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ABSTRACT 

Quantiser design for a nonlinear filter is considered in the con- 
text of a decentralised estimation system with communication con- 
straints. The filter is based on quantised outputs of a discrete- 
time, two-state Hidden Markov Model (HMM) as measured by 
two remote sensor nodes. The optimal quantisation scheme is ob- 
tained by maximising the mutual information between the quan- 
tised meaurements and the hidden Markov states. Filter perfor- 
mance is measured in terms of the probability of estimation er- 
ror and is investigated through simulation for HMM's with both 
independent and correlated white Gaussian noise in the measure- 
ments. The performance of the filter based on continuous, un- 
quantised signals provides a benchmark for the performance of 
the filter based on quantised measurements. Therefore a method 
for computing the probability of estimation error directly for the 
continuous filter is also presented. 

1. INTRODUCTION 

In Communications systems, there often nrises the need to quan- 
tise data before funher processing 01 transmission, for example, 
in bandwith limited communications channels such as might be 
found in decentralised estimations systems like the one shown in 
Figure 1. The system consists of two remote processing nodes 
and a fusion center. In this work, Xk is a discrete time, two-state 
Markov chain, and the f u s i p  center estimates the hidden state xk 
based on quantised inputs Yi obtained from the continuous Sensor 
outputs Yi = Xk f V i ,  j =.l, 2 up to time k. The noises Vi are 
assumed to be sequences of independent identically distributed 
(i.i .d) random variables. The fact that Hidden Markov Processes 
can model many nonlinear systems well provides the motivation 
for studying them in this context. 

Quantiser design for linear decentralised estimation systems 
has been investigated by many authors. for example [I ,  2, 31. For 
detecting deterministic signals in additive white Gaussian noise, it 
has been shown [4] that using identical binary sensors is asymp- 
totically optimal as the number of observations per sensor goes to 
infinity. For nonlinear filters, quantiser design based on minimis- 
ing the information loss characterised by means of a functional 
central limit theorem, has been investigated in [SI. A more direct 
approach for HMM's, based on maximising the mutual informa- 
tion between the quantised measurement and the hidden Markov 
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state was investigated in 161, and it is this work which is gener- 
alised here in the context of decentralised estimation. 
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Fig. 1. Decentralised Estimation System. 

In particular, the methods for quantiser design, and for directly 
computing the estimation error are generalised to the case of two 
sensors (Section 3). Also, through simulation studies (Section 4) 
the following three questions are addressed. ( I )  What happens to 
the performance of the continuous filter when the noise level in one 
of the sensors becomes large? (2) If one sensor has a restriction on 
its available bandwidth, and thus, on the number of its quantisation 
levels, then can any significant improvements in the performance 
of the quantised filter be achieved by adding a second sensor with 
higher noise level, but perhaps with more available bandwidth? 
(3) In the case of independent noise, is there a simple relationship 
between the quantisation scheme obtained jointly for the two sen- 
sors and the quantisations schemes obtained individually for each 
sensor? 

Simulations were performed for HMM's with white Gaussian 
noise. With regard to questions ( I )  it was observed in the case 
of correlated noise, that there exists a critical signal to noise ratio 
beyond which filter performance improves as the signal to noise 
ratio increases. In regard to question (2) it was observed again 
in the case of correlated noise that in general, improvements in 
filter performance cannot be guaranteed simply by the addition of 
a second sensor. 
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2. MODEL DEFINITION 

In the following, all stochastic processes are defined on the proba- 
bility space (Cl, +, P).  Consider a discrete time, two-state Markov 
Chain { X k }  with state space S = {ZI,Z~}. and transition proba- 
bility matrix A = ( a i j ) ,  where aij = P ( X r  = zj I xk-1 = z i )  
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for i , j  = 1,2. Without loss of generality it is assumed that 
xi  = (-1)' for i = 1 , 2 .  To simplify the computations it is 
also assumed that [ x k }  has symmetric transition matrix A = 
[ '," ,?",I, where 0 < a < 1. The sensor output at time k, 
isgivenbyYk =(Y,',Y:),whereY: = X k + V : , f o r j = 1 , 2 .  
The noises {V;} and {V:] are, respectively, sequences of inde- 
pendent identically distributed (i.i .d) random variables with known 
densities, which are also independent of {Xk}. 

An M level quantisation scheme for [I",'} is defined using 
the partition of the real line -m = e: < e: < . . . < e& = M 

as follows. For each k = 0,1,. . . , the quantised sensor y,' is 
defined by Y,' = m, forthe unique m E {1,2,. . . , M }  satisfying 

< Y,' 5 !A. An N level quantisation scheme for {Y:] is 
defined analogously. 

X k  denote the filtere? estimate of Xk at time k. Then for continu- 
ous measurements, x k  = sign(&*) where Qk = IE [ X K I Y ~ ] .  For 
quantised measurements Xx = sign(&k), whereQk = E [ X k l j j k ]  

Standard definitions of mutual information and conditional en- 
tropy, as used in [6], are used in this work. 

Define y k  = U(%, . . . ,Yk) and yk = O ( Y 0 , .  . . ,pk) .  Let - 
- 

3. QUANTISER DESIGN 

Let f v ~ x ( y k l x i )  denote the conditional density of Yk given Xk = 
xi. Then the conditional probability distribution of yk given X k  = 
xi is given by: 

Let n k j k  denote the conditional probability vector for the fil- 
ter observation pk when contiuous measurements are used, where 

Define I l k l k  by analogy when quantised signals are used. Then 
these vectors are updated by the recursive relations [7]: 

nklk(i)-= P ( X k  = XilYk = Y k , .  . . ,Yo = YO). f o r i  = 1, 2. 

where B k  = diag [fY~X(yklxl)lf~Ix(Yk1~2)]r 1; is a (1  X 2) 
vector of ones, B k  = diag [pp,, ( m i ,  nt l x ~ ) ,  Pplx (mi., n k  Ixz)] 
It follows from the definition of qk, that qk = nklk(2) - nklk(1). 
Hence, using (2). the iterative update equation for qk is given by: 

wherep = 1 - 2% c: = fY/X(yklxl). c,' = fYlX(YkiX2). 
The method used to determine the quantisation levels e;, 1 5 

m 5 M and e:, 1 5 n 5 N is based on maximising the mu- 
tual information between the Markoy state XX and the quantised 
observation sequence {Yo, YI,. . . , Yk}. The justification for this 
approach [6] is based on the fact that intuitively, since a filter per- 
forms information processing on the observation sequence, the fil-  
ter performance can be improved by maximising the amount of 
information in the observation sequence about the state [SI. It fol- 
lows from the definitions of mutual information and conditional 
entropy that the mutual information is maximised by minimis- 
ing the conditional entropy H(XklYo,.  . . ,Yk) which is bounded 

above by H(Xk@k). 11 the absence of a closed form expres- 
sion for ff(XklY0,.  . . , Yk), the hound H(Xk  lYk) is minimised. 
Clearly the resulting conditional entropy H'(XklY0,. . . , vk la f -  
ter minimisation can be no greater than the minimum H'(XklYk). 

Due to the underlying simplicity of the model, it was seen 
[6] that the bound H(xklYk)  is reasonably tight and good filter 
performance can be obtained. As model complexity increases, 
the method can be extended to use progressively tighter bounds 
H(xklYk, pk-1) etc with a corresponding increase in computa- 
tional complexity. 

Using the defintion of conditional entropy and Bayes' Rule we 
have 

Direct computation of the continuous filter error requires the con- 
ditional density S,(q,Q) = f Q r l x , ~ k - ,  ( q l x , ,  @), whose existence 
is guaranteed under the following assumptions. For each Q E 
(-1,l) define gg: W2 + W by gg(y',y2) = g(y',y2,Q). If 
there exists a family of functions fg : W2 + 4 Q E ( -1 , l )  such 
that each Gg i (gg, fg) has continuously differentiable inverse 
H g :  ( -1 , l )  x W --t W, then Si(q,Q) exists and is given by: 

si(4,Q) = /" f u i x ( H d q , z ) I x i )  IJHq(PIz)/dz 

where J H ~ ( ~ , L )  is the Jacobian of Hg. Given S;(q,Q). the esti- 
mation error (PFE) is computed using the steady state solutions of 
a discrete approximation to the recursive equation [6]: 

-m 

4. SIMULATIONS 

Simulations were performed for H M M s  having Gaussian noises 
Vi - N(0,  ai), j = 1 , 2  and correlation coefficient r. The con- 
ditional density of Yk given XI = xi is given by: 

where ui = (y' ~ x i ) / a i ,  ui = (y2 - x i ) / a2  and n = l/(l - 
T ' ) .  For the correlated noise case, using an appropriate change of 
variables, the integral in ( 1) can he written in terms of the Standard 
Normal Bivariate Integral 

which was computed using a Gauss quadrature method. Moreover 
with fg(y', y2) = y2  for each Q E (-1, l), the conditional den- 
sity Si(q, 4) was found to be: 

VI - 750 

Authorized licensed use limited to: Maynooth University Library. Downloaded on May 24,2021 at 14:35:22 UTC from IEEE Xplore.  Restrictions apply. 



r =  0. case= 1 

0.1 

0.08- 

0.06- 

0.04- 

0.02 

r = 0.7, Case = 1 

- '  

- 

0- 

. .  

. . . . . . . . .  

100 
4 

Fig. 2. Simulated PFE (Case 1, T = 0 )  

The intergal in ( 5 )  was computed numerically by discretis- 
ing the domain which reduced ( 5 )  to a matrix recursion. It was 
shown [6]  that there exists a unique solution to the matrix recur- 
sion which, by continuity, converges to a solution of ( 5 ) .  

All simulations were obtained from data sets using 100,ooO 
points, averaged over 5 sets of 20,M)O points each. Optimisation 
was performed using a sequential simplex search routine (Matlab's 
optimisation toolbox). The transition probability matrix for the 
Markov Chain was A = [ 8:$ ;::I. Simulations involving three val- 
ues of the correlation coefficient, .r = O , O ,  3,0.7 were performed 
for the following four noise level cases. Cases 1 to 3 had 61 fixed 
at 0.8, 1.6 and 2.5 respectively, while 02 was sampled logarith- 
mically in the range (0.5,4). In Case 4, a, = m, and 6 2  was 
sampled as in cases 1 to 3. For each (m,u2)  pair, a theroetical 
computation of the PFE for the continuous filter, and a simula- 
tion based computation of the PFE for the continuous filter was 
performed. Also, a quantisation scheme was calculated, and sim- 
ulation based computation of the PFE for the associated quantised 
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Fig. 3. Simulated PFE (Case I ,  T = 0.7) 

filter was performed for every combination of quantistion levels in 
the ranges 2 5 M 5 6 and 2 5 N 5 6.  Further simulations in- 
volving r = 0.1,0.2, . . . .  0.8 were performed for the continuous 
sensor filter only to further investigate the behaviour of the filter 
under large differences in the values of a1 and oz. 

The typical behaviour of the filters is illustrated in figures 2 
and 3. It was seen in almost all cases, that there was good fit be- 
tween the theoretical 'filter error curve obtained from equation 5 
and the simulated error curve obtained using continuous measure- 
ments. The discrepancies for small a values are attributed partly 
to limits obtained by machine precision, and pmly to errors intro- 
duced by discretisation of the integral in equation 5. 

A surprising result seen in cases 1 to 3, is how filter perfor- 
mance improves as m increases beyond some critical value. This 
result was investigated further through simulations for the contin- 
uous filter for T = 0.1,0.2, . . .  , O X  with the results for case 1 
shown in figure 4. Results indicate that the worst filter perfor- 
mance (maximum PFEj occurs at the critical value a2 = U I ~ T .  

Furthermore, this value corresponds to the performance value of a 
single sensor filter (with noise level 01). It should be stressed that 
this result applies to T > 0 only. 

This behaviour can he explained as follows. The correlation 
coefficient. T ,  between two real valued signals indicates the degree 
to which both signals tend to have the same (T > 0) or opposite 
(T  < 0) sign. The correlation coefficient introduces a bias into 
the filter which enhances filter performance. However, the perfor- 
mance of the filter also suffers from reduced independence in the 
two signals. Thus for a given amount of correlation, the loss in per- 
formance of the filter due to reduced independence and increasing 
noise levels is offset by the gain in performance from improved 
noise, sign estimation. 

With regard to question 1, the limiting behaviour of the con- 
tinuous filter for large a2 can be seen from the recursive update 
equations 2 and 4 for the filter. As uz + m. the resulting equa- 
tions approach the case of a single sensor filter with noise level 
a = a,/&. Simulations for a2 > 4 were performed for case 1 
to further investigiite this behaviour, however, in the case of cor- 
related noise, as seen in figure 5 ,  filter performance does not ap- 
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Fig. 4. Continuous filter: Simulated PFE (Case 1). Fig. 5. Continuous filter: Simulated PFE (Case 1, large az). 

proach that of the single continuous filter as 6 2  becomes large, but 
approaches a lower value instead. This result can be explained by 
the fact that even at large noise levels, the bias introduced by the 
correlation is still present in the filter. 

In the simulations involving quantised filters, it was seen in 
almost all cases that the performance of the quantised filter could 
be made to approach the performance of the continuous filter with 
relatively few numbers of quantisation levels, indicating the use- 
fulness of the mutual information based approach to quantisation. 
In general, the presense of correlation in the signals meant a re- 
duction in the amount of mutual information between the signals 
and the Markov state, which resulted in reduced filter performance. 
This was especially noticable for low numbers of quantisation lev- 
els. 

Question 2 can be addressed from the simulations involving 
cases I to 3. Firstly, it was observed that, at worst, the addition 
of a second sensor made no change at all to filter performance, 
while at best, the filter could be made to perform better than the 
corresponding single continuous filter (with noise level a,). 

In the independent noise case, filter performance degraded as 
LTZ increased in all cases. In the correlated noise case, f o r m  in 
the range a1 5 az 5 UI/T, improvements in filter performance 
were achievable with the addition of a second sensor in all cases. 
However, the level of improvement decreased as VI increased until 
the critical value was reached, at which point no improvement in 
filter performance was obtained regardless of the number of quan- 
tisation levels used. As az increased beyond the critical value, im- 
provements in filter performance with the addition of a second sen- 
sor began to increase again with the exception of the case M = 2, 
in which no further improvements were observed, regardless of the 
number of quantisation levels for the second sensor. 

Perhaps the most imponant observation that can be made in 
the case of correlated noise is that improvements in filter perfor- 
mance are no longer guaranteed by the addition of a second signal. 

With regard to question 3 it was observed that quantisation 
schemes obtained for each sensor from the joint distribution were 
dependent on the noise levels in both sensors. For a given sen- 
sor, the corrsponding single sensor quantisation scheme was ap- 

proached only as noise levels in the other sensor increased without 
bound. 
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