
A Framework for Efficient Rate-Power Allocation
for OFDM in a Composite-Fading Environment

Kamau Prince, Brian Krongold and Subhrakanti Dey
ARC Special Research Centre for Ultra-Broadband Information Networks

Affiliated Program of National ICT Australia
University of Melbourne, Australia

Email: k.prince@ee.mu.oz.au, bsk@unimelb.edu.au, s.dey@ee.mu.oz.au

Abstract— We propose a framework to optimally allocate
transmission resources for a digital single-user multichannel
transmission link operating in a dynamically-fading wireless
environment. Beginning with the statistical properties of fading
phenomena observed in such channels, we demonstrate how
convex optimisation theory may be harnessed for this purpose.
Examples are presented to illustrate how service quality criteria
may be used to dynamically identify operating points for the
allocation algorithm.

I. INTRODUCTION

Multitone communications is being intensely researched
due to its potential for supporting increased bandwidth de-
mands required in new generations of wireless networks. Con-
temporary implementations of such technologies (e.g. IEEE
802.11b WLAN, High-Definition television DVB) allocate
power equally across sub-carriers for each transmitted symbol.
This may be appropriate in broadcast scenarios, but in point-
to-point OFDM transmission, it may be possible to allocate
power and rate according to the channel conditions on the
link. We propose a framework in this paper to improve the
overall efficiency of such multitone systems by exploiting the
statistical nature of the wireless fading environments in order
to optimize the dynamic allocation of transmission resources.
We structure the rate-power allocation as the solution to a
convex optimization problem, having constraints derived from
pre-determined quality of service (QoS) metrics. We then
apply this framework to illustrate how to optimize rate-power
allocation for transmission over a multichannel link operating
in a fading environment, subject to service quality parameters
such as error probability or outage probability.

The paper opens with a development of the structure sup-
porting the framework. We characterize the symbol transmit
power required to fulfill average received-SNR criteria that
supports single-user communication as a particular QoS, such
as symbol (or bit) error probability (SEP/BEP) or symbol out-
age probability (SOP). The scope is then widened to a single-
user wireless OFDM communication linkto illustrate how this
framework is applied to optimally allocate rate-power in a
dynamically-fading environment. Results are then presented
for the operation of this link in a sample Rayleigh fading
environment, in which each of the sub-symbols is selected
from a closed set of pre-defined modulation depths. Outage
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probability is used as a QoS constraint and the resulting
allocation is compared to the outage probability for a flat-
power allocation which uses the same total power.

II. LOADING PROBLEM

A. Background

We model a multitone channel as an aggregation of N
narrowband transmission sub-channels, each receiving a signal
from a transmitting node and multiplied by a complex-valued
scalar , αi. Hence, the composite channel modulates X by
α := {αi} ; i ∈ {1, · · · , N}, where α may be time varying.
Every transmitted symbol, X ∈ {CN} may be represented by
an N -length vector, comprised of the sub-symbols transmitted
in each subchannel. We also assume that the total transmission
system noise is known at the receiver.

We assume that the system of interest operates in a
frequency-selective environment in which transmission ef-
fects result in unequal values of αi across subchannels. This
phenomenon creates the loading problem [1] [2] [3] where
OFDM system performance can be optimized by intelligently
allocating (or loading) rate and power to each subchannel. We
further assume that the correlation between fade coefficients
over two given subchannels, E[αi, αj] becomes negligible
once the frequency separation between the ith and jth sub-
channels exceeds the coherence bandwidth of the channel [4].
In this sense, there is more frequency selectivity which can be
exploited through an intelligent loading algorithm to achieve
rate increases and/or power savings in multitone links. Several
attempts have been made to effectively allocate rate and power
resources to maximize OFDM performance, but almost all are
suboptimal in some sense (e.g. rate rounding [3], SNR-gap
approximation [2]), while many are not very computationally
efficient and rely on such things as sorting of all subchannel
gains or require too many multiplications and even divides. In
this paper we base our new framework on a previous work
[1], [5]– [6] by one of the authors which is both theoretically
optimal and extremely efficient to implement.

A key property required for optimality is SNR being a
positive, convex function of rate. In contemporary digital
modulation schemes operating in a narrowband AWGN envi-
ronment, this is almost always the case. The resulting resource
allocation problem evaluates the convex relationship between
required transmit symbol power and associated rate under QoS
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constraints, and optimizes an objective function under any
additional resource constraints.

B. Loading Algorithm

We wish to develop a practical resource allocation algorithm
based upon [1] for operation in a time-varying multi-tone
environment. Consider a single-user digital multitone (DMT)
system with a broadband channel divided into N narrowband
sub-channels. Each transmitted symbol, X ∈ C

N is an N -
length vector, comprised of the sub-symbols transmitted in
each subchannel i ∈ {1, · · · , N}. For now, we further assume
that the value of the fade coefficient, αk during transmission
of the kth symbol (Xk), is known at the transmitter. (We
pose that use of an estimate, α̃k , would also be feasible.)
The resource allocation algorithm is to assign a transmission
rate, Ri, and a transmit power, Pi for all i and the given
transmitted symbol, X . The rate (Ri) selected for each channel
will affect the modulation depth of the ith sub-symbol, and
hence the modulation scheme used to transmit this sub-symbol.
We assume the algorithm assigns rate (Ri) from a closed set
of cardinality L and power (Pi) such that for all i,

Pi ≥ 0 , Ri ∈
{
0, r1, r2, · · · , rL−1

}
(1)

The total rate of each symbol, RT is defined by (2), and the
total power, PT of each symbol is given in (2).

RT =
N∑

i=1

Ri ; PT =
N∑

i=1

Pi (2)

The algorithm optimizes resources for each transmitted symbol
using the channel data (αi’s) and provides a set of channel
rate/power parameters, {Ri, Pi} (i ∈ 1, · · · , N ) to satisfy
additional constraints, say e.g.:

• Service Quality threshold (Ωth), in addition to
• Maximum Transmitted Power (PMAX), and/or
• Target Symbol Rate (RTARGET)

In [1], symbol (or bit) error probability was considered for
the scenario where each subchannel experiences AWGN and
a fixed, flat fade by a complex scalar. In this paper, we
consider dynamically fading environments and additional QoS
constraints may be necessary in addition to symbol/bit error
probabilities (averaged over the fading distribution). In the
presence of fast-fading, outage probability is another notewor-
thy QoS measure that will be considered later in the paper.

We first outline the algorithm developed in [1] which forms
the basis for the extended wireless framework. In addition
to its optimality properties, the approach is very efficient
computationally with O(N) running time. Two important
(dual) loading problems were considered: Rate Maximization
and Margin Maximization.

Rate maximization maximizes the overall data rate per
symbol, RT subject to constraints on the total power, PT and
some error probability constraint on each subchannel. Hence,

max RT subject to PT ≤ P and Pi,k ≤ Pth ; ∀ i (3)

where Pi,k is the error probability (bit or symbol) for the
ith subchannel of Xk, and Pth is the target maximum

error constraint. In general, we try to meet error probability
constraints with strict equality in order to not waste power.
Margin maximization has a target total rate (RDES) that must
be met, as well as a total power constraint (PMAX). Upon
achieving RDES with some power PT , any remaining power
is used to add margin ϕ, or scale, the Pi’s so that power PMAX

is used. Maximizing this margin is equivalent to minimizing
PT required to achieve RDES, resulting in the following dual
problem to (3):

min PT subject to RT = RDES and Pi,k ≤ Pth ; ∀i (4)

The extra power can than be scaled onto each subchannel by
the factor ϕ = PMAX/PT .

C. Optimal Loading

The optimal loading approach in [1] was first written by
assuming that power is a continuous, strictly increasing convex
function of rate for a fixed error probability constraint met with
equality. The constrained optimization problems are converted
into unconstrained ones by introducing a Lagrange multiplier,
and in the margin maximization problem, the new problem is

min J(λ) =
N∑

i=1

Pi + λ

(
RDES −

N∑
i=1

Ri

)
, (5)

where J(λ) is the Lagrange cost and λ ≥ 0. Each minimum
Lagrange cost for a fixed λ corresponds to the minimum
power for some total rate. The goal then is to find an optimal
λ∗ which achieves RDES. For a given λ, the minimum J(λ)
is achieved with a same-slope solution ( ∂Pi

∂Ri
= λ) for each

subchannel [1]. If the λ is less than the derivate at zero, then
no resources are allocated to that subchannel.

In practical systems, Ri is chosen from a discrete set, and
the rate-power function is discretized. Derivatives are relaxed
into differentials between operating points (Ri, Pi), and the
Lagrangian approach is still optimal. For a given λ, the optimal
operating point in a given subchannel is where a line of slope
λ is tangent to the convex hull. The discretized nature of the
problem makes it simpler to solve as each operating point has
a continuous interval of λ values associated with it, i.e.,

Ri =
{

rj , di(rj) ≤ λ < di(rj+1)
0, λ < di(r1).

(6)

where di(rj) are the differentials (∆power)/(∆rate) between
adjacent operating points at rates rj−1 and rj . This motivates
the use of lookup tables to accelerate the loading, but requires
also requires computing a table for each subchannel.

We can also consider a required SNRreq(rj), to allow a spe-
cific subchannel rate rj under the error probability constraint.
Defining SNR as

SNRi =
Pi|Hi|2

2σ2
i

= Pi · CNRi, (7)

we can see that a required Pi to meet SNRreq(rj) is inversely
proportional to the channel-to-noise ratio, CNRi. We can
define SNR-rate operating points as well, and a lookup table
with differentials β(rj) = di(rj) ·CNRi to facilitate loading.
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No i subscript is needed because all subchannels are assumed
to have the same SNR-rate characteristics. The lookup table
approach can be simplified to [5]:

Ri =

{
rj ,

λ
β(rj+1)

≤ 1
CNRi

< λ
β(rj)

0, λ
β(r1)

< 1
CNRi

.
(8)

The lookup table boundaries are no longer subchannel depen-
dent, and a huge computational reduction results. With each
new tested λ, L−1 lookup table boundaries are computed and
1/CNRi is used to find the allocation.

The key to this simplification is the scalability across the
power-rate operating points between subchannels for the case
of fixed, flat-faded subchannels corrupted by AWGN. This
scalability property can be generalized to the following:

Definition 1: A loading problem has scalability across
subchannels if the QoS can be written as a function of only
(Ri = rj) and (ζi · Pi) for all i, j, where ζi is a known,
given parameter which completely characterizes the exact or
statistical nature of each subchannel.

For a deterministic channel, ζi is simply CNRi as above.
In a dynamically-fading wireless environment, this property
may still hold with ζi representing the statistical state of a
subchannel (perhaps in terms of an average SNR).

Significantly more detail of the fast, optimal loading al-
gorithm can be found in [5]. The important aspects of it to
this paper are its optimality, basic structure, as well as its
computational efficiency and use of the subchannel scalability
property. We have not yet mentioned coding within the loading
structure, which is an important part to OFDM wireless trans-
mission. The effect of a code and its gain may be incorporated
into the power-rate operating points and the allocations.

III. WIRELESS CHANNELS

We consider a wideband channel supporting N narrowband
channels, over which some composite fading/shadowing ef-
fects are observed [7] [8], producing frequency-selective mul-
tipath fading. Hence, the channel-induced gain (αi) imposed
on the ith subchannel of a given symbol transmission may be
described by;

αi = Fi · Gi · Hi (9)

where Fi represents the rapidly-varying fading coefficient over
the channel, Gi indicates the more slowly-varying variations in
path gain, and Hi denotes the path-length dependent loss. We
assume that Fi and Gi take values from independent random
processes, where all Gi’s vary on a time scale which allows for
accurate tracking or prediction, and that the values assumed by
Fi vary unpredictably. Without loss of generality, we collapse
Hi coefficients into a composite slow-varying Gi.

The effects of fluctuations in channel gain as observed by
the various sub-channels is such that the transmitter must
vary the sub-symbol power assignments (Pi), in order to
produce a consistent receiver symbol-to-noise power ratio
(SNR), which is related to the service quality delivered

over that channel. This is consistent with the scalability
property (and its associated complexity reduction) described
in the previous section, and can be applied to the loading
problem in a composite-fading environment. Our approach
recognizes treatment of mobile channels as falling into two
main categories, as shown below.

1. Slowly-Developed Fading in which the G terms dominate,
and we assume without loss of generality that the mean value
of the fast fading components is unity (E[Fi] = 1 for all i).
Depending on the transmission factors, such an environment
will produce highly time-correlated values of α, which may
vary little over several symbol intervals. Channel estimation
may be implemented, if the fading conditions vary slowly
enough. For less slowly-developed fading, well-defined models
exist for the time-developing behavior in such environments
[4]. These models have been developed to provide reasonable
short-to medium-term prediction of future values of α [9], and
which have been integrated with predictive channel loading
[10].

In such cases, the algorithm is given information on the
instantaneous channel conditions, and is able to optimally
allocate resources for the channel. Error probability (PE) will
likely be used as indicate the QoS for such systems.

2. Rapid Fading, with significant Fi terms which we assume
to be identically distributed with some fading distribution.
In this environment, there is additional uncertainty about the
values assumed by the instances of α. Due to the decreased
time autocorrelation of α, the time delay between channel
measurement, feedback, estimation, and loading optimization
becomes significant, and reduces the certainty with which
the transmission channel estimate is presented. In this case,
channel prediction/estimation techniques are less reliable. We
propose “outage” as an additional channel service quality
metric for such channels and define an “outage” to occur
whenever the receiver SNR falls below the value required to
fulfill a desired PE. The target of the algorithm in such cases
is to allocate transmission resources to satisfy power, rate and
PO constraints.

IV. OFDM LOADING IN WIRELESS CHANNELS

We now apply the loading framework to a wireless single-
user OFDM link. Consider a wideband channel, divided into N
subchannels, operating in the presence of frequency-selective
fading. We model each of the subchannels of the transmission
link as having an associated (multiplicative) time-varying
gain amplitude (αi) as defined above. Each α parameter is
defined by some statistical density function, and therefore,
manipulation of this underlying function leads to an approach
that is optimal in an ergodic sense. In this way, the system
design no longer has to be dependent upon the subtleties of
the phenomena producing the fade effects, but could rather be
constructed utilizing a set of long-term coefficients. We ad-
ditionally assume that information regarding the transmission
noise process is available at the receiver. We customize the
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framework for application in the OFDM environment, subject
to the conditions assumed for the channel variations.

The time-varying nature of the channel gains motivates the
development of an algorithm to perform the resource allocation
in the minimum possible time. Additionally, since the typical
fading scenario experienced in a narrowband wireless channel
imposes a practical limit on the transmission rate (arising from
limitations on feasible transmit power levels), then the possible
{rj , Pj,MIN|j ∈ 1, · · · , L} will be limited to a few elements.
This result encourages the use of such an algorithm, since an
effective one requiring little overhead computation time would
provide an operating point more appropriate for the channel
estimate provided, or which would reduce the time horizon
required for the channel prediction.

A. Slowly-Developing Fading

It is assumed that the trackable components (Gi∈{1,··· ,N}’s)
of the channel gain are dominant (i.e. Fi∈{1,··· ,N} � 1), and
that possibly αi �= αj �=i for a given symbol interval. The
relatively slow development of the channel gain α allows the
transmitter to obtain a reliable estimate to use for resource al-
location. (This estimated gain vector may be directly obtained
by channel measurement, or indirectly provided through chan-
nel prediction). Furthermore, for sufficiently slowly-varying
conditions, the algorithm may not need to be run for every
transmitted symbol provided that sufficiently high autocorre-
lation of the channel-varying conditions are observed.

B. Composite Fading with Fast and Slow Components

In this environment, we assume the presence of a variable
slowly-fading channel gain coefficient (G), the instantaneous
values of which may be reliably estimated/predicted, and
which therefore provide a deterministic distortion of the trans-
mitted symbols. However, this effect is accompanied by other,
more rapidly-varying processes, modeled as a fast-fading gain
coefficient(F ), which reduces the correlation of the overall
gain factors between successive transmission intervals. We
assume that the realizations of Fi coefficients are drawn from
a known statistical distribution identical for all i. The random
nature of Fi increases the uncertainty associated with each
estimate α̃, and motivates the inclusion of a more conservative
approach to resource allocation.

Performance over the previous (slowly-fading) channel was
parameterized in terms of the PE. For this model, the ran-
domness introduced by the faster fades prevents the derivation
of an exact error probability. Two possible schemes exist for
specifying the QoS delivered in such environments. The first
uses of an average error probability statistic PE, which may
be evaluated by taking the relationship between the receiver
SNR and the PE, and integrating it over the range of the fading
PDF. The second is to evaluate an outage probability statistic
PO, which indicates the proportion of time for which the SNR
exceeds the minimum value required to satisfy a certain PE.

In each subchannel, the average error probability (PE) for

any fixed Pi
1 is given by

PE =
∫

F

[PE|F] · pF(F ) dF (10)

If each possible Fi scales all symbols uniformly, regardless
of Rj∈1,··· ,L, then averaging the resulting error probability
equations and evaluating this function for a fixed PE becomes
the sum of an infinite number of convex functions relating
SNR to rate for the given PE. The result is a convex SNR-
rate relationship (for any given PE), which must be optimized
for resource allocation. The Lagrange methods are therefore
optimal for performing this allocation.

Alternatively, if PO is included as a QoS metric, then the Pi

on each subchannel must be optimized to satisfy the outage
constraint

Pr[PE ≤ PE,TARGET] ≤ PO,TARGET (11)

Since the fade equally modulates all transmitted symbols,
evaluation of the inverse PDF of Fi returns the receive SNR
(and hence, transmit power) scaling factor required to achieve
the desired outage probability. Effecting the required scaling
linearly transforms the relationship for SNR/PE in AWGN
for a particular fade intensity, producing a convex objective
function. The Lagrange methods are also therefore optimal
for allocating transmission resources in this environment.

V. EXAMPLES/SIMULATIONS

The results obtained above were used to evaluate the relative
performance of the margin-maximization algorithm (MMA)
for dynamic allocating resources in a composite fading chan-
nel. It is assumed that the dynamic resource allocation algo-
rithm has access to the development of the slowly-varying
gain component and can allocate accordingly. In addition
to this component, the model was developed with a faster-
varying fading process, which was untrackable, the values of
which could be modeled as realizations of a Rayleigh random
variable. OFDM transmission was used having 128 subcarriers
with a target RT of 256 bits per symbol.

The minimum power was calculated to satisfy the error
and outage constraints, thus providing unity margin (ϕ) for
the MMA. The flat-power allocation was done by uniformly
dividing equal total transmit power across subchannels. Ad-
ditionally, both systems were provided with similar average
target error and outage probability criteria. The channel model
used for these analyses is presented in Figure 1. The results
obtained are presented graphically in Figure 2. It was observed
that the average outage probability obtained with the MMA
algorithm was able to meet the constraints, whereas the outage
probability for the flat-power allocation was slightly higher
than target at 6.1%, indicating inferior performance. More sig-
nificantly, it was observed that the MMA was able to equalize
outage probabilities across the subchannels, indicating uniform
performance. In contrast, the flat-power allocation produced

1Varying the Pi scales the relationship linearly, but does not otherwise
affect the nature of the optimization problem.
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significantly variable results for outage probably for the sub-
symbols transmitted along different subcarriers, for the same
transmit power PT . These results indicate that the MMA
algorithm is superior to flat-power allocation in optimizing
resources to achieve a stable communication link in a fading
transmission environment. The rate allocation is presented in
Figure 3
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VI. CONCLUSION

The framework proposed in this paper extends our previous
loading algorithm to deal with wireless systems, where a time-
varying channel and latency in the channel-state feedback and
loading time render the allocation to be suboptimal. Using
a composite fading model, if the slowly-fading component
is be trackable, a loading can be based upon this parameter
and a fade distribution on the fast-fading component. Two
important cases of QoS are considered: the typical average

error probability (bit or symbol) or outage probability. In both
QoS cases, convexity and scalability properties were shown to
hold, and the result is an optimal, fast loading algorithm for
real-time point-to-point wireless systems.

Further extensions of this framework are ongoing and in-
clude the use of linear or Kalman prediction to estimate future,
instantaneous subchannel gains. By predicting enough ahead,
this may overcome some or all of the latency of channel-state
feedback and loading time, and thereby result in increased
system performance. Such linear-prediction OFDM-allocation
ideas have been considered in [11]– [12].

Other extensions to follow include the optimal loading in
MIMO systems with space-time coding, and the resource
allocation in multiuser systems [12]– [14], which results in
K-dimensional Lagrange optimization (i.e., there is a separate
Lagrange multiplier for each of K users). Subchannels remain
separable within the same user, but a single subchannel allo-
cation is constrained by multiple users, and we are looking
at the scenarios of subchannel sharing as well as unique
assignment. These problems are more difficult and again
require an extremely efficient algorithm along with the optimal
single-user wireless framework contained in this paper.
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