levels using information-theoretic ideas; uniform quan- 
tisation will be used as the basis of comparisons. 

For random variables X and Y, we have (see [ 1 I): 
Definition 3.1 (Entropy and Conditional Entropy) 
H(X) = -&P(x)logP(x) 
H(XIY) = -&,yP(x,Y)logP(xlY). 
Definition 3.2 (Mutual Information) 

Definition 3.3 (KL divergence) 
I(X;Y) = ZyP(X,Y)log $&) = H ( X )  -H(XIY). 

c 4 .  

Yk’ 

K(Xk=i,Xk=j) = & c r . l o g %  A E j l O g Z .  
Yk’ c q .  

ykJ 

Method 1. Maximisation of Mutual Information The 
quantisation levels are evaluated by maximisation of 
H ( x ~ ;  YO“, . . . , Y:) via a minimisation of H(x~~Y$, . . . , Y:), 
or an approximate version, namely H(x~~Y:). 

Method 2. Maximisation of KL divergence We will ‘sep- 
arate’ the distributions C.1 = F’r(Yf1Xk = 1) and C.2 so that 
the observations are as informative as possible, by maximis- 
ing the KL divergence between C.1 and C.2. 

4 Simulation Studies 

Fig. 1 compares the theoretical error curve (2) and simu- 
lation error (continuous measurements). There is high fit at 
d 2 0.7; the discrepancy occurs because at small d the theo- 
retical error computed is moderately sensitive to the number 
of discretising steps used. 

Fig 2 shows a comparison of different quantisation schemes. 
From our simulations, one can conclude that maximisation 
of mutual information leads to significant improvement over 
the uniform case, particularly when Q 5 1. However, IU- 
maximisation did not lead to better filter performance. 

From Fig. 3, it can be seen that when M = 4, the result- 
ing filtering error (when maximising mutual information) is 
comparable to the theoretical curve irrespective of the SNR. 

5 Conclusion 

In this paper, we have derived an expression for the filter- 
ing error for a 2-state HMM with continuous output. Our 
simulation studies indicate that maximisation of mutual in- 
formation can lead to significant improvement in filtering 
performance over uniform quantisation. However, it seems 
that IU-maximisation does not in general lead to better fil- 
ter performance. 

41 24 

References 
[ 1 j T. M. Cover and J. A. Thomas. Elements of Infor- 
mation Theory. Wiley Series in Telecommunications. John 
Wiley & Sons, Inc., 1991. 

[2j S. P. Lloyd. Least squares quantisation in PCM. 
IEEE Transactions on Information Theory, IT-28(2): 129- 
137, Mar. 1982. 
[3j J. Max. Quantising for minimum distortion. IRE 
Transactions on Information Theory, IT-6:7-12, Mar. 1960. 

[4j L. R. Rabiner. A tutorial on hidden Markov models 
and selected applications in speech recognition. Proceed- 
ings of the IEEE, 77(2):257-285, Feb. 1989. 

[5j W. M. Wonham. Some applications of stochastic 
differential equations to optimal nonlinear filtering. SZAM 
Journal on Control, 2(3):347-369,1965. Series A. 

[6j J. Ziv. On universal quantisation. IEEE Transactions 
on Information Theory, IT-31(3):344-347, May 1985. 

Figure 1: Comparison of theoretical and simulated filtered error 
(using continuous measurements). 
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Figure 2: Comparison of filtering error for different quantisation 
schemes, (T = 0.4. 

Figure 3: Filtering error using maximisation of mutual informa- 
tion for different number of quantisation levels. 
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