
Proceedings of the 42nd IEEE 
Conference on Decision and Control 
Maui, Hawaii USA, December 2003 TuM03-2 

Optimal Power Control in Wireless Data Networks with Outage-based Utility Guarantees 

Subhrakanti Dey and Jamie Evans 
Department of Electrical and Electronic Engineering 

University of Melbourne 
Parkville, Victoria 3010, Australia 

{s.dey,j.evans}@ee.mu.oz.au 

Abstract-In this paper, we address the problem of optimal 
power control in the uplink of a single cell of a multiuser 
interference limited wireless data network with Rayleigh fading. 
We propose a frame outage-based utility function that is opti- 
mized for each user. We consider two optimization problems: (1) 
Maximizing the minimum utility and (2) minimizing the total 
transmitted power subject to each user meeting their minimum 
utility targets. We propose simple iterative algorithms to solve 
these optimization problems which are seen to converge rapidly 
to the optimal solutions. Some numerical studies are carried out 
to illustrate the performance of these algorithms, demonstrating 
that one can achieve large utility values by spending a fairly 
small amount of transmit powers provided one can employ an 
appropriate multiuser detector at the receiver to guarantee a 
substantial processing gain. This allows data communication to 
take place with a low probability of frame outage even over 
rapidly fading Rayleigh channels. The power control algorithm 
needs to update at a much slower rate than the rate of fast 
channel fading, thus making it easy to implement in practice. 

I .  INTRODUCTION 

Efficient power control is an important problem in wireless 
networks for reducing radiation levels and extending battery 
lives of mobile devices. Furthermore, it is crucial for in- 
terference limited networks such as CDMA where optimal 
control of transmit powers can lead to effective interference 
minimization and to an increase of capacity in the network. 
Power control in the uplink of a wireless network has been 
studied as a constrained optimization problem in [ l ]  [2] [3] 
and many others (see references in these papers as well). 
The basic objective of this problem has been to minimize 
total transmitted powers of mobile users subject to each 
user meeting their Quality of Service (QoS) guarantees. 
Centralized and distributed algorithms have been found to 
update the powers of the mobiles whenever the channel 
characteristics change, assuming that the rate of change of 
the channel is fairly slow, allowing the change to be tracked 
accurately. The problem has also been considered in a single- 
cell [2] as well as a multi-cell framework [3]. Convergence 
of these algorithms has been proved for both synchronous 
and asynchronous CDMA applications. In the case where 
channel link gains are not exactly known but are estimated 
only, [4] has proposed a distributed power control algorithm 
based on interference measurements at the receiver which is 
proved to converge in the mean-square sense using stochastic 
approximation based ideas. 

However, most of these earlier works address the power 
control problem with the assumption that the wireless link 

gains are time-invariant or slowly time-varying. This allows 
the bit-error-rate (BER) or the signal-to-interference ratio 
(SIR) for a particular user to be used as the appropriate QoS 
when defining the constraints in the optimization problem. In 
the case of voice communications over wireless channels, it is 
well known that rapidly fading wireless channels make such 
constraints on a minimum achievable SIR difficult to achieve. 
This is true because tracking fast variations in the channel 
may become difficult, or updating the power efficiently at 
such a rapid rate may also pose inconvenience. Therefore one 
needs to define the so-called “outage probability” to charac- 
terize the probability that the SIR falls below that minimum 
acceptable threshold. The constraints in the optimization 
problem are then replaced by maximum allowable outages. 
A recent work that treats such an optimization problem for 
Rayleigh fading channels is [5 ] ,  where convex optimization 
techniques are used to solve various optimal power control 
problems with outage probability specifications. In 161, an 
optimal power control problem with outage probability spec- 
ifications is solved using a simple iterative technique with 
guaranteed convergence for the Rayleigh fading case. The 
authors also showed that one can achieve fairly small power 
utilization if one combines an appropriate multiuser detector 
(such as a linear minimum mean square (LMMSE) detector) 
with the power control algorithm. 

While there has been a huge amount of work on power 
control for voice communications over wireless, new power 
control techniques for data communication over wireless are 
still emerging. While data rates can be adapted for achieving 
better quality of service even in rapidly fading channel con- 
ditions, power control remains an important problem in the 
context of fixed-rate data communications over wireless (see 
[7]. A recent paper [8] (see also references therein) shows 
how game theoretic ideas can be used to include pricing in 
solving the power control problem for data over wireless. 
This paper considers a single-cell CDMA network where 
each user wants to optimize their own utility functions, thus 
setting up a non-cooperative multi-person game problem. 
By including pricing, the authors show that one can come 
up with a distributed solution to the problem that is Pareto 
optimal. A centralized version of the problem is also studied 
in [9]. Similar game theoretic ideas are also explored for 
power control with capacity optimization in [lo]. These 
works however, assume that the channel is time-invariant 
or slowly time-varying and thus can be estimated fairly 
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accurately. While there have been ad-hoc power and rate 
control algorithms for fading channels [ 111, there has been no 
systematic study for power control over data networks with 
rapidly fading channels using outage (for frame error rates 
rising above a certain acceptable value) based constraints. 

In our work, therefore, we propose an outage-based utility 
function for each user under Rayleigh fading conditions. 
This utility function represents the ratio of frame success 
probability per unit of power spent. We consider the uplink 
of a single-cell interference limited network (such as CDMA) 
with a generic multiuser detector at the receiver that provides 
an appropriate processing gain. We consider the problem as 
a centralized optimization problem where the power control 
algorithm is really implemented at the base station, and 
the power updates are communicated to the mobile with a 
delay less than the time between consecutive power updates. 
We consider two optimization problems: (1) maximizing 
minimum utility and (2) minimizing sum power subject 
to each user meeting a minimum acceptable utility value. 
The algorithms developed are simple iterative procedures 
which are seen to converge within a few iterations. We 
also study the performance of these algorithms numerically, 
illustrating the fact that an appropriate multiuser detector can 
be employed at the receiver to achieve large utility values 
even with small power utilization and an acceptably high 
frame success rate. 

11. SYSTEM MODEL AND OUTAGE-BASED UTILITY 

We consider a single cell in a cellular wireless commu- 
nication system with K users simultaneously transmitting L 
information bits in packets (frames) of Al(M > L )  bits at 
a fixed rate of R bitdsecond. In this work, we assume that 
the transmission rate for all users is fixed at R. Denote the i- 
th user’s transmission power as pi ,  i = 1, . . . , I<. For a time 
invariant wireless channel, an appropriate utility function that 
the i-th user chooses to optimize was given in 181 as 

where ~i is the signal-to-interference ratio (SIR) for the i- 
th user and f (  .) is an efJicieizcy funcrion that approximates 
the frame success rate (FSR) (which is equivalent to the 
probability of all bits in a frame being received correctly). 

Frame Outage-based Utility 
In the case of a randomly time varying channel, the SIR 

itself is a random process and thus we need to find an 
alternative definition for a utility function which is based on 
a frame outage probability (FOP). The FOP for the i-th user 
is defined as the probability that the FSR for the i-th user 
falls below a minimum acceptable FSR, FSR,,i,. Denoting 
the FOP for the i-th user as Or, we can express the utility 
function for the i-th user as 
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Assuming BPSK modulation for data transmission and that 
SIR is constant over a frame (that is the channel fading is 
static over a frame), we can compute the FSR for the i-th 
user as 

FSRi = [l - Q ( d m ) ]  ‘‘ (3) 

where Q(z) = 2n J,”exp(-t2/2> dt. Since Q(x)  is 

now be simply related to the traditional concept of outage 
probability used in voice comunications as P(SI& < 
SIR,i,) where given a FS&i, one can easily compute 
the corresponding SIR,i,. 

Note also that when pi = 0, OF = 1. However, we 
exists and is finite. Later on, assume that limpi+0 

for a specific channel fading statistic, we shall show that 
indeed, this assumption holds true. 

Derivation of Outage-based Utility 

In order to derive the expression for the outage-based 
utility ui as defined above, we need to specify the statistical 
model of the wireless channel gains for each user transmitting 
data. We also assume here that there is an appropriate 
multiuser detector employed at the receiver that provides 
a processing gain of PG. In order to keep discussions 
simple, we settle on a generic multiuser detector, but note 
that this work can be easily extended to consider specific 
forms of multiuser detectors such as linear minimum mean 
square error multiuser detector (LMMSE MUD) and the 
optimization can be seen as a joint optimization over the 
users’ transmitter powers and the multiuser receiver filters 
(as in [61>. 

Denote the channel gain from user j ’ s  transmitter to the 
i-th user’s receiver as Hij = Gij Fij where Gij is taken to 
be time-invariant and Fij is a random process denoting the 
rapidly time-varying component of the channel. In reality, 
Gij may be slowly time-varying (e.g. distributed according to 
a log-normal shadowing model), but its slow variation allows 
the receiver to track it accurately using sophisticated channel 
estimation algorithms. For this reason, we will assume in 
this work that Gij V i , j  are time-invariant, that is they 
represent the time-invariant channel attenuation due to the 
distance between the transmitter and the receiver. We also 
assume that Gij implicitly includes the processing gain not 
just due to the spreading factor, but also the one achieved 
through the use of the multiuser detectors at the receivers. 
With this in mind Gii is expected to be much larger than 
Gij, j # i, i , j  = 1,. . . , K .  

For the purpose of this paper, we assume that Fij, Vi., j are 
statistically independent Rayleigh-distributed random vari- 
ables with unit mean. This is traditionally known as the 
RayleighlRayleigh fading environment which is applicable 
in dense urban areas where none of the users has any direct 
line of sight. Note that the instantaneous SIR for the i-th user 

a monotonically i+ ecreasing function of 5c, the FOP can 
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is given as 

where the term in the numerator denotes the received power 
of the i-th user, whereas the denominator denotes the total 
interference due to all other users’ received power at the i-th 
receiver and the noise variance (a2) due to the white channel 
noise and thermal noise at the receiver. 

For simplicity, we assume that the FSR,i, for all users is 
the same although this work can easily be extended to multi- 
class users with different quality of service (QoS) guarantees. 
The corresponding SIR,i ,  then is denoted by 7 t h  and is 
computed as 

where erfcinv denotes the inverse complementary errorfunc- 
rion erfc which is related to the Q function as Q(x)  = 
0.5 erfc( 5). 

Once 7 t h  is determined, the FOP for the i-th user is 
calculated as 

A 

0: = P ( S I R i  < 7 t h )  

For a derivation of this outage probability and outage prob- 
abilities for other fading distributions, see [12] and [13] and 
references therein. 

Substituting this in (2), we obtain the expression for our 
utility function as 

I-OF It can be easily verified that in this case, lim,,,~ p, = 0. 

111. OPTIMAL POWER CONTROL 
In this section, we consider two optimization problems: (1) 

Maximize the minimum utility while each individual user’s 
power is constrained between zero and maximum value and 
(2) Minimize sum of all users’ transmitted powers such that 
each user meets a minimum outage-based utility guarantee. 
These two problems are studied in the next two subsections. 

A. Maximizing Minimum Utility 

Problem A: 
Maxintize minz ui over p = (p1 p2 . . . p ~ ) ‘  such thar 0 < 

In order to study this problem, let us first look at the nature 
of the utility function as a function of a user’s own power 
when other users’ powers are kept fixed. Figure 1 shows a 
typical utility plot (for a system with 4 users) for user 1 when 

In this subsection, we consider the problem: 

Pi Spmax,  Vi. 

“0 0.01 0.02 0.03 0.04 0.05 
Power of user 1 (mW) 

Fig. 1. Plot of Utility of User 1 versus p l  

the powers for the three remaining users in the system are 
kept fixed. 

Notice that u1 goes to zero as p l  -+ 0 or p l  --f m. There 
is a unique maximum at the value p h .  The fact that there 
is a unique maximum can be proved carrying out the usual 
analysis on % and showing that it has a unique maximum. 
The algebra is straightforward and excluded from this paper. 
This also implies that ui is a strictly monotonically increasing 
function of pi for 0 < pi  5 PA.  

Now suppose that there is a solution to Problem A given 
by p* = (p; pz . . .p;O’. The following Lemma states that 

Lenznzu 3.1: If p* = (pi, pi . . .pi()’ is a solution to 
Problem A, then 0 < pf I &, Vi. 

Proof: Note that if p* = (p;  p z  . . .p>)’ is a solution 
to Problem A, then p* maximizes the minimum utility. 
Suppose pi > p h  for some i. In that case, notice that just 
decreasing pi would increase the utility of user i as well as 
the utilities of other users, as ui can be seen (from (7)) to be 
a strictly monotonically increasing function of pk,  k # i as 
pk decreases. Clearly, this implies that p* does not maximize 
the minimum utility. Therefore pf 5 p i .  Since i is arbitrary, 

Lemma 3.1 leads to the following additional Lemma. 
Lemma 3.2: Suppose p* maximizes the minimum utility. 

If ui evaluated at p* is denoted as uf, then all U:, i = 
1,2 , .  . . , K are equal. 

Pro08 Recall that for 0 < pi 5 pm. ui is a 
strictly monotonically increasing function of pi and a strictly 
monotonically decreasing function of pk,  k # i as pk, k # i 
increases. Now suppose that not all U: are equal. Choose 
an index j ,  such that U; > U* = mini uf. Note that by 
decreasing pj by a small amount, one decreases uj below 
U; by a small amount, but also increases all other users 
utilities by a small amount, thus increasing mini uf. This 

0 <pi* I p h .  

the proof is complete. 

i 
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clearly contradicts the fact p* maximizes the minimum 

Lemmas 3.1 and 3.2 trivially imply that the solution p* is 

Let us now look at the problem of finding p*. In view of 

utility. Hence, all U ; ,  i = 1,2,. . . , K are equal. 

also unique. 

Lemma 3.2, one can rewrite Problem A as 
Problem A': 
Maximize K with respect to p 
such that 

LR where = x. 
Next, we introduce a pmin > 0 such that pi 2 pmilz, Vi .  

This is justified since pi > 0, however, the choice of pmin 
depends on the choice of the system parameters. In principle, 
pmin can be chosen to be as small as possible, as long as 
pnzilz > 0. In practice, pmin will be determined by the device 
in the mobile transmitter. Also, it is trivial to extend it to the 
case where each user i has a different p i i n l  i = 1,2,  . . . , K .  

After some rearranging of (S), one can now pose the 
problem as 
Problem A l :  
Minimize 6 
such that 

Clearly, if the minimum S is denoted as S*, then U* = 
m a p  t = exp(1n 

This can now be stated as finding a positive vector p and 
S so that 6 is minimized and B(p)p = Sp where the entries 
of the positive matrix B(p) are given by 

- 6.). 

,. 

If one ignores the fact that B(p) depends on p. this can be 
solved as a Perron-Frobenius eigenvector problem (since B 
is a positive matrix ensured by the fact that pi 2 pmin, Vi) .  

An iterative algorithm is used to solve this problem starting 
with an initial vector po = (pmin pmin . . .pmin)' and then 
iteratively solving for 

B(pn-l)pn = Snpn (11) 

where n 2 1. This procedure is repeated until pn does not 
change. It was seen through computer experiments that this 
iterative procedure converges to the final solution p* and 
the corresponding S* quite fast. Similar algorithms are used 
to solve optimal power control problems in [4] [5].  Later, 
in Section IV, we provide some numerical results for this 
algorithm. 

B. Sum Power Minimization 

In this subsection, we are interested in a different, but 
related optimization problem. Minimization of transmitted 
mobile power is desirable for many reasons including ex- 
tending battery life, reducing radiation level and reducing co- 
channel interference in interference limited wireless networks 
such as CDMA. For voice communications, optimal power 
control has been studied extensively, often as an optimization 
problem of sum power minimization with SIR or outage 
probability constraints [4], [5],  [6] (see also references 
therein). For data communications over wireless, although 
power control for utility maximization has been studied in 
[SI, we believe that our work is the first to investigate 
the problem of sum power minimization with outage-based 
utility constraints for wireless data communication. 

We therefore consider the following problem: 
Problem B: 
~ i n i n i i z e  E E ~  pi over p 
such that ui 2 U * ,  0 < pi  5 p,,,, Vi, where ui is defined 
by (7). 

Note here again that one can make the minimum utility 
target U* different for different users in a multi-class service, 
but here we consider the same'target for all users, that is, a 
single service class. In practice, one can choose the utility 
targets to be a prescribed fraction of the maximum utility 
that can be achieved in the system by solving Problem A 
studied in the previous section. Of course, if some users have 
their utility targets less than the maximum (minimum). utility 
achieved by solving Problem A, some other users can have 
their utility targets higher than this maximum provided the 
optimization problem is feasible. This is a useful fact for the 
case when one is interested in a multi-class service. 

We now provide a simple intuitive proof of the following 
Lemma. 

Lenima 3.3: Consider Problem B. Suppose it is feasible 
and there is a feasible power vector pt such that ui(pt) 2 
U * ,  Vi .  If p+ is the optimal power vector, in that it minimizes 
sum power, then ui(pt) = U* and 0 < p i  <_ p i  where pi = 
p k  is the unique power at which ui(pi ,  PI,) is maximized, 
p!, denoting the power vector excluding the user i, the j-th 
element of the vector being p i .  

Suppose there is a feasible power vector ps 
such that all users satisfy their utility targets exactly, that is 
ui = U*,  Vi. Now suppose the j-th user is using a power 
p j  which according to Figure 1 can lie on either side of pi?, 
where p j  = Hn is the power maximizing u j ( p j ,  p"_). If 
p j  > @A, then clearly it can reduce its power to increase 
its own utility and in the process, increasing other users' 
utilities as well. Clearly, p; is not an element of the optimum 
power vector if p; > @A. Hence, the j-th user can reduce 
its power until it gets to the power p i  where p i  5 

increases other user's utilities beyond U* as well, therefore 

Proo) 

and u j ( p j ,  1 p") = U*.  Notice that reducing p j  of course 
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they can also reduce their powers to achieve utility U*. 
This argument can be repeated for any number of users 
having feasible power solutions which are greater than their 
corresponding individual utility maximizing power (when 
other user’s powers are kept fixed). Thus the optimal power 
vector should have all its elements on the left hand side of 
their individual utility maximizing power values. 

Also, at this point, suppose all users are achieving utility 
targets U*. If any user tries to increase hisher utility by 
increasing hisher power, then that would decrease other 
users’ utilities below U* and therefore they will have to 
increase their powers again to increase their utilities to U*. 

Clearly, therefore, for the sum power to be minimum, all the 
target utilities need to be exactly met, that is at the optimal 

B 
Notice that Lemma 3.3 allows us to solve for the optimal 

power vector by solving the set of nonlinear equations ui = 
U*, V i  with the appropriate projection of the solutions on 
to the constraint set 0 < pmin 5 pi 5 p,,, with the 
choice of an appropriate pmin > 0. The fact that the optimal 
power vector has all its elements on the left hand side of 
their individual utility maximizing power (keeping all other 
remaining users’ powers fixed) can also be used during the 
projection method, depending on whichever happens to be 
tighter. 

One can use any penalty-based optimization methods or 
even interior point based optimization methods to solve this 

. problem [14]. But here we use a simple iterative technique 
that solves a nonlinear vector fixed point equation 

power solution, ui = U*,  Vi. 

P = f ( P )  (12) 

where the individual element pi = f i ( p )  such that 
r -I 

(13) 

It is easily seen that Brouwer’s Fixed Point Theorem [ 151 can 
applied here to show that there is a fixed point. However, one 
cannot prove global contraction to show uniqueness of the 
fixed point. 

We used an iterative procedure p” = f ( p ” - l ) ,  po = 
PminlK with pmin 2 p: 2 pmaxl vi, where pk is the k- 
th iterate of the fixed point equation and 1~ is a column 
vector of all ones of dimension K .  It was seen during our 
computer experiments that when initialized with small values 
(such as pmin), the iterative method (13) always converged 
to a unique fixed point, while choosing large initial values 
made some powers diverge away to p,,, without the utility 
constraints being met. Hence our decision to initialize the 
algorithm with an appropriately chosen small pmin. 

Noting that there is at least a fixed point, we make the 
following assumption: 

Assumprion 3.1: The mapping p = f(p) given by (13) 
has a fixed point p* such that the function f(.) is differen- 
tiable at p*  and the Jacobian f’(p*) has a spectral radius 
less than 1. 

Remark 1: Note that clearly, without knowing the fixed 
point, this assumption cannot be verified at the start of the 
fixed point iterative procedure. However, when the iterations 
converge (as they do when initialized with small power 
values), this assumption was successfully verified at the 
unique fixed point achieved by the iterative algorithm. 

It is well known that Assumption 3.1 guarantees local 
contraction. Therefore we have the following theorem: 

Theorem I :  Suppose Problem B is feasible and that As- 
sumption 3.1 holds. Then, the iterative procedure p” = 
f ( p ” - l )  initialized with a p o  close enough to p* will 
converge to p * .  

Proof: The proof directly follows from Ostrowski’s 
Theorem (see [16], pp. 300-301). An explicit rate of con- 

It was also verified that the use of a MATLAB optimization 
routine “nlincon” resulted in identical optimal power solu- 
tions when initialized with small enough initial conditions. 

vergence can also be found there. 

IV. NUMERICAL STUDIES 

In this section, we provide some numerical results for our 
solutions to Problem A and Problem B using our iterative 
methods described in the previous section. 

We consider the uplink of a single cell with nine users, 
similar to that of [8 ] .  User i is at a distance di  from 
the base station. We choose the distances to be d = 
(250 350 570 620 740 810 880 940 1000) in metres 
and Gii is taken to be as in [8 ] .  We assume that 
interference is suppressed by a processing gain, PG. so that 
Gij = G 3 j / P ~  and PG is varied between 5 and 50. We 
aIso assume o2 = 5 x Watts, L = 64,  A4 = 80 and 
R = 10 Kb/s. The minimum frame success rate is taken to be 
99.99%. p,,, is taken to be 2 Watts, and wherever necessary 
(for numerical convenience) pmin is taken to be 0.1 micro 
Watts. 

Figure 2 shows how the maximum achievable minimum 
utility can be increased with increasing processing gain. The 
minimum frame success rate for this set of results is chosen 
to be 99.99%. One can of course increase the minimum 
required frame success rate and consider higher processing 
gains to achieve similar utility values. This clearly illustrates 
the generic value of multiuser detection in conjunction with 
power control to maximize user utility in wireless data 
networks with rapidly fading channels. 

Figure 3 on the other hand, shows how the total transmitted 
power required to maintain the target utilities (identical for all 
users) increases with increasing utility values. The processing 
gain for this set of results is fixed at 30 and the minimum 
frame success rate is taken to be 99.99%. 
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Minimum frame success raw = 99.9970 A 

Processing Gain 

Fig. 2. Maximum Achievable Minimum Utility versus Processing Gain 

1.61 I 

J 
200 400 600 800 1000 1200 

0.2‘ ’ 

Target utility for all users (hits/joule) 

Fig. 3. Total Transmitted Power versus Common Target Utility 

V. CONCLUSIONS 
In this paper, we propose an outage-based utility function 

for transmit power control in an uplink of a single cell of 
an interference limited wireless data communication system 
(e.g, CDMA) with Rayleigh fading. We show that one 
can compute optimal power solutions using simple iterative 
algorithms that are seen to converge within a few iterations. 
The results show that one can achieve large utilities for 
each user by spending a fairly small amount of transmit 
power if one can employ an appropriate multiuser detector at 
the receiver to provide a substantial processing gain. Some 
numerical studies are carried out to study the performance 
of these algorithms. 
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